| 51 |
|
#include "primitives/Molecule.hpp" |
| 52 |
|
#include "utils/simError.h" |
| 53 |
|
#include "utils/PhysicalConstants.hpp" |
| 54 |
+ |
#include "types/FixedChargeAdapter.hpp" |
| 55 |
+ |
#include "types/FluctuatingChargeAdapter.hpp" |
| 56 |
|
#include "types/MultipoleAdapter.hpp" |
| 57 |
+ |
#include "math/ConvexHull.hpp" |
| 58 |
+ |
#include "math/AlphaHull.hpp" |
| 59 |
|
|
| 60 |
+ |
using namespace std; |
| 61 |
|
namespace OpenMD { |
| 62 |
|
|
| 63 |
< |
RealType Thermo::getKinetic() { |
| 64 |
< |
SimInfo::MoleculeIterator miter; |
| 65 |
< |
std::vector<StuntDouble*>::iterator iiter; |
| 66 |
< |
Molecule* mol; |
| 67 |
< |
StuntDouble* integrableObject; |
| 68 |
< |
Vector3d vel; |
| 69 |
< |
Vector3d angMom; |
| 70 |
< |
Mat3x3d I; |
| 71 |
< |
int i; |
| 72 |
< |
int j; |
| 73 |
< |
int k; |
| 74 |
< |
RealType mass; |
| 75 |
< |
RealType kinetic = 0.0; |
| 76 |
< |
RealType kinetic_global = 0.0; |
| 72 |
< |
|
| 73 |
< |
for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { |
| 74 |
< |
for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; |
| 75 |
< |
integrableObject = mol->nextIntegrableObject(iiter)) { |
| 63 |
> |
RealType Thermo::getTranslationalKinetic() { |
| 64 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 65 |
> |
|
| 66 |
> |
if (!snap->hasTranslationalKineticEnergy) { |
| 67 |
> |
SimInfo::MoleculeIterator miter; |
| 68 |
> |
vector<StuntDouble*>::iterator iiter; |
| 69 |
> |
Molecule* mol; |
| 70 |
> |
StuntDouble* sd; |
| 71 |
> |
Vector3d vel; |
| 72 |
> |
RealType mass; |
| 73 |
> |
RealType kinetic(0.0); |
| 74 |
> |
|
| 75 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
| 76 |
> |
mol = info_->nextMolecule(miter)) { |
| 77 |
|
|
| 78 |
< |
mass = integrableObject->getMass(); |
| 79 |
< |
vel = integrableObject->getVel(); |
| 80 |
< |
|
| 81 |
< |
kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
| 82 |
< |
|
| 83 |
< |
if (integrableObject->isDirectional()) { |
| 84 |
< |
angMom = integrableObject->getJ(); |
| 85 |
< |
I = integrableObject->getI(); |
| 78 |
> |
for (sd = mol->beginIntegrableObject(iiter); sd != NULL; |
| 79 |
> |
sd = mol->nextIntegrableObject(iiter)) { |
| 80 |
> |
|
| 81 |
> |
mass = sd->getMass(); |
| 82 |
> |
vel = sd->getVel(); |
| 83 |
> |
|
| 84 |
> |
kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
| 85 |
> |
|
| 86 |
> |
} |
| 87 |
> |
} |
| 88 |
> |
|
| 89 |
> |
#ifdef IS_MPI |
| 90 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, |
| 91 |
> |
MPI::SUM); |
| 92 |
> |
#endif |
| 93 |
> |
|
| 94 |
> |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
| 95 |
> |
|
| 96 |
> |
|
| 97 |
> |
snap->setTranslationalKineticEnergy(kinetic); |
| 98 |
> |
} |
| 99 |
> |
return snap->getTranslationalKineticEnergy(); |
| 100 |
> |
} |
| 101 |
|
|
| 102 |
< |
if (integrableObject->isLinear()) { |
| 103 |
< |
i = integrableObject->linearAxis(); |
| 104 |
< |
j = (i + 1) % 3; |
| 105 |
< |
k = (i + 2) % 3; |
| 106 |
< |
kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); |
| 107 |
< |
} else { |
| 108 |
< |
kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) |
| 109 |
< |
+ angMom[2]*angMom[2]/I(2, 2); |
| 110 |
< |
} |
| 111 |
< |
} |
| 102 |
> |
RealType Thermo::getRotationalKinetic() { |
| 103 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 104 |
> |
|
| 105 |
> |
if (!snap->hasRotationalKineticEnergy) { |
| 106 |
> |
SimInfo::MoleculeIterator miter; |
| 107 |
> |
vector<StuntDouble*>::iterator iiter; |
| 108 |
> |
Molecule* mol; |
| 109 |
> |
StuntDouble* sd; |
| 110 |
> |
Vector3d angMom; |
| 111 |
> |
Mat3x3d I; |
| 112 |
> |
int i, j, k; |
| 113 |
> |
RealType kinetic(0.0); |
| 114 |
> |
|
| 115 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
| 116 |
> |
mol = info_->nextMolecule(miter)) { |
| 117 |
> |
|
| 118 |
> |
for (sd = mol->beginIntegrableObject(iiter); sd != NULL; |
| 119 |
> |
sd = mol->nextIntegrableObject(iiter)) { |
| 120 |
> |
|
| 121 |
> |
if (sd->isDirectional()) { |
| 122 |
> |
angMom = sd->getJ(); |
| 123 |
> |
I = sd->getI(); |
| 124 |
|
|
| 125 |
+ |
if (sd->isLinear()) { |
| 126 |
+ |
i = sd->linearAxis(); |
| 127 |
+ |
j = (i + 1) % 3; |
| 128 |
+ |
k = (i + 2) % 3; |
| 129 |
+ |
kinetic += angMom[j] * angMom[j] / I(j, j) |
| 130 |
+ |
+ angMom[k] * angMom[k] / I(k, k); |
| 131 |
+ |
} else { |
| 132 |
+ |
kinetic += angMom[0]*angMom[0]/I(0, 0) |
| 133 |
+ |
+ angMom[1]*angMom[1]/I(1, 1) |
| 134 |
+ |
+ angMom[2]*angMom[2]/I(2, 2); |
| 135 |
+ |
} |
| 136 |
+ |
} |
| 137 |
+ |
} |
| 138 |
|
} |
| 139 |
< |
} |
| 99 |
< |
|
| 139 |
> |
|
| 140 |
|
#ifdef IS_MPI |
| 141 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, |
| 142 |
+ |
MPI::SUM); |
| 143 |
+ |
#endif |
| 144 |
+ |
|
| 145 |
+ |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
| 146 |
+ |
|
| 147 |
+ |
snap->setRotationalKineticEnergy(kinetic); |
| 148 |
+ |
} |
| 149 |
+ |
return snap->getRotationalKineticEnergy(); |
| 150 |
+ |
} |
| 151 |
|
|
| 152 |
< |
MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, |
| 103 |
< |
MPI_COMM_WORLD); |
| 104 |
< |
kinetic = kinetic_global; |
| 152 |
> |
|
| 153 |
|
|
| 154 |
< |
#endif //is_mpi |
| 154 |
> |
RealType Thermo::getKinetic() { |
| 155 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 156 |
|
|
| 157 |
< |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
| 158 |
< |
|
| 159 |
< |
return kinetic; |
| 157 |
> |
if (!snap->hasKineticEnergy) { |
| 158 |
> |
RealType ke = getTranslationalKinetic() + getRotationalKinetic(); |
| 159 |
> |
snap->setKineticEnergy(ke); |
| 160 |
> |
} |
| 161 |
> |
return snap->getKineticEnergy(); |
| 162 |
|
} |
| 163 |
|
|
| 164 |
|
RealType Thermo::getPotential() { |
| 114 |
– |
RealType potential = 0.0; |
| 115 |
– |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 116 |
– |
RealType shortRangePot_local = curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; |
| 165 |
|
|
| 166 |
< |
// Get total potential for entire system from MPI. |
| 166 |
> |
// ForceManager computes the potential and stores it in the |
| 167 |
> |
// Snapshot. All we have to do is report it. |
| 168 |
|
|
| 169 |
< |
#ifdef IS_MPI |
| 169 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 170 |
> |
return snap->getPotentialEnergy(); |
| 171 |
> |
} |
| 172 |
|
|
| 173 |
< |
MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM, |
| 123 |
< |
MPI_COMM_WORLD); |
| 124 |
< |
potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
| 173 |
> |
RealType Thermo::getTotalEnergy() { |
| 174 |
|
|
| 175 |
< |
#else |
| 175 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 176 |
|
|
| 177 |
< |
potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
| 177 |
> |
if (!snap->hasTotalEnergy) { |
| 178 |
> |
snap->setTotalEnergy(this->getKinetic() + this->getPotential()); |
| 179 |
> |
} |
| 180 |
|
|
| 181 |
< |
#endif // is_mpi |
| 131 |
< |
|
| 132 |
< |
return potential; |
| 181 |
> |
return snap->getTotalEnergy(); |
| 182 |
|
} |
| 183 |
|
|
| 135 |
– |
RealType Thermo::getTotalE() { |
| 136 |
– |
RealType total; |
| 137 |
– |
|
| 138 |
– |
total = this->getKinetic() + this->getPotential(); |
| 139 |
– |
return total; |
| 140 |
– |
} |
| 141 |
– |
|
| 184 |
|
RealType Thermo::getTemperature() { |
| 143 |
– |
|
| 144 |
– |
RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb ); |
| 145 |
– |
return temperature; |
| 146 |
– |
} |
| 185 |
|
|
| 186 |
< |
RealType Thermo::getVolume() { |
| 149 |
< |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 150 |
< |
return curSnapshot->getVolume(); |
| 151 |
< |
} |
| 186 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 187 |
|
|
| 188 |
< |
RealType Thermo::getPressure() { |
| 188 |
> |
if (!snap->hasTemperature) { |
| 189 |
|
|
| 190 |
< |
// Relies on the calculation of the full molecular pressure tensor |
| 190 |
> |
RealType temperature = ( 2.0 * this->getKinetic() ) |
| 191 |
> |
/ (info_->getNdf()* PhysicalConstants::kb ); |
| 192 |
|
|
| 193 |
+ |
snap->setTemperature(temperature); |
| 194 |
+ |
} |
| 195 |
+ |
|
| 196 |
+ |
return snap->getTemperature(); |
| 197 |
+ |
} |
| 198 |
|
|
| 199 |
< |
Mat3x3d tensor; |
| 200 |
< |
RealType pressure; |
| 199 |
> |
RealType Thermo::getElectronicTemperature() { |
| 200 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 201 |
|
|
| 202 |
< |
tensor = getPressureTensor(); |
| 202 |
> |
if (!snap->hasElectronicTemperature) { |
| 203 |
> |
|
| 204 |
> |
SimInfo::MoleculeIterator miter; |
| 205 |
> |
vector<Atom*>::iterator iiter; |
| 206 |
> |
Molecule* mol; |
| 207 |
> |
Atom* atom; |
| 208 |
> |
RealType cvel; |
| 209 |
> |
RealType cmass; |
| 210 |
> |
RealType kinetic(0.0); |
| 211 |
> |
RealType eTemp; |
| 212 |
> |
|
| 213 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
| 214 |
> |
mol = info_->nextMolecule(miter)) { |
| 215 |
> |
|
| 216 |
> |
for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL; |
| 217 |
> |
atom = mol->nextFluctuatingCharge(iiter)) { |
| 218 |
> |
|
| 219 |
> |
cmass = atom->getChargeMass(); |
| 220 |
> |
cvel = atom->getFlucQVel(); |
| 221 |
> |
|
| 222 |
> |
kinetic += cmass * cvel * cvel; |
| 223 |
> |
|
| 224 |
> |
} |
| 225 |
> |
} |
| 226 |
> |
|
| 227 |
> |
#ifdef IS_MPI |
| 228 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, |
| 229 |
> |
MPI::SUM); |
| 230 |
> |
#endif |
| 231 |
|
|
| 232 |
< |
pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; |
| 232 |
> |
kinetic *= 0.5; |
| 233 |
> |
eTemp = (2.0 * kinetic) / |
| 234 |
> |
(info_->getNFluctuatingCharges() * PhysicalConstants::kb ); |
| 235 |
> |
|
| 236 |
> |
snap->setElectronicTemperature(eTemp); |
| 237 |
> |
} |
| 238 |
|
|
| 239 |
< |
return pressure; |
| 239 |
> |
return snap->getElectronicTemperature(); |
| 240 |
|
} |
| 241 |
|
|
| 168 |
– |
RealType Thermo::getPressure(int direction) { |
| 242 |
|
|
| 243 |
< |
// Relies on the calculation of the full molecular pressure tensor |
| 243 |
> |
RealType Thermo::getVolume() { |
| 244 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 245 |
> |
return snap->getVolume(); |
| 246 |
> |
} |
| 247 |
|
|
| 248 |
< |
|
| 249 |
< |
Mat3x3d tensor; |
| 174 |
< |
RealType pressure; |
| 248 |
> |
RealType Thermo::getPressure() { |
| 249 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 250 |
|
|
| 251 |
< |
tensor = getPressureTensor(); |
| 252 |
< |
|
| 253 |
< |
pressure = PhysicalConstants::pressureConvert * tensor(direction, direction); |
| 254 |
< |
|
| 255 |
< |
return pressure; |
| 251 |
> |
if (!snap->hasPressure) { |
| 252 |
> |
// Relies on the calculation of the full molecular pressure tensor |
| 253 |
> |
|
| 254 |
> |
Mat3x3d tensor; |
| 255 |
> |
RealType pressure; |
| 256 |
> |
|
| 257 |
> |
tensor = getPressureTensor(); |
| 258 |
> |
|
| 259 |
> |
pressure = PhysicalConstants::pressureConvert * |
| 260 |
> |
(tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; |
| 261 |
> |
|
| 262 |
> |
snap->setPressure(pressure); |
| 263 |
> |
} |
| 264 |
> |
|
| 265 |
> |
return snap->getPressure(); |
| 266 |
|
} |
| 267 |
|
|
| 268 |
|
Mat3x3d Thermo::getPressureTensor() { |
| 269 |
|
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
| 270 |
|
// routine derived via viral theorem description in: |
| 271 |
|
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
| 272 |
< |
Mat3x3d pressureTensor; |
| 188 |
< |
Mat3x3d p_local(0.0); |
| 189 |
< |
Mat3x3d p_global(0.0); |
| 272 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 273 |
|
|
| 274 |
< |
SimInfo::MoleculeIterator i; |
| 192 |
< |
std::vector<StuntDouble*>::iterator j; |
| 193 |
< |
Molecule* mol; |
| 194 |
< |
StuntDouble* integrableObject; |
| 195 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
| 196 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 197 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
| 274 |
> |
if (!snap->hasPressureTensor) { |
| 275 |
|
|
| 276 |
< |
RealType mass = integrableObject->getMass(); |
| 277 |
< |
Vector3d vcom = integrableObject->getVel(); |
| 278 |
< |
p_local += mass * outProduct(vcom, vcom); |
| 276 |
> |
Mat3x3d pressureTensor; |
| 277 |
> |
Mat3x3d p_tens(0.0); |
| 278 |
> |
RealType mass; |
| 279 |
> |
Vector3d vcom; |
| 280 |
> |
|
| 281 |
> |
SimInfo::MoleculeIterator i; |
| 282 |
> |
vector<StuntDouble*>::iterator j; |
| 283 |
> |
Molecule* mol; |
| 284 |
> |
StuntDouble* sd; |
| 285 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
| 286 |
> |
mol = info_->nextMolecule(i)) { |
| 287 |
> |
|
| 288 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
| 289 |
> |
sd = mol->nextIntegrableObject(j)) { |
| 290 |
> |
|
| 291 |
> |
mass = sd->getMass(); |
| 292 |
> |
vcom = sd->getVel(); |
| 293 |
> |
p_tens += mass * outProduct(vcom, vcom); |
| 294 |
> |
} |
| 295 |
|
} |
| 296 |
+ |
|
| 297 |
+ |
#ifdef IS_MPI |
| 298 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9, |
| 299 |
+ |
MPI::REALTYPE, MPI::SUM); |
| 300 |
+ |
#endif |
| 301 |
+ |
|
| 302 |
+ |
RealType volume = this->getVolume(); |
| 303 |
+ |
Mat3x3d stressTensor = snap->getStressTensor(); |
| 304 |
+ |
|
| 305 |
+ |
pressureTensor = (p_tens + |
| 306 |
+ |
PhysicalConstants::energyConvert * stressTensor)/volume; |
| 307 |
+ |
|
| 308 |
+ |
snap->setPressureTensor(pressureTensor); |
| 309 |
|
} |
| 310 |
< |
|
| 310 |
> |
return snap->getPressureTensor(); |
| 311 |
> |
} |
| 312 |
> |
|
| 313 |
> |
|
| 314 |
> |
|
| 315 |
> |
|
| 316 |
> |
Vector3d Thermo::getSystemDipole() { |
| 317 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 318 |
> |
|
| 319 |
> |
if (!snap->hasSystemDipole) { |
| 320 |
> |
SimInfo::MoleculeIterator miter; |
| 321 |
> |
vector<Atom*>::iterator aiter; |
| 322 |
> |
Molecule* mol; |
| 323 |
> |
Atom* atom; |
| 324 |
> |
RealType charge; |
| 325 |
> |
RealType moment(0.0); |
| 326 |
> |
Vector3d ri(0.0); |
| 327 |
> |
Vector3d dipoleVector(0.0); |
| 328 |
> |
Vector3d nPos(0.0); |
| 329 |
> |
Vector3d pPos(0.0); |
| 330 |
> |
RealType nChg(0.0); |
| 331 |
> |
RealType pChg(0.0); |
| 332 |
> |
int nCount = 0; |
| 333 |
> |
int pCount = 0; |
| 334 |
> |
|
| 335 |
> |
RealType chargeToC = 1.60217733e-19; |
| 336 |
> |
RealType angstromToM = 1.0e-10; |
| 337 |
> |
RealType debyeToCm = 3.33564095198e-30; |
| 338 |
> |
|
| 339 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
| 340 |
> |
mol = info_->nextMolecule(miter)) { |
| 341 |
> |
|
| 342 |
> |
for (atom = mol->beginAtom(aiter); atom != NULL; |
| 343 |
> |
atom = mol->nextAtom(aiter)) { |
| 344 |
> |
|
| 345 |
> |
charge = 0.0; |
| 346 |
> |
|
| 347 |
> |
FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType()); |
| 348 |
> |
if ( fca.isFixedCharge() ) { |
| 349 |
> |
charge = fca.getCharge(); |
| 350 |
> |
} |
| 351 |
> |
|
| 352 |
> |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType()); |
| 353 |
> |
if ( fqa.isFluctuatingCharge() ) { |
| 354 |
> |
charge += atom->getFlucQPos(); |
| 355 |
> |
} |
| 356 |
> |
|
| 357 |
> |
charge *= chargeToC; |
| 358 |
> |
|
| 359 |
> |
ri = atom->getPos(); |
| 360 |
> |
snap->wrapVector(ri); |
| 361 |
> |
ri *= angstromToM; |
| 362 |
> |
|
| 363 |
> |
if (charge < 0.0) { |
| 364 |
> |
nPos += ri; |
| 365 |
> |
nChg -= charge; |
| 366 |
> |
nCount++; |
| 367 |
> |
} else if (charge > 0.0) { |
| 368 |
> |
pPos += ri; |
| 369 |
> |
pChg += charge; |
| 370 |
> |
pCount++; |
| 371 |
> |
} |
| 372 |
> |
|
| 373 |
> |
MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType()); |
| 374 |
> |
if (ma.isDipole() ) { |
| 375 |
> |
Vector3d u_i = atom->getElectroFrame().getColumn(2); |
| 376 |
> |
moment = ma.getDipoleMoment(); |
| 377 |
> |
moment *= debyeToCm; |
| 378 |
> |
dipoleVector += u_i * moment; |
| 379 |
> |
} |
| 380 |
> |
} |
| 381 |
> |
} |
| 382 |
> |
|
| 383 |
> |
|
| 384 |
|
#ifdef IS_MPI |
| 385 |
< |
MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
| 386 |
< |
#else |
| 387 |
< |
p_global = p_local; |
| 388 |
< |
#endif // is_mpi |
| 385 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE, |
| 386 |
> |
MPI::SUM); |
| 387 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE, |
| 388 |
> |
MPI::SUM); |
| 389 |
|
|
| 390 |
< |
RealType volume = this->getVolume(); |
| 391 |
< |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 392 |
< |
Mat3x3d tau = curSnapshot->getTau(); |
| 390 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER, |
| 391 |
> |
MPI::SUM); |
| 392 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER, |
| 393 |
> |
MPI::SUM); |
| 394 |
|
|
| 395 |
< |
pressureTensor = (p_global + PhysicalConstants::energyConvert* tau)/volume; |
| 396 |
< |
|
| 397 |
< |
return pressureTensor; |
| 398 |
< |
} |
| 395 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3, |
| 396 |
> |
MPI::REALTYPE, MPI::SUM); |
| 397 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3, |
| 398 |
> |
MPI::REALTYPE, MPI::SUM); |
| 399 |
|
|
| 400 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(), |
| 401 |
+ |
3, MPI::REALTYPE, MPI::SUM); |
| 402 |
+ |
#endif |
| 403 |
+ |
|
| 404 |
+ |
// first load the accumulated dipole moment (if dipoles were present) |
| 405 |
+ |
Vector3d boxDipole = dipoleVector; |
| 406 |
+ |
// now include the dipole moment due to charges |
| 407 |
+ |
// use the lesser of the positive and negative charge totals |
| 408 |
+ |
RealType chg_value = nChg <= pChg ? nChg : pChg; |
| 409 |
+ |
|
| 410 |
+ |
// find the average positions |
| 411 |
+ |
if (pCount > 0 && nCount > 0 ) { |
| 412 |
+ |
pPos /= pCount; |
| 413 |
+ |
nPos /= nCount; |
| 414 |
+ |
} |
| 415 |
+ |
|
| 416 |
+ |
// dipole is from the negative to the positive (physics notation) |
| 417 |
+ |
boxDipole += (pPos - nPos) * chg_value; |
| 418 |
+ |
snap->setSystemDipole(boxDipole); |
| 419 |
+ |
} |
| 420 |
|
|
| 421 |
< |
void Thermo::saveStat(){ |
| 421 |
> |
return snap->getSystemDipole(); |
| 422 |
> |
} |
| 423 |
> |
|
| 424 |
> |
// Returns the Heat Flux Vector for the system |
| 425 |
> |
Vector3d Thermo::getHeatFlux(){ |
| 426 |
|
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 427 |
< |
Stats& stat = currSnapshot->statData; |
| 428 |
< |
|
| 429 |
< |
stat[Stats::KINETIC_ENERGY] = getKinetic(); |
| 430 |
< |
stat[Stats::POTENTIAL_ENERGY] = getPotential(); |
| 431 |
< |
stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY] + stat[Stats::POTENTIAL_ENERGY] ; |
| 432 |
< |
stat[Stats::TEMPERATURE] = getTemperature(); |
| 433 |
< |
stat[Stats::PRESSURE] = getPressure(); |
| 434 |
< |
stat[Stats::VOLUME] = getVolume(); |
| 427 |
> |
SimInfo::MoleculeIterator miter; |
| 428 |
> |
vector<StuntDouble*>::iterator iiter; |
| 429 |
> |
Molecule* mol; |
| 430 |
> |
StuntDouble* sd; |
| 431 |
> |
RigidBody::AtomIterator ai; |
| 432 |
> |
Atom* atom; |
| 433 |
> |
Vector3d vel; |
| 434 |
> |
Vector3d angMom; |
| 435 |
> |
Mat3x3d I; |
| 436 |
> |
int i; |
| 437 |
> |
int j; |
| 438 |
> |
int k; |
| 439 |
> |
RealType mass; |
| 440 |
|
|
| 441 |
< |
Mat3x3d tensor =getPressureTensor(); |
| 442 |
< |
stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0); |
| 443 |
< |
stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1); |
| 444 |
< |
stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2); |
| 445 |
< |
stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0); |
| 446 |
< |
stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1); |
| 447 |
< |
stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2); |
| 239 |
< |
stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0); |
| 240 |
< |
stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1); |
| 241 |
< |
stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2); |
| 441 |
> |
Vector3d x_a; |
| 442 |
> |
RealType kinetic; |
| 443 |
> |
RealType potential; |
| 444 |
> |
RealType eatom; |
| 445 |
> |
RealType AvgE_a_ = 0; |
| 446 |
> |
// Convective portion of the heat flux |
| 447 |
> |
Vector3d heatFluxJc = V3Zero; |
| 448 |
|
|
| 449 |
< |
// grab the simulation box dipole moment if specified |
| 450 |
< |
if (info_->getCalcBoxDipole()){ |
| 451 |
< |
Vector3d totalDipole = getBoxDipole(); |
| 452 |
< |
stat[Stats::BOX_DIPOLE_X] = totalDipole(0); |
| 453 |
< |
stat[Stats::BOX_DIPOLE_Y] = totalDipole(1); |
| 454 |
< |
stat[Stats::BOX_DIPOLE_Z] = totalDipole(2); |
| 449 |
> |
/* Calculate convective portion of the heat flux */ |
| 450 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
| 451 |
> |
mol = info_->nextMolecule(miter)) { |
| 452 |
> |
|
| 453 |
> |
for (sd = mol->beginIntegrableObject(iiter); |
| 454 |
> |
sd != NULL; |
| 455 |
> |
sd = mol->nextIntegrableObject(iiter)) { |
| 456 |
> |
|
| 457 |
> |
mass = sd->getMass(); |
| 458 |
> |
vel = sd->getVel(); |
| 459 |
> |
|
| 460 |
> |
kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
| 461 |
> |
|
| 462 |
> |
if (sd->isDirectional()) { |
| 463 |
> |
angMom = sd->getJ(); |
| 464 |
> |
I = sd->getI(); |
| 465 |
> |
|
| 466 |
> |
if (sd->isLinear()) { |
| 467 |
> |
i = sd->linearAxis(); |
| 468 |
> |
j = (i + 1) % 3; |
| 469 |
> |
k = (i + 2) % 3; |
| 470 |
> |
kinetic += angMom[j] * angMom[j] / I(j, j) |
| 471 |
> |
+ angMom[k] * angMom[k] / I(k, k); |
| 472 |
> |
} else { |
| 473 |
> |
kinetic += angMom[0]*angMom[0]/I(0, 0) |
| 474 |
> |
+ angMom[1]*angMom[1]/I(1, 1) |
| 475 |
> |
+ angMom[2]*angMom[2]/I(2, 2); |
| 476 |
> |
} |
| 477 |
> |
} |
| 478 |
> |
|
| 479 |
> |
potential = 0.0; |
| 480 |
> |
|
| 481 |
> |
if (sd->isRigidBody()) { |
| 482 |
> |
RigidBody* rb = dynamic_cast<RigidBody*>(sd); |
| 483 |
> |
for (atom = rb->beginAtom(ai); atom != NULL; |
| 484 |
> |
atom = rb->nextAtom(ai)) { |
| 485 |
> |
potential += atom->getParticlePot(); |
| 486 |
> |
} |
| 487 |
> |
} else { |
| 488 |
> |
potential = sd->getParticlePot(); |
| 489 |
> |
} |
| 490 |
> |
|
| 491 |
> |
potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 |
| 492 |
> |
// The potential may not be a 1/2 factor |
| 493 |
> |
eatom = (kinetic + potential)/2.0; // amu A^2/fs^2 |
| 494 |
> |
heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 |
| 495 |
> |
heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 |
| 496 |
> |
heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 |
| 497 |
> |
} |
| 498 |
|
} |
| 499 |
|
|
| 500 |
< |
Globals* simParams = info_->getSimParams(); |
| 500 |
> |
/* The J_v vector is reduced in the forceManager so everyone has |
| 501 |
> |
* the global Jv. Jc is computed over the local atoms and must be |
| 502 |
> |
* reduced among all processors. |
| 503 |
> |
*/ |
| 504 |
> |
#ifdef IS_MPI |
| 505 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE, |
| 506 |
> |
MPI::SUM); |
| 507 |
> |
#endif |
| 508 |
> |
|
| 509 |
> |
// (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 |
| 510 |
> |
|
| 511 |
> |
Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() * |
| 512 |
> |
PhysicalConstants::energyConvert; |
| 513 |
> |
|
| 514 |
> |
// Correct for the fact the flux is 1/V (Jc + Jv) |
| 515 |
> |
return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3 |
| 516 |
> |
} |
| 517 |
> |
|
| 518 |
> |
|
| 519 |
> |
Vector3d Thermo::getComVel(){ |
| 520 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 521 |
> |
|
| 522 |
> |
if (!snap->hasCOMvel) { |
| 523 |
> |
|
| 524 |
> |
SimInfo::MoleculeIterator i; |
| 525 |
> |
Molecule* mol; |
| 526 |
> |
|
| 527 |
> |
Vector3d comVel(0.0); |
| 528 |
> |
RealType totalMass(0.0); |
| 529 |
> |
|
| 530 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
| 531 |
> |
mol = info_->nextMolecule(i)) { |
| 532 |
> |
RealType mass = mol->getMass(); |
| 533 |
> |
totalMass += mass; |
| 534 |
> |
comVel += mass * mol->getComVel(); |
| 535 |
> |
} |
| 536 |
> |
|
| 537 |
> |
#ifdef IS_MPI |
| 538 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, |
| 539 |
> |
MPI::SUM); |
| 540 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3, |
| 541 |
> |
MPI::REALTYPE, MPI::SUM); |
| 542 |
> |
#endif |
| 543 |
> |
|
| 544 |
> |
comVel /= totalMass; |
| 545 |
> |
snap->setCOMvel(comVel); |
| 546 |
> |
} |
| 547 |
> |
return snap->getCOMvel(); |
| 548 |
> |
} |
| 549 |
> |
|
| 550 |
> |
Vector3d Thermo::getCom(){ |
| 551 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 552 |
> |
|
| 553 |
> |
if (!snap->hasCOM) { |
| 554 |
> |
|
| 555 |
> |
SimInfo::MoleculeIterator i; |
| 556 |
> |
Molecule* mol; |
| 557 |
> |
|
| 558 |
> |
Vector3d com(0.0); |
| 559 |
> |
RealType totalMass(0.0); |
| 560 |
> |
|
| 561 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
| 562 |
> |
mol = info_->nextMolecule(i)) { |
| 563 |
> |
RealType mass = mol->getMass(); |
| 564 |
> |
totalMass += mass; |
| 565 |
> |
com += mass * mol->getCom(); |
| 566 |
> |
} |
| 567 |
> |
|
| 568 |
> |
#ifdef IS_MPI |
| 569 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, |
| 570 |
> |
MPI::SUM); |
| 571 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3, |
| 572 |
> |
MPI::REALTYPE, MPI::SUM); |
| 573 |
> |
#endif |
| 574 |
> |
|
| 575 |
> |
com /= totalMass; |
| 576 |
> |
snap->setCOM(com); |
| 577 |
> |
} |
| 578 |
> |
return snap->getCOM(); |
| 579 |
> |
} |
| 580 |
> |
|
| 581 |
> |
/** |
| 582 |
> |
* Returns center of mass and center of mass velocity in one |
| 583 |
> |
* function call. |
| 584 |
> |
*/ |
| 585 |
> |
void Thermo::getComAll(Vector3d &com, Vector3d &comVel){ |
| 586 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 587 |
> |
|
| 588 |
> |
if (!(snap->hasCOM && snap->hasCOMvel)) { |
| 589 |
> |
|
| 590 |
> |
SimInfo::MoleculeIterator i; |
| 591 |
> |
Molecule* mol; |
| 592 |
> |
|
| 593 |
> |
RealType totalMass(0.0); |
| 594 |
> |
|
| 595 |
> |
com = 0.0; |
| 596 |
> |
comVel = 0.0; |
| 597 |
> |
|
| 598 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
| 599 |
> |
mol = info_->nextMolecule(i)) { |
| 600 |
> |
RealType mass = mol->getMass(); |
| 601 |
> |
totalMass += mass; |
| 602 |
> |
com += mass * mol->getCom(); |
| 603 |
> |
comVel += mass * mol->getComVel(); |
| 604 |
> |
} |
| 605 |
> |
|
| 606 |
> |
#ifdef IS_MPI |
| 607 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, |
| 608 |
> |
MPI::SUM); |
| 609 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3, |
| 610 |
> |
MPI::REALTYPE, MPI::SUM); |
| 611 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3, |
| 612 |
> |
MPI::REALTYPE, MPI::SUM); |
| 613 |
> |
#endif |
| 614 |
> |
|
| 615 |
> |
com /= totalMass; |
| 616 |
> |
comVel /= totalMass; |
| 617 |
> |
snap->setCOM(com); |
| 618 |
> |
snap->setCOMvel(comVel); |
| 619 |
> |
} |
| 620 |
> |
com = snap->getCOM(); |
| 621 |
> |
comVel = snap->getCOMvel(); |
| 622 |
> |
return; |
| 623 |
> |
} |
| 624 |
> |
|
| 625 |
> |
/** |
| 626 |
> |
* Return intertia tensor for entire system and angular momentum |
| 627 |
> |
* Vector. |
| 628 |
> |
* |
| 629 |
> |
* |
| 630 |
> |
* |
| 631 |
> |
* [ Ixx -Ixy -Ixz ] |
| 632 |
> |
* I =| -Iyx Iyy -Iyz | |
| 633 |
> |
* [ -Izx -Iyz Izz ] |
| 634 |
> |
*/ |
| 635 |
> |
void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor, |
| 636 |
> |
Vector3d &angularMomentum){ |
| 637 |
> |
|
| 638 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 639 |
> |
|
| 640 |
> |
if (!(snap->hasInertiaTensor && snap->hasCOMw)) { |
| 641 |
> |
|
| 642 |
> |
RealType xx = 0.0; |
| 643 |
> |
RealType yy = 0.0; |
| 644 |
> |
RealType zz = 0.0; |
| 645 |
> |
RealType xy = 0.0; |
| 646 |
> |
RealType xz = 0.0; |
| 647 |
> |
RealType yz = 0.0; |
| 648 |
> |
Vector3d com(0.0); |
| 649 |
> |
Vector3d comVel(0.0); |
| 650 |
> |
|
| 651 |
> |
getComAll(com, comVel); |
| 652 |
> |
|
| 653 |
> |
SimInfo::MoleculeIterator i; |
| 654 |
> |
Molecule* mol; |
| 655 |
> |
|
| 656 |
> |
Vector3d thisq(0.0); |
| 657 |
> |
Vector3d thisv(0.0); |
| 658 |
> |
|
| 659 |
> |
RealType thisMass = 0.0; |
| 660 |
> |
|
| 661 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
| 662 |
> |
mol = info_->nextMolecule(i)) { |
| 663 |
> |
|
| 664 |
> |
thisq = mol->getCom()-com; |
| 665 |
> |
thisv = mol->getComVel()-comVel; |
| 666 |
> |
thisMass = mol->getMass(); |
| 667 |
> |
// Compute moment of intertia coefficients. |
| 668 |
> |
xx += thisq[0]*thisq[0]*thisMass; |
| 669 |
> |
yy += thisq[1]*thisq[1]*thisMass; |
| 670 |
> |
zz += thisq[2]*thisq[2]*thisMass; |
| 671 |
> |
|
| 672 |
> |
// compute products of intertia |
| 673 |
> |
xy += thisq[0]*thisq[1]*thisMass; |
| 674 |
> |
xz += thisq[0]*thisq[2]*thisMass; |
| 675 |
> |
yz += thisq[1]*thisq[2]*thisMass; |
| 676 |
> |
|
| 677 |
> |
angularMomentum += cross( thisq, thisv ) * thisMass; |
| 678 |
> |
} |
| 679 |
> |
|
| 680 |
> |
inertiaTensor(0,0) = yy + zz; |
| 681 |
> |
inertiaTensor(0,1) = -xy; |
| 682 |
> |
inertiaTensor(0,2) = -xz; |
| 683 |
> |
inertiaTensor(1,0) = -xy; |
| 684 |
> |
inertiaTensor(1,1) = xx + zz; |
| 685 |
> |
inertiaTensor(1,2) = -yz; |
| 686 |
> |
inertiaTensor(2,0) = -xz; |
| 687 |
> |
inertiaTensor(2,1) = -yz; |
| 688 |
> |
inertiaTensor(2,2) = xx + yy; |
| 689 |
> |
|
| 690 |
> |
#ifdef IS_MPI |
| 691 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(), |
| 692 |
> |
9, MPI::REALTYPE, MPI::SUM); |
| 693 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, |
| 694 |
> |
angularMomentum.getArrayPointer(), 3, |
| 695 |
> |
MPI::REALTYPE, MPI::SUM); |
| 696 |
> |
#endif |
| 697 |
> |
|
| 698 |
> |
snap->setCOMw(angularMomentum); |
| 699 |
> |
snap->setInertiaTensor(inertiaTensor); |
| 700 |
> |
} |
| 701 |
> |
|
| 702 |
> |
angularMomentum = snap->getCOMw(); |
| 703 |
> |
inertiaTensor = snap->getInertiaTensor(); |
| 704 |
> |
|
| 705 |
> |
return; |
| 706 |
> |
} |
| 707 |
> |
|
| 708 |
> |
// Returns the angular momentum of the system |
| 709 |
> |
Vector3d Thermo::getAngularMomentum(){ |
| 710 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 711 |
> |
|
| 712 |
> |
if (!snap->hasCOMw) { |
| 713 |
> |
|
| 714 |
> |
Vector3d com(0.0); |
| 715 |
> |
Vector3d comVel(0.0); |
| 716 |
> |
Vector3d angularMomentum(0.0); |
| 717 |
> |
|
| 718 |
> |
getComAll(com, comVel); |
| 719 |
> |
|
| 720 |
> |
SimInfo::MoleculeIterator i; |
| 721 |
> |
Molecule* mol; |
| 722 |
> |
|
| 723 |
> |
Vector3d thisr(0.0); |
| 724 |
> |
Vector3d thisp(0.0); |
| 725 |
> |
|
| 726 |
> |
RealType thisMass; |
| 727 |
> |
|
| 728 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
| 729 |
> |
mol = info_->nextMolecule(i)) { |
| 730 |
> |
thisMass = mol->getMass(); |
| 731 |
> |
thisr = mol->getCom() - com; |
| 732 |
> |
thisp = (mol->getComVel() - comVel) * thisMass; |
| 733 |
> |
|
| 734 |
> |
angularMomentum += cross( thisr, thisp ); |
| 735 |
> |
} |
| 736 |
> |
|
| 737 |
> |
#ifdef IS_MPI |
| 738 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, |
| 739 |
> |
angularMomentum.getArrayPointer(), 3, |
| 740 |
> |
MPI::REALTYPE, MPI::SUM); |
| 741 |
> |
#endif |
| 742 |
> |
|
| 743 |
> |
snap->setCOMw(angularMomentum); |
| 744 |
> |
} |
| 745 |
> |
|
| 746 |
> |
return snap->getCOMw(); |
| 747 |
> |
} |
| 748 |
> |
|
| 749 |
> |
|
| 750 |
> |
/** |
| 751 |
> |
* Returns the Volume of the system based on a ellipsoid with |
| 752 |
> |
* semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
| 753 |
> |
* where R_i are related to the principle inertia moments |
| 754 |
> |
* R_i = sqrt(C*I_i/N), this reduces to |
| 755 |
> |
* V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). |
| 756 |
> |
* See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
| 757 |
> |
*/ |
| 758 |
> |
RealType Thermo::getGyrationalVolume(){ |
| 759 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 760 |
> |
|
| 761 |
> |
if (!snap->hasGyrationalVolume) { |
| 762 |
> |
|
| 763 |
> |
Mat3x3d intTensor; |
| 764 |
> |
RealType det; |
| 765 |
> |
Vector3d dummyAngMom; |
| 766 |
> |
RealType sysconstants; |
| 767 |
> |
RealType geomCnst; |
| 768 |
> |
RealType volume; |
| 769 |
> |
|
| 770 |
> |
geomCnst = 3.0/2.0; |
| 771 |
> |
/* Get the inertial tensor and angular momentum for free*/ |
| 772 |
> |
getInertiaTensor(intTensor, dummyAngMom); |
| 773 |
> |
|
| 774 |
> |
det = intTensor.determinant(); |
| 775 |
> |
sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects()); |
| 776 |
> |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
| 777 |
|
|
| 778 |
+ |
snap->setGyrationalVolume(volume); |
| 779 |
+ |
} |
| 780 |
+ |
return snap->getGyrationalVolume(); |
| 781 |
+ |
} |
| 782 |
+ |
|
| 783 |
+ |
void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){ |
| 784 |
+ |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 785 |
+ |
|
| 786 |
+ |
if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) { |
| 787 |
+ |
|
| 788 |
+ |
Mat3x3d intTensor; |
| 789 |
+ |
Vector3d dummyAngMom; |
| 790 |
+ |
RealType sysconstants; |
| 791 |
+ |
RealType geomCnst; |
| 792 |
+ |
|
| 793 |
+ |
geomCnst = 3.0/2.0; |
| 794 |
+ |
/* Get the inertia tensor and angular momentum for free*/ |
| 795 |
+ |
this->getInertiaTensor(intTensor, dummyAngMom); |
| 796 |
+ |
|
| 797 |
+ |
detI = intTensor.determinant(); |
| 798 |
+ |
sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects()); |
| 799 |
+ |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
| 800 |
+ |
snap->setGyrationalVolume(volume); |
| 801 |
+ |
} else { |
| 802 |
+ |
volume = snap->getGyrationalVolume(); |
| 803 |
+ |
detI = snap->getInertiaTensor().determinant(); |
| 804 |
+ |
} |
| 805 |
+ |
return; |
| 806 |
+ |
} |
| 807 |
+ |
|
| 808 |
+ |
RealType Thermo::getTaggedAtomPairDistance(){ |
| 809 |
+ |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 810 |
+ |
Globals* simParams = info_->getSimParams(); |
| 811 |
+ |
|
| 812 |
|
if (simParams->haveTaggedAtomPair() && |
| 813 |
|
simParams->havePrintTaggedPairDistance()) { |
| 814 |
|
if ( simParams->getPrintTaggedPairDistance()) { |
| 815 |
|
|
| 816 |
< |
std::pair<int, int> tap = simParams->getTaggedAtomPair(); |
| 816 |
> |
pair<int, int> tap = simParams->getTaggedAtomPair(); |
| 817 |
|
Vector3d pos1, pos2, rab; |
| 818 |
< |
|
| 818 |
> |
|
| 819 |
|
#ifdef IS_MPI |
| 261 |
– |
std::cerr << "tap = " << tap.first << " " << tap.second << std::endl; |
| 262 |
– |
|
| 820 |
|
int mol1 = info_->getGlobalMolMembership(tap.first); |
| 821 |
|
int mol2 = info_->getGlobalMolMembership(tap.second); |
| 265 |
– |
std::cerr << "mols = " << mol1 << " " << mol2 << std::endl; |
| 822 |
|
|
| 823 |
|
int proc1 = info_->getMolToProc(mol1); |
| 824 |
|
int proc2 = info_->getMolToProc(mol2); |
| 825 |
|
|
| 270 |
– |
std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl; |
| 271 |
– |
|
| 826 |
|
RealType data[3]; |
| 827 |
|
if (proc1 == worldRank) { |
| 828 |
|
StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); |
| 275 |
– |
std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl; |
| 829 |
|
pos1 = sd1->getPos(); |
| 830 |
|
data[0] = pos1.x(); |
| 831 |
|
data[1] = pos1.y(); |
| 836 |
|
pos1 = Vector3d(data); |
| 837 |
|
} |
| 838 |
|
|
| 286 |
– |
|
| 839 |
|
if (proc2 == worldRank) { |
| 840 |
|
StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); |
| 289 |
– |
std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl; |
| 841 |
|
pos2 = sd2->getPos(); |
| 842 |
|
data[0] = pos2.x(); |
| 843 |
|
data[1] = pos2.y(); |
| 855 |
|
#endif |
| 856 |
|
rab = pos2 - pos1; |
| 857 |
|
currSnapshot->wrapVector(rab); |
| 858 |
< |
stat[Stats::TAGGED_PAIR_DISTANCE] = rab.length(); |
| 858 |
> |
return rab.length(); |
| 859 |
|
} |
| 860 |
+ |
return 0.0; |
| 861 |
|
} |
| 862 |
< |
|
| 311 |
< |
/**@todo need refactorying*/ |
| 312 |
< |
//Conserved Quantity is set by integrator and time is set by setTime |
| 313 |
< |
|
| 862 |
> |
return 0.0; |
| 863 |
|
} |
| 864 |
|
|
| 865 |
< |
|
| 866 |
< |
Vector3d Thermo::getBoxDipole() { |
| 318 |
< |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 319 |
< |
SimInfo::MoleculeIterator miter; |
| 320 |
< |
std::vector<Atom*>::iterator aiter; |
| 321 |
< |
Molecule* mol; |
| 322 |
< |
Atom* atom; |
| 323 |
< |
RealType charge; |
| 324 |
< |
RealType moment(0.0); |
| 325 |
< |
Vector3d ri(0.0); |
| 326 |
< |
Vector3d dipoleVector(0.0); |
| 327 |
< |
Vector3d nPos(0.0); |
| 328 |
< |
Vector3d pPos(0.0); |
| 329 |
< |
RealType nChg(0.0); |
| 330 |
< |
RealType pChg(0.0); |
| 331 |
< |
int nCount = 0; |
| 332 |
< |
int pCount = 0; |
| 333 |
< |
|
| 334 |
< |
RealType chargeToC = 1.60217733e-19; |
| 335 |
< |
RealType angstromToM = 1.0e-10; |
| 336 |
< |
RealType debyeToCm = 3.33564095198e-30; |
| 865 |
> |
RealType Thermo::getHullVolume(){ |
| 866 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 867 |
|
|
| 868 |
< |
for (mol = info_->beginMolecule(miter); mol != NULL; |
| 339 |
< |
mol = info_->nextMolecule(miter)) { |
| 868 |
> |
if (!snap->hasHullVolume) { |
| 869 |
|
|
| 870 |
< |
for (atom = mol->beginAtom(aiter); atom != NULL; |
| 342 |
< |
atom = mol->nextAtom(aiter)) { |
| 343 |
< |
|
| 344 |
< |
if (atom->isCharge() ) { |
| 345 |
< |
charge = 0.0; |
| 346 |
< |
GenericData* data = atom->getAtomType()->getPropertyByName("Charge"); |
| 347 |
< |
if (data != NULL) { |
| 870 |
> |
Hull* surfaceMesh_; |
| 871 |
|
|
| 872 |
< |
charge = (dynamic_cast<DoubleGenericData*>(data))->getData(); |
| 873 |
< |
charge *= chargeToC; |
| 874 |
< |
|
| 875 |
< |
ri = atom->getPos(); |
| 876 |
< |
currSnapshot->wrapVector(ri); |
| 877 |
< |
ri *= angstromToM; |
| 878 |
< |
|
| 879 |
< |
if (charge < 0.0) { |
| 880 |
< |
nPos += ri; |
| 358 |
< |
nChg -= charge; |
| 359 |
< |
nCount++; |
| 360 |
< |
} else if (charge > 0.0) { |
| 361 |
< |
pPos += ri; |
| 362 |
< |
pChg += charge; |
| 363 |
< |
pCount++; |
| 364 |
< |
} |
| 365 |
< |
} |
| 366 |
< |
} |
| 367 |
< |
|
| 368 |
< |
MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType()); |
| 369 |
< |
if (ma.isDipole() ) { |
| 370 |
< |
Vector3d u_i = atom->getElectroFrame().getColumn(2); |
| 371 |
< |
moment = ma.getDipoleMoment(); |
| 372 |
< |
moment *= debyeToCm; |
| 373 |
< |
dipoleVector += u_i * moment; |
| 374 |
< |
} |
| 872 |
> |
Globals* simParams = info_->getSimParams(); |
| 873 |
> |
const std::string ht = simParams->getHULL_Method(); |
| 874 |
> |
|
| 875 |
> |
if (ht == "Convex") { |
| 876 |
> |
surfaceMesh_ = new ConvexHull(); |
| 877 |
> |
} else if (ht == "AlphaShape") { |
| 878 |
> |
surfaceMesh_ = new AlphaHull(simParams->getAlpha()); |
| 879 |
> |
} else { |
| 880 |
> |
return 0.0; |
| 881 |
|
} |
| 882 |
+ |
|
| 883 |
+ |
// Build a vector of stunt doubles to determine if they are |
| 884 |
+ |
// surface atoms |
| 885 |
+ |
std::vector<StuntDouble*> localSites_; |
| 886 |
+ |
Molecule* mol; |
| 887 |
+ |
StuntDouble* sd; |
| 888 |
+ |
SimInfo::MoleculeIterator i; |
| 889 |
+ |
Molecule::IntegrableObjectIterator j; |
| 890 |
+ |
|
| 891 |
+ |
for (mol = info_->beginMolecule(i); mol != NULL; |
| 892 |
+ |
mol = info_->nextMolecule(i)) { |
| 893 |
+ |
for (sd = mol->beginIntegrableObject(j); |
| 894 |
+ |
sd != NULL; |
| 895 |
+ |
sd = mol->nextIntegrableObject(j)) { |
| 896 |
+ |
localSites_.push_back(sd); |
| 897 |
+ |
} |
| 898 |
+ |
} |
| 899 |
+ |
|
| 900 |
+ |
// Compute surface Mesh |
| 901 |
+ |
surfaceMesh_->computeHull(localSites_); |
| 902 |
+ |
snap->setHullVolume(surfaceMesh_->getVolume()); |
| 903 |
|
} |
| 904 |
< |
|
| 905 |
< |
|
| 906 |
< |
#ifdef IS_MPI |
| 380 |
< |
RealType pChg_global, nChg_global; |
| 381 |
< |
int pCount_global, nCount_global; |
| 382 |
< |
Vector3d pPos_global, nPos_global, dipVec_global; |
| 383 |
< |
|
| 384 |
< |
MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM, |
| 385 |
< |
MPI_COMM_WORLD); |
| 386 |
< |
pChg = pChg_global; |
| 387 |
< |
MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM, |
| 388 |
< |
MPI_COMM_WORLD); |
| 389 |
< |
nChg = nChg_global; |
| 390 |
< |
MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM, |
| 391 |
< |
MPI_COMM_WORLD); |
| 392 |
< |
pCount = pCount_global; |
| 393 |
< |
MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM, |
| 394 |
< |
MPI_COMM_WORLD); |
| 395 |
< |
nCount = nCount_global; |
| 396 |
< |
MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3, |
| 397 |
< |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
| 398 |
< |
pPos = pPos_global; |
| 399 |
< |
MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3, |
| 400 |
< |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
| 401 |
< |
nPos = nPos_global; |
| 402 |
< |
MPI_Allreduce(dipoleVector.getArrayPointer(), |
| 403 |
< |
dipVec_global.getArrayPointer(), 3, |
| 404 |
< |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
| 405 |
< |
dipoleVector = dipVec_global; |
| 406 |
< |
#endif //is_mpi |
| 407 |
< |
|
| 408 |
< |
// first load the accumulated dipole moment (if dipoles were present) |
| 409 |
< |
Vector3d boxDipole = dipoleVector; |
| 410 |
< |
// now include the dipole moment due to charges |
| 411 |
< |
// use the lesser of the positive and negative charge totals |
| 412 |
< |
RealType chg_value = nChg <= pChg ? nChg : pChg; |
| 413 |
< |
|
| 414 |
< |
// find the average positions |
| 415 |
< |
if (pCount > 0 && nCount > 0 ) { |
| 416 |
< |
pPos /= pCount; |
| 417 |
< |
nPos /= nCount; |
| 418 |
< |
} |
| 419 |
< |
|
| 420 |
< |
// dipole is from the negative to the positive (physics notation) |
| 421 |
< |
boxDipole += (pPos - nPos) * chg_value; |
| 422 |
< |
|
| 423 |
< |
return boxDipole; |
| 424 |
< |
} |
| 425 |
< |
} //end namespace OpenMD |
| 904 |
> |
return snap->getHullVolume(); |
| 905 |
> |
} |
| 906 |
> |
} |