ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
(Generate patch)

Comparing:
trunk/src/brains/Thermo.cpp (file contents), Revision 833 by tim, Fri Dec 30 21:25:56 2005 UTC vs.
branches/development/src/brains/Thermo.cpp (file contents), Revision 1850 by gezelter, Wed Feb 20 15:39:39 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <math.h>
# Line 49 | Line 50
50   #include "brains/Thermo.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "utils/simError.h"
53 < #include "utils/OOPSEConstant.hpp"
53 > #include "utils/PhysicalConstants.hpp"
54 > #include "types/FixedChargeAdapter.hpp"
55 > #include "types/FluctuatingChargeAdapter.hpp"
56 > #include "types/MultipoleAdapter.hpp"
57 > #ifdef HAVE_QHULL
58 > #include "math/ConvexHull.hpp"
59 > #include "math/AlphaHull.hpp"
60 > #endif
61  
62 < namespace oopse {
62 > using namespace std;
63 > namespace OpenMD {
64  
65 <  double Thermo::getKinetic() {
66 <    SimInfo::MoleculeIterator miter;
58 <    std::vector<StuntDouble*>::iterator iiter;
59 <    Molecule* mol;
60 <    StuntDouble* integrableObject;    
61 <    Vector3d vel;
62 <    Vector3d angMom;
63 <    Mat3x3d I;
64 <    int i;
65 <    int j;
66 <    int k;
67 <    double kinetic = 0.0;
68 <    double kinetic_global = 0.0;
69 <    
70 <    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
71 <      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
72 <           integrableObject = mol->nextIntegrableObject(iiter)) {
65 >  RealType Thermo::getTranslationalKinetic() {
66 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
67  
68 <        double mass = integrableObject->getMass();
69 <        Vector3d vel = integrableObject->getVel();
68 >    if (!snap->hasTranslationalKineticEnergy) {
69 >      SimInfo::MoleculeIterator miter;
70 >      vector<StuntDouble*>::iterator iiter;
71 >      Molecule* mol;
72 >      StuntDouble* sd;    
73 >      Vector3d vel;
74 >      RealType mass;
75 >      RealType kinetic(0.0);
76 >      
77 >      for (mol = info_->beginMolecule(miter); mol != NULL;
78 >           mol = info_->nextMolecule(miter)) {
79 >        
80 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
81 >             sd = mol->nextIntegrableObject(iiter)) {
82 >          
83 >          mass = sd->getMass();
84 >          vel = sd->getVel();
85 >          
86 >          kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
87 >          
88 >        }
89 >      }
90 >      
91 > #ifdef IS_MPI
92 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
93 >                                MPI::SUM);
94 > #endif
95 >      
96 >      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
97 >      
98 >      
99 >      snap->setTranslationalKineticEnergy(kinetic);
100 >    }
101 >    return snap->getTranslationalKineticEnergy();
102 >  }
103  
104 <        kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
104 >  RealType Thermo::getRotationalKinetic() {
105 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
106  
107 <        if (integrableObject->isDirectional()) {
108 <          angMom = integrableObject->getJ();
109 <          I = integrableObject->getI();
110 <
111 <          if (integrableObject->isLinear()) {
112 <            i = integrableObject->linearAxis();
113 <            j = (i + 1) % 3;
114 <            k = (i + 2) % 3;
115 <            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
116 <          } else {                        
117 <            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
118 <              + angMom[2]*angMom[2]/I(2, 2);
119 <          }
120 <        }
107 >    if (!snap->hasRotationalKineticEnergy) {
108 >      SimInfo::MoleculeIterator miter;
109 >      vector<StuntDouble*>::iterator iiter;
110 >      Molecule* mol;
111 >      StuntDouble* sd;    
112 >      Vector3d angMom;
113 >      Mat3x3d I;
114 >      int i, j, k;
115 >      RealType kinetic(0.0);
116 >      
117 >      for (mol = info_->beginMolecule(miter); mol != NULL;
118 >           mol = info_->nextMolecule(miter)) {
119 >        
120 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
121 >             sd = mol->nextIntegrableObject(iiter)) {
122 >          
123 >          if (sd->isDirectional()) {
124 >            angMom = sd->getJ();
125 >            I = sd->getI();
126              
127 +            if (sd->isLinear()) {
128 +              i = sd->linearAxis();
129 +              j = (i + 1) % 3;
130 +              k = (i + 2) % 3;
131 +              kinetic += angMom[j] * angMom[j] / I(j, j)
132 +                + angMom[k] * angMom[k] / I(k, k);
133 +            } else {                        
134 +              kinetic += angMom[0]*angMom[0]/I(0, 0)
135 +                + angMom[1]*angMom[1]/I(1, 1)
136 +                + angMom[2]*angMom[2]/I(2, 2);
137 +            }
138 +          }          
139 +        }
140        }
141 <    }
96 <    
141 >      
142   #ifdef IS_MPI
143 +      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
144 +                                MPI::SUM);
145 + #endif
146 +      
147 +      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
148 +          
149 +      snap->setRotationalKineticEnergy(kinetic);
150 +    }
151 +    return snap->getRotationalKineticEnergy();
152 +  }
153  
154 <    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_DOUBLE, MPI_SUM,
100 <                  MPI_COMM_WORLD);
101 <    kinetic = kinetic_global;
154 >      
155  
156 < #endif //is_mpi
156 >  RealType Thermo::getKinetic() {
157 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
158  
159 <    kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert;
160 <
161 <    return kinetic;
159 >    if (!snap->hasKineticEnergy) {
160 >      RealType ke = getTranslationalKinetic() + getRotationalKinetic();
161 >      snap->setKineticEnergy(ke);
162 >    }
163 >    return snap->getKineticEnergy();
164    }
165  
166 <  double Thermo::getPotential() {
111 <    double potential = 0.0;
112 <    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
113 <    double shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
166 >  RealType Thermo::getPotential() {
167  
168 <    // Get total potential for entire system from MPI.
168 >    // ForceManager computes the potential and stores it in the
169 >    // Snapshot.  All we have to do is report it.
170  
171 < #ifdef IS_MPI
172 <
119 <    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_DOUBLE, MPI_SUM,
120 <                  MPI_COMM_WORLD);
121 <    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
122 <
123 < #else
124 <
125 <    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
126 <
127 < #endif // is_mpi
128 <
129 <    return potential;
171 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
172 >    return snap->getPotentialEnergy();
173    }
174  
175 <  double Thermo::getTotalE() {
133 <    double total;
175 >  RealType Thermo::getTotalEnergy() {
176  
177 <    total = this->getKinetic() + this->getPotential();
136 <    return total;
137 <  }
177 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
178  
179 <  double Thermo::getTemperature() {
180 <    
181 <    double temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb );
142 <    return temperature;
143 <  }
179 >    if (!snap->hasTotalEnergy) {
180 >      snap->setTotalEnergy(this->getKinetic() + this->getPotential());
181 >    }
182  
183 <  double Thermo::getVolume() {
146 <    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
147 <    return curSnapshot->getVolume();
183 >    return snap->getTotalEnergy();
184    }
185  
186 <  double Thermo::getPressure() {
186 >  RealType Thermo::getTemperature() {
187  
188 <    // Relies on the calculation of the full molecular pressure tensor
188 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
189  
190 +    if (!snap->hasTemperature) {
191  
192 <    Mat3x3d tensor;
193 <    double pressure;
192 >      RealType temperature = ( 2.0 * this->getKinetic() )
193 >        / (info_->getNdf()* PhysicalConstants::kb );
194  
195 <    tensor = getPressureTensor();
196 <
197 <    pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
198 <
162 <    return pressure;
195 >      snap->setTemperature(temperature);
196 >    }
197 >    
198 >    return snap->getTemperature();
199    }
200  
201 <  double Thermo::getPressure(int direction) {
201 >  RealType Thermo::getElectronicTemperature() {
202 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
203  
204 <    // Relies on the calculation of the full molecular pressure tensor
205 <
206 <          
207 <    Mat3x3d tensor;
208 <    double pressure;
209 <
210 <    tensor = getPressureTensor();
211 <
212 <    pressure = OOPSEConstant::pressureConvert * tensor(direction, direction);
204 >    if (!snap->hasElectronicTemperature) {
205 >      
206 >      SimInfo::MoleculeIterator miter;
207 >      vector<Atom*>::iterator iiter;
208 >      Molecule* mol;
209 >      Atom* atom;    
210 >      RealType cvel;
211 >      RealType cmass;
212 >      RealType kinetic(0.0);
213 >      RealType eTemp;
214 >      
215 >      for (mol = info_->beginMolecule(miter); mol != NULL;
216 >           mol = info_->nextMolecule(miter)) {
217 >        
218 >        for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
219 >             atom = mol->nextFluctuatingCharge(iiter)) {
220 >          
221 >          cmass = atom->getChargeMass();
222 >          cvel = atom->getFlucQVel();
223 >          
224 >          kinetic += cmass * cvel * cvel;
225 >          
226 >        }
227 >      }
228 >    
229 > #ifdef IS_MPI
230 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
231 >                                MPI::SUM);
232 > #endif
233  
234 <    return pressure;
234 >      kinetic *= 0.5;
235 >      eTemp =  (2.0 * kinetic) /
236 >        (info_->getNFluctuatingCharges() * PhysicalConstants::kb );
237 >    
238 >      snap->setElectronicTemperature(eTemp);
239 >    }
240 >
241 >    return snap->getElectronicTemperature();
242    }
243  
244  
245 +  RealType Thermo::getVolume() {
246 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
247 +    return snap->getVolume();
248 +  }
249  
250 +  RealType Thermo::getPressure() {
251 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
252 +
253 +    if (!snap->hasPressure) {
254 +      // Relies on the calculation of the full molecular pressure tensor
255 +      
256 +      Mat3x3d tensor;
257 +      RealType pressure;
258 +      
259 +      tensor = getPressureTensor();
260 +      
261 +      pressure = PhysicalConstants::pressureConvert *
262 +        (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
263 +      
264 +      snap->setPressure(pressure);
265 +    }
266 +    
267 +    return snap->getPressure();    
268 +  }
269 +
270    Mat3x3d Thermo::getPressureTensor() {
271      // returns pressure tensor in units amu*fs^-2*Ang^-1
272      // routine derived via viral theorem description in:
273      // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
274 <    Mat3x3d pressureTensor;
187 <    Mat3x3d p_local(0.0);
188 <    Mat3x3d p_global(0.0);
274 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
275  
276 <    SimInfo::MoleculeIterator i;
191 <    std::vector<StuntDouble*>::iterator j;
192 <    Molecule* mol;
193 <    StuntDouble* integrableObject;    
194 <    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
195 <      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
196 <           integrableObject = mol->nextIntegrableObject(j)) {
276 >    if (!snap->hasPressureTensor) {
277  
278 <        double mass = integrableObject->getMass();
279 <        Vector3d vcom = integrableObject->getVel();
280 <        p_local += mass * outProduct(vcom, vcom);        
278 >      Mat3x3d pressureTensor;
279 >      Mat3x3d p_tens(0.0);
280 >      RealType mass;
281 >      Vector3d vcom;
282 >      
283 >      SimInfo::MoleculeIterator i;
284 >      vector<StuntDouble*>::iterator j;
285 >      Molecule* mol;
286 >      StuntDouble* sd;    
287 >      for (mol = info_->beginMolecule(i); mol != NULL;
288 >           mol = info_->nextMolecule(i)) {
289 >        
290 >        for (sd = mol->beginIntegrableObject(j); sd != NULL;
291 >             sd = mol->nextIntegrableObject(j)) {
292 >          
293 >          mass = sd->getMass();
294 >          vcom = sd->getVel();
295 >          p_tens += mass * outProduct(vcom, vcom);        
296 >        }
297        }
298 +      
299 + #ifdef IS_MPI
300 +      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9,
301 +                                MPI::REALTYPE, MPI::SUM);
302 + #endif
303 +      
304 +      RealType volume = this->getVolume();
305 +      Mat3x3d stressTensor = snap->getStressTensor();
306 +      
307 +      pressureTensor =  (p_tens +
308 +                         PhysicalConstants::energyConvert * stressTensor)/volume;
309 +      
310 +      snap->setPressureTensor(pressureTensor);
311      }
312 <    
312 >    return snap->getPressureTensor();
313 >  }
314 >
315 >
316 >
317 >
318 >  Vector3d Thermo::getSystemDipole() {
319 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
320 >
321 >    if (!snap->hasSystemDipole) {
322 >      SimInfo::MoleculeIterator miter;
323 >      vector<Atom*>::iterator aiter;
324 >      Molecule* mol;
325 >      Atom* atom;
326 >      RealType charge;
327 >      Vector3d ri(0.0);
328 >      Vector3d dipoleVector(0.0);
329 >      Vector3d nPos(0.0);
330 >      Vector3d pPos(0.0);
331 >      RealType nChg(0.0);
332 >      RealType pChg(0.0);
333 >      int nCount = 0;
334 >      int pCount = 0;
335 >      
336 >      RealType chargeToC = 1.60217733e-19;
337 >      RealType angstromToM = 1.0e-10;
338 >      RealType debyeToCm = 3.33564095198e-30;
339 >      
340 >      for (mol = info_->beginMolecule(miter); mol != NULL;
341 >           mol = info_->nextMolecule(miter)) {
342 >        
343 >        for (atom = mol->beginAtom(aiter); atom != NULL;
344 >             atom = mol->nextAtom(aiter)) {
345 >          
346 >          charge = 0.0;
347 >          
348 >          FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
349 >          if ( fca.isFixedCharge() ) {
350 >            charge = fca.getCharge();
351 >          }
352 >          
353 >          FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
354 >          if ( fqa.isFluctuatingCharge() ) {
355 >            charge += atom->getFlucQPos();
356 >          }
357 >          
358 >          charge *= chargeToC;
359 >          
360 >          ri = atom->getPos();
361 >          snap->wrapVector(ri);
362 >          ri *= angstromToM;
363 >          
364 >          if (charge < 0.0) {
365 >            nPos += ri;
366 >            nChg -= charge;
367 >            nCount++;
368 >          } else if (charge > 0.0) {
369 >            pPos += ri;
370 >            pChg += charge;
371 >            pCount++;
372 >          }
373 >          
374 >          if (atom->isDipole()) {
375 >            dipoleVector += atom->getDipole() * debyeToCm;
376 >          }
377 >        }
378 >      }
379 >      
380 >      
381   #ifdef IS_MPI
382 <    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
383 < #else
384 <    p_global = p_local;
385 < #endif // is_mpi
382 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE,
383 >                                MPI::SUM);
384 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE,
385 >                                MPI::SUM);
386  
387 <    double volume = this->getVolume();
388 <    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
389 <    Mat3x3d tau = curSnapshot->statData.getTau();
387 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER,
388 >                                MPI::SUM);
389 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER,
390 >                                MPI::SUM);
391  
392 <    pressureTensor =  (p_global + OOPSEConstant::energyConvert* tau)/volume;
392 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3,
393 >                                MPI::REALTYPE, MPI::SUM);
394 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3,
395 >                                MPI::REALTYPE, MPI::SUM);
396  
397 <    return pressureTensor;
397 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(),
398 >                                3, MPI::REALTYPE, MPI::SUM);
399 > #endif
400 >      
401 >      // first load the accumulated dipole moment (if dipoles were present)
402 >      Vector3d boxDipole = dipoleVector;
403 >      // now include the dipole moment due to charges
404 >      // use the lesser of the positive and negative charge totals
405 >      RealType chg_value = nChg <= pChg ? nChg : pChg;
406 >      
407 >      // find the average positions
408 >      if (pCount > 0 && nCount > 0 ) {
409 >        pPos /= pCount;
410 >        nPos /= nCount;
411 >      }
412 >      
413 >      // dipole is from the negative to the positive (physics notation)
414 >      boxDipole += (pPos - nPos) * chg_value;
415 >      snap->setSystemDipole(boxDipole);
416 >    }
417 >
418 >    return snap->getSystemDipole();
419    }
420  
421 <  void Thermo::saveStat(){
421 >  // Returns the Heat Flux Vector for the system
422 >  Vector3d Thermo::getHeatFlux(){
423      Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
424 <    Stats& stat = currSnapshot->statData;
425 <    
426 <    stat[Stats::KINETIC_ENERGY] = getKinetic();
427 <    stat[Stats::POTENTIAL_ENERGY] = getPotential();
428 <    stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ;
429 <    stat[Stats::TEMPERATURE] = getTemperature();
430 <    stat[Stats::PRESSURE] = getPressure();
431 <    stat[Stats::VOLUME] = getVolume();      
432 <
433 <    Mat3x3d tensor =getPressureTensor();
434 <    stat[Stats::PRESSURE_TENSOR_X] = tensor(0, 0);      
435 <    stat[Stats::PRESSURE_TENSOR_Y] = tensor(1, 1);      
436 <    stat[Stats::PRESSURE_TENSOR_Z] = tensor(2, 2);      
424 >    SimInfo::MoleculeIterator miter;
425 >    vector<StuntDouble*>::iterator iiter;
426 >    Molecule* mol;
427 >    StuntDouble* sd;    
428 >    RigidBody::AtomIterator ai;
429 >    Atom* atom;      
430 >    Vector3d vel;
431 >    Vector3d angMom;
432 >    Mat3x3d I;
433 >    int i;
434 >    int j;
435 >    int k;
436 >    RealType mass;
437  
438 +    Vector3d x_a;
439 +    RealType kinetic;
440 +    RealType potential;
441 +    RealType eatom;
442 +    // Convective portion of the heat flux
443 +    Vector3d heatFluxJc = V3Zero;
444  
445 <    /**@todo need refactorying*/
446 <    //Conserved Quantity is set by integrator and time is set by setTime
445 >    /* Calculate convective portion of the heat flux */
446 >    for (mol = info_->beginMolecule(miter); mol != NULL;
447 >         mol = info_->nextMolecule(miter)) {
448 >      
449 >      for (sd = mol->beginIntegrableObject(iiter);
450 >           sd != NULL;
451 >           sd = mol->nextIntegrableObject(iiter)) {
452 >        
453 >        mass = sd->getMass();
454 >        vel = sd->getVel();
455 >
456 >        kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
457 >        
458 >        if (sd->isDirectional()) {
459 >          angMom = sd->getJ();
460 >          I = sd->getI();
461 >
462 >          if (sd->isLinear()) {
463 >            i = sd->linearAxis();
464 >            j = (i + 1) % 3;
465 >            k = (i + 2) % 3;
466 >            kinetic += angMom[j] * angMom[j] / I(j, j)
467 >              + angMom[k] * angMom[k] / I(k, k);
468 >          } else {                        
469 >            kinetic += angMom[0]*angMom[0]/I(0, 0)
470 >              + angMom[1]*angMom[1]/I(1, 1)
471 >              + angMom[2]*angMom[2]/I(2, 2);
472 >          }
473 >        }
474 >
475 >        potential = 0.0;
476 >
477 >        if (sd->isRigidBody()) {
478 >          RigidBody* rb = dynamic_cast<RigidBody*>(sd);
479 >          for (atom = rb->beginAtom(ai); atom != NULL;
480 >               atom = rb->nextAtom(ai)) {
481 >            potential +=  atom->getParticlePot();
482 >          }          
483 >        } else {
484 >          potential = sd->getParticlePot();
485 >        }
486 >
487 >        potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
488 >        // The potential may not be a 1/2 factor
489 >        eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2
490 >        heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
491 >        heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
492 >        heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
493 >      }
494 >    }
495 >
496 >    /* The J_v vector is reduced in the forceManager so everyone has
497 >     *  the global Jv. Jc is computed over the local atoms and must be
498 >     *  reduced among all processors.
499 >     */
500 > #ifdef IS_MPI
501 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,
502 >                              MPI::SUM);
503 > #endif
504      
505 +    // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
506 +
507 +    Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
508 +      PhysicalConstants::energyConvert;
509 +        
510 +    // Correct for the fact the flux is 1/V (Jc + Jv)
511 +    return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
512    }
513  
514 < } //end namespace oopse
514 >
515 >  Vector3d Thermo::getComVel(){
516 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
517 >
518 >    if (!snap->hasCOMvel) {
519 >
520 >      SimInfo::MoleculeIterator i;
521 >      Molecule* mol;
522 >      
523 >      Vector3d comVel(0.0);
524 >      RealType totalMass(0.0);
525 >      
526 >      for (mol = info_->beginMolecule(i); mol != NULL;
527 >           mol = info_->nextMolecule(i)) {
528 >        RealType mass = mol->getMass();
529 >        totalMass += mass;
530 >        comVel += mass * mol->getComVel();
531 >      }  
532 >      
533 > #ifdef IS_MPI
534 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
535 >                                MPI::SUM);
536 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
537 >                                MPI::REALTYPE, MPI::SUM);
538 > #endif
539 >      
540 >      comVel /= totalMass;
541 >      snap->setCOMvel(comVel);
542 >    }
543 >    return snap->getCOMvel();
544 >  }
545 >
546 >  Vector3d Thermo::getCom(){
547 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
548 >
549 >    if (!snap->hasCOM) {
550 >      
551 >      SimInfo::MoleculeIterator i;
552 >      Molecule* mol;
553 >      
554 >      Vector3d com(0.0);
555 >      RealType totalMass(0.0);
556 >      
557 >      for (mol = info_->beginMolecule(i); mol != NULL;
558 >           mol = info_->nextMolecule(i)) {
559 >        RealType mass = mol->getMass();
560 >        totalMass += mass;
561 >        com += mass * mol->getCom();
562 >      }  
563 >      
564 > #ifdef IS_MPI
565 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
566 >                                MPI::SUM);
567 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
568 >                                MPI::REALTYPE, MPI::SUM);
569 > #endif
570 >      
571 >      com /= totalMass;
572 >      snap->setCOM(com);
573 >    }
574 >    return snap->getCOM();
575 >  }        
576 >
577 >  /**
578 >   * Returns center of mass and center of mass velocity in one
579 >   * function call.
580 >   */  
581 >  void Thermo::getComAll(Vector3d &com, Vector3d &comVel){
582 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
583 >
584 >    if (!(snap->hasCOM && snap->hasCOMvel)) {
585 >
586 >      SimInfo::MoleculeIterator i;
587 >      Molecule* mol;
588 >      
589 >      RealType totalMass(0.0);
590 >      
591 >      com = 0.0;
592 >      comVel = 0.0;
593 >      
594 >      for (mol = info_->beginMolecule(i); mol != NULL;
595 >           mol = info_->nextMolecule(i)) {
596 >        RealType mass = mol->getMass();
597 >        totalMass += mass;
598 >        com += mass * mol->getCom();
599 >        comVel += mass * mol->getComVel();          
600 >      }  
601 >      
602 > #ifdef IS_MPI
603 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
604 >                                MPI::SUM);
605 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
606 >                                MPI::REALTYPE, MPI::SUM);
607 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
608 >                                MPI::REALTYPE, MPI::SUM);
609 > #endif
610 >      
611 >      com /= totalMass;
612 >      comVel /= totalMass;
613 >      snap->setCOM(com);
614 >      snap->setCOMvel(comVel);
615 >    }    
616 >    com = snap->getCOM();
617 >    comVel = snap->getCOMvel();
618 >    return;
619 >  }        
620 >  
621 >  /**
622 >   * Return intertia tensor for entire system and angular momentum
623 >   * Vector.
624 >   *
625 >   *
626 >   *
627 >   *    [  Ixx -Ixy  -Ixz ]
628 >   * I =| -Iyx  Iyy  -Iyz |
629 >   *    [ -Izx -Iyz   Izz ]
630 >   */
631 >  void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,
632 >                                Vector3d &angularMomentum){
633 >
634 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
635 >    
636 >    if (!(snap->hasInertiaTensor && snap->hasCOMw)) {
637 >      
638 >      RealType xx = 0.0;
639 >      RealType yy = 0.0;
640 >      RealType zz = 0.0;
641 >      RealType xy = 0.0;
642 >      RealType xz = 0.0;
643 >      RealType yz = 0.0;
644 >      Vector3d com(0.0);
645 >      Vector3d comVel(0.0);
646 >      
647 >      getComAll(com, comVel);
648 >      
649 >      SimInfo::MoleculeIterator i;
650 >      Molecule* mol;
651 >      
652 >      Vector3d thisq(0.0);
653 >      Vector3d thisv(0.0);
654 >      
655 >      RealType thisMass = 0.0;
656 >      
657 >      for (mol = info_->beginMolecule(i); mol != NULL;
658 >           mol = info_->nextMolecule(i)) {
659 >        
660 >        thisq = mol->getCom()-com;
661 >        thisv = mol->getComVel()-comVel;
662 >        thisMass = mol->getMass();
663 >        // Compute moment of intertia coefficients.
664 >        xx += thisq[0]*thisq[0]*thisMass;
665 >        yy += thisq[1]*thisq[1]*thisMass;
666 >        zz += thisq[2]*thisq[2]*thisMass;
667 >        
668 >        // compute products of intertia
669 >        xy += thisq[0]*thisq[1]*thisMass;
670 >        xz += thisq[0]*thisq[2]*thisMass;
671 >        yz += thisq[1]*thisq[2]*thisMass;
672 >        
673 >        angularMomentum += cross( thisq, thisv ) * thisMass;            
674 >      }
675 >      
676 >      inertiaTensor(0,0) = yy + zz;
677 >      inertiaTensor(0,1) = -xy;
678 >      inertiaTensor(0,2) = -xz;
679 >      inertiaTensor(1,0) = -xy;
680 >      inertiaTensor(1,1) = xx + zz;
681 >      inertiaTensor(1,2) = -yz;
682 >      inertiaTensor(2,0) = -xz;
683 >      inertiaTensor(2,1) = -yz;
684 >      inertiaTensor(2,2) = xx + yy;
685 >      
686 > #ifdef IS_MPI
687 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(),
688 >                                9, MPI::REALTYPE, MPI::SUM);
689 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
690 >                                angularMomentum.getArrayPointer(), 3,
691 >                                MPI::REALTYPE, MPI::SUM);
692 > #endif
693 >      
694 >      snap->setCOMw(angularMomentum);
695 >      snap->setInertiaTensor(inertiaTensor);
696 >    }
697 >    
698 >    angularMomentum = snap->getCOMw();
699 >    inertiaTensor = snap->getInertiaTensor();
700 >    
701 >    return;
702 >  }
703 >
704 >  // Returns the angular momentum of the system
705 >  Vector3d Thermo::getAngularMomentum(){
706 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
707 >    
708 >    if (!snap->hasCOMw) {
709 >      
710 >      Vector3d com(0.0);
711 >      Vector3d comVel(0.0);
712 >      Vector3d angularMomentum(0.0);
713 >      
714 >      getComAll(com, comVel);
715 >      
716 >      SimInfo::MoleculeIterator i;
717 >      Molecule* mol;
718 >      
719 >      Vector3d thisr(0.0);
720 >      Vector3d thisp(0.0);
721 >      
722 >      RealType thisMass;
723 >      
724 >      for (mol = info_->beginMolecule(i); mol != NULL;
725 >           mol = info_->nextMolecule(i)) {
726 >        thisMass = mol->getMass();
727 >        thisr = mol->getCom() - com;
728 >        thisp = (mol->getComVel() - comVel) * thisMass;
729 >        
730 >        angularMomentum += cross( thisr, thisp );      
731 >      }  
732 >      
733 > #ifdef IS_MPI
734 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
735 >                                angularMomentum.getArrayPointer(), 3,
736 >                                MPI::REALTYPE, MPI::SUM);
737 > #endif
738 >      
739 >      snap->setCOMw(angularMomentum);
740 >    }
741 >    
742 >    return snap->getCOMw();
743 >  }
744 >  
745 >  
746 >  /**
747 >   * Returns the Volume of the system based on a ellipsoid with
748 >   * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
749 >   * where R_i are related to the principle inertia moments
750 >   *  R_i = sqrt(C*I_i/N), this reduces to
751 >   *  V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).
752 >   * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
753 >   */
754 >  RealType Thermo::getGyrationalVolume(){
755 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
756 >    
757 >    if (!snap->hasGyrationalVolume) {
758 >      
759 >      Mat3x3d intTensor;
760 >      RealType det;
761 >      Vector3d dummyAngMom;
762 >      RealType sysconstants;
763 >      RealType geomCnst;
764 >      RealType volume;
765 >      
766 >      geomCnst = 3.0/2.0;
767 >      /* Get the inertial tensor and angular momentum for free*/
768 >      getInertiaTensor(intTensor, dummyAngMom);
769 >      
770 >      det = intTensor.determinant();
771 >      sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects());
772 >      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
773 >
774 >      snap->setGyrationalVolume(volume);
775 >    }
776 >    return snap->getGyrationalVolume();
777 >  }
778 >  
779 >  void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){
780 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
781 >
782 >    if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) {
783 >    
784 >      Mat3x3d intTensor;
785 >      Vector3d dummyAngMom;
786 >      RealType sysconstants;
787 >      RealType geomCnst;
788 >      
789 >      geomCnst = 3.0/2.0;
790 >      /* Get the inertia tensor and angular momentum for free*/
791 >      this->getInertiaTensor(intTensor, dummyAngMom);
792 >      
793 >      detI = intTensor.determinant();
794 >      sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects());
795 >      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
796 >      snap->setGyrationalVolume(volume);
797 >    } else {
798 >      volume = snap->getGyrationalVolume();
799 >      detI = snap->getInertiaTensor().determinant();
800 >    }
801 >    return;
802 >  }
803 >  
804 >  RealType Thermo::getTaggedAtomPairDistance(){
805 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
806 >    Globals* simParams = info_->getSimParams();
807 >    
808 >    if (simParams->haveTaggedAtomPair() &&
809 >        simParams->havePrintTaggedPairDistance()) {
810 >      if ( simParams->getPrintTaggedPairDistance()) {
811 >        
812 >        pair<int, int> tap = simParams->getTaggedAtomPair();
813 >        Vector3d pos1, pos2, rab;
814 >        
815 > #ifdef IS_MPI        
816 >        int mol1 = info_->getGlobalMolMembership(tap.first);
817 >        int mol2 = info_->getGlobalMolMembership(tap.second);
818 >
819 >        int proc1 = info_->getMolToProc(mol1);
820 >        int proc2 = info_->getMolToProc(mol2);
821 >
822 >        RealType data[3];
823 >        if (proc1 == worldRank) {
824 >          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
825 >          pos1 = sd1->getPos();
826 >          data[0] = pos1.x();
827 >          data[1] = pos1.y();
828 >          data[2] = pos1.z();          
829 >          MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1);
830 >        } else {
831 >          MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1);
832 >          pos1 = Vector3d(data);
833 >        }
834 >
835 >        if (proc2 == worldRank) {
836 >          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
837 >          pos2 = sd2->getPos();
838 >          data[0] = pos2.x();
839 >          data[1] = pos2.y();
840 >          data[2] = pos2.z();  
841 >          MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2);
842 >        } else {
843 >          MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2);
844 >          pos2 = Vector3d(data);
845 >        }
846 > #else
847 >        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
848 >        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
849 >        pos1 = at1->getPos();
850 >        pos2 = at2->getPos();
851 > #endif        
852 >        rab = pos2 - pos1;
853 >        currSnapshot->wrapVector(rab);
854 >        return rab.length();
855 >      }
856 >      return 0.0;    
857 >    }
858 >    return 0.0;
859 >  }
860 >
861 >  RealType Thermo::getHullVolume(){
862 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
863 >
864 > #ifdef HAVE_QHULL    
865 >    if (!snap->hasHullVolume) {
866 >      Hull* surfaceMesh_;
867 >
868 >      Globals* simParams = info_->getSimParams();
869 >      const std::string ht = simParams->getHULL_Method();
870 >      
871 >      if (ht == "Convex") {
872 >        surfaceMesh_ = new ConvexHull();
873 >      } else if (ht == "AlphaShape") {
874 >        surfaceMesh_ = new AlphaHull(simParams->getAlpha());
875 >      } else {
876 >        return 0.0;
877 >      }
878 >      
879 >      // Build a vector of stunt doubles to determine if they are
880 >      // surface atoms
881 >      std::vector<StuntDouble*> localSites_;
882 >      Molecule* mol;
883 >      StuntDouble* sd;
884 >      SimInfo::MoleculeIterator i;
885 >      Molecule::IntegrableObjectIterator  j;
886 >      
887 >      for (mol = info_->beginMolecule(i); mol != NULL;
888 >           mol = info_->nextMolecule(i)) {          
889 >        for (sd = mol->beginIntegrableObject(j);
890 >             sd != NULL;
891 >             sd = mol->nextIntegrableObject(j)) {  
892 >          localSites_.push_back(sd);
893 >        }
894 >      }  
895 >      
896 >      // Compute surface Mesh
897 >      surfaceMesh_->computeHull(localSites_);
898 >      snap->setHullVolume(surfaceMesh_->getVolume());
899 >    }
900 >    return snap->getHullVolume();
901 > #else
902 >    return 0.0;
903 > #endif
904 >  }
905 > }

Comparing:
trunk/src/brains/Thermo.cpp (property svn:keywords), Revision 833 by tim, Fri Dec 30 21:25:56 2005 UTC vs.
branches/development/src/brains/Thermo.cpp (property svn:keywords), Revision 1850 by gezelter, Wed Feb 20 15:39:39 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines