246 |
|
|
247 |
|
RealType volume = this->getVolume(); |
248 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
249 |
< |
Mat3x3d tau = curSnapshot->getTau(); |
249 |
> |
Mat3x3d stressTensor = curSnapshot->getStressTensor(); |
250 |
|
|
251 |
< |
pressureTensor = (p_global + PhysicalConstants::energyConvert* tau)/volume; |
251 |
> |
pressureTensor = (p_global + |
252 |
> |
PhysicalConstants::energyConvert * stressTensor)/volume; |
253 |
|
|
254 |
|
return pressureTensor; |
255 |
|
} |
286 |
|
} |
287 |
|
|
288 |
|
Globals* simParams = info_->getSimParams(); |
289 |
+ |
// grab the heat flux if desired |
290 |
+ |
if (simParams->havePrintHeatFlux()) { |
291 |
+ |
if (simParams->getPrintHeatFlux()){ |
292 |
+ |
Vector3d heatFlux = getHeatFlux(); |
293 |
+ |
stat[Stats::HEATFLUX_X] = heatFlux(0); |
294 |
+ |
stat[Stats::HEATFLUX_Y] = heatFlux(1); |
295 |
+ |
stat[Stats::HEATFLUX_Z] = heatFlux(2); |
296 |
+ |
} |
297 |
+ |
} |
298 |
|
|
299 |
|
if (simParams->haveTaggedAtomPair() && |
300 |
|
simParams->havePrintTaggedPairDistance()) { |
467 |
|
boxDipole += (pPos - nPos) * chg_value; |
468 |
|
|
469 |
|
return boxDipole; |
470 |
+ |
} |
471 |
+ |
|
472 |
+ |
// Returns the Heat Flux Vector for the system |
473 |
+ |
Vector3d Thermo::getHeatFlux(){ |
474 |
+ |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
475 |
+ |
SimInfo::MoleculeIterator miter; |
476 |
+ |
std::vector<StuntDouble*>::iterator iiter; |
477 |
+ |
Molecule* mol; |
478 |
+ |
StuntDouble* integrableObject; |
479 |
+ |
RigidBody::AtomIterator ai; |
480 |
+ |
Atom* atom; |
481 |
+ |
Vector3d vel; |
482 |
+ |
Vector3d angMom; |
483 |
+ |
Mat3x3d I; |
484 |
+ |
int i; |
485 |
+ |
int j; |
486 |
+ |
int k; |
487 |
+ |
RealType mass; |
488 |
+ |
|
489 |
+ |
Vector3d x_a; |
490 |
+ |
RealType kinetic; |
491 |
+ |
RealType potential; |
492 |
+ |
RealType eatom; |
493 |
+ |
RealType AvgE_a_ = 0; |
494 |
+ |
// Convective portion of the heat flux |
495 |
+ |
Vector3d heatFluxJc = V3Zero; |
496 |
+ |
|
497 |
+ |
/* Calculate convective portion of the heat flux */ |
498 |
+ |
for (mol = info_->beginMolecule(miter); mol != NULL; |
499 |
+ |
mol = info_->nextMolecule(miter)) { |
500 |
+ |
|
501 |
+ |
for (integrableObject = mol->beginIntegrableObject(iiter); |
502 |
+ |
integrableObject != NULL; |
503 |
+ |
integrableObject = mol->nextIntegrableObject(iiter)) { |
504 |
+ |
|
505 |
+ |
mass = integrableObject->getMass(); |
506 |
+ |
vel = integrableObject->getVel(); |
507 |
+ |
|
508 |
+ |
kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
509 |
+ |
|
510 |
+ |
if (integrableObject->isDirectional()) { |
511 |
+ |
angMom = integrableObject->getJ(); |
512 |
+ |
I = integrableObject->getI(); |
513 |
+ |
|
514 |
+ |
if (integrableObject->isLinear()) { |
515 |
+ |
i = integrableObject->linearAxis(); |
516 |
+ |
j = (i + 1) % 3; |
517 |
+ |
k = (i + 2) % 3; |
518 |
+ |
kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); |
519 |
+ |
} else { |
520 |
+ |
kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) |
521 |
+ |
+ angMom[2]*angMom[2]/I(2, 2); |
522 |
+ |
} |
523 |
+ |
} |
524 |
+ |
|
525 |
+ |
potential = 0.0; |
526 |
+ |
|
527 |
+ |
if (integrableObject->isRigidBody()) { |
528 |
+ |
RigidBody* rb = dynamic_cast<RigidBody*>(integrableObject); |
529 |
+ |
for (atom = rb->beginAtom(ai); atom != NULL; |
530 |
+ |
atom = rb->nextAtom(ai)) { |
531 |
+ |
potential += atom->getParticlePot(); |
532 |
+ |
} |
533 |
+ |
} else { |
534 |
+ |
potential = integrableObject->getParticlePot(); |
535 |
+ |
cerr << "ppot = " << potential << "\n"; |
536 |
+ |
} |
537 |
+ |
|
538 |
+ |
potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 |
539 |
+ |
// The potential may not be a 1/2 factor |
540 |
+ |
eatom = (kinetic + potential)/2.0; // amu A^2/fs^2 |
541 |
+ |
heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 |
542 |
+ |
heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 |
543 |
+ |
heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 |
544 |
+ |
} |
545 |
+ |
} |
546 |
+ |
|
547 |
+ |
std::cerr << "Heat flux heatFluxJc is: " << heatFluxJc << std::endl; |
548 |
+ |
|
549 |
+ |
/* The J_v vector is reduced in fortan so everyone has the global |
550 |
+ |
* Jv. Jc is computed over the local atoms and must be reduced |
551 |
+ |
* among all processors. |
552 |
+ |
*/ |
553 |
+ |
#ifdef IS_MPI |
554 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE, |
555 |
+ |
MPI::SUM); |
556 |
+ |
#endif |
557 |
+ |
|
558 |
+ |
// (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 |
559 |
+ |
|
560 |
+ |
Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() * |
561 |
+ |
PhysicalConstants::energyConvert; |
562 |
+ |
|
563 |
+ |
std::cerr << "Heat flux Jc is: " << heatFluxJc << std::endl; |
564 |
+ |
std::cerr << "Heat flux Jv is: " << heatFluxJv << std::endl; |
565 |
+ |
|
566 |
+ |
// Correct for the fact the flux is 1/V (Jc + Jv) |
567 |
+ |
return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3 |
568 |
|
} |
569 |
|
} //end namespace OpenMD |