ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
(Generate patch)

Comparing trunk/src/brains/Thermo.cpp (file contents):
Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
Revision 998 by chrisfen, Mon Jul 3 13:18:43 2006 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Acknowledgement of the program authors must be made in any
10 + *    publication of scientific results based in part on use of the
11 + *    program.  An acceptable form of acknowledgement is citation of
12 + *    the article in which the program was described (Matthew
13 + *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + *    Parallel Simulation Engine for Molecular Dynamics,"
16 + *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + *
18 + * 2. Redistributions of source code must retain the above copyright
19 + *    notice, this list of conditions and the following disclaimer.
20 + *
21 + * 3. Redistributions in binary form must reproduce the above copyright
22 + *    notice, this list of conditions and the following disclaimer in the
23 + *    documentation and/or other materials provided with the
24 + *    distribution.
25 + *
26 + * This software is provided "AS IS," without a warranty of any
27 + * kind. All express or implied conditions, representations and
28 + * warranties, including any implied warranty of merchantability,
29 + * fitness for a particular purpose or non-infringement, are hereby
30 + * excluded.  The University of Notre Dame and its licensors shall not
31 + * be liable for any damages suffered by licensee as a result of
32 + * using, modifying or distributing the software or its
33 + * derivatives. In no event will the University of Notre Dame or its
34 + * licensors be liable for any lost revenue, profit or data, or for
35 + * direct, indirect, special, consequential, incidental or punitive
36 + * damages, however caused and regardless of the theory of liability,
37 + * arising out of the use of or inability to use software, even if the
38 + * University of Notre Dame has been advised of the possibility of
39 + * such damages.
40 + */
41 +
42   #include <math.h>
43   #include <iostream>
3 using namespace std;
44  
45   #ifdef IS_MPI
46   #include <mpi.h>
47   #endif //is_mpi
48  
49   #include "brains/Thermo.hpp"
50 < #include "primitives/SRI.hpp"
11 < #include "integrators/Integrator.hpp"
50 > #include "primitives/Molecule.hpp"
51   #include "utils/simError.h"
52 < #include "math/MatVec3.h"
52 > #include "utils/OOPSEConstant.hpp"
53  
54 < #ifdef IS_MPI
16 < #define __C
17 < #include "brains/mpiSimulation.hpp"
18 < #endif // is_mpi
54 > namespace oopse {
55  
56 < inline double roundMe( double x ){
57 <          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
58 < }
56 >  RealType Thermo::getKinetic() {
57 >    SimInfo::MoleculeIterator miter;
58 >    std::vector<StuntDouble*>::iterator iiter;
59 >    Molecule* mol;
60 >    StuntDouble* integrableObject;    
61 >    Vector3d vel;
62 >    Vector3d angMom;
63 >    Mat3x3d I;
64 >    int i;
65 >    int j;
66 >    int k;
67 >    RealType mass;
68 >    RealType kinetic = 0.0;
69 >    RealType kinetic_global = 0.0;
70 >    
71 >    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
72 >      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
73 >           integrableObject = mol->nextIntegrableObject(iiter)) {
74 >        
75 >        mass = integrableObject->getMass();
76 >        vel = integrableObject->getVel();
77 >        
78 >        kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
79 >        
80 >        if (integrableObject->isDirectional()) {
81 >          angMom = integrableObject->getJ();
82 >          I = integrableObject->getI();
83  
84 < Thermo::Thermo( SimInfo* the_info ) {
85 <  info = the_info;
86 <  int baseSeed = the_info->getSeed();
87 <  
88 <  gaussStream = new gaussianSPRNG( baseSeed );
89 < }
90 <
91 < Thermo::~Thermo(){
92 <  delete gaussStream;
93 < }
94 <
35 < double Thermo::getKinetic(){
36 <
37 <  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
38 <  double kinetic;
39 <  double amass;
40 <  double aVel[3], aJ[3], I[3][3];
41 <  int i, j, k, kl;
42 <
43 <  double kinetic_global;
44 <  vector<StuntDouble *> integrableObjects = info->integrableObjects;
45 <  
46 <  kinetic = 0.0;
47 <  kinetic_global = 0.0;
48 <
49 <  for (kl=0; kl<integrableObjects.size(); kl++) {
50 <    integrableObjects[kl]->getVel(aVel);
51 <    amass = integrableObjects[kl]->getMass();
52 <
53 <   for(j=0; j<3; j++)
54 <      kinetic += amass*aVel[j]*aVel[j];
55 <
56 <   if (integrableObjects[kl]->isDirectional()){
57 <
58 <      integrableObjects[kl]->getJ( aJ );
59 <      integrableObjects[kl]->getI( I );
60 <
61 <      if (integrableObjects[kl]->isLinear()) {
62 <        i = integrableObjects[kl]->linearAxis();
63 <        j = (i+1)%3;
64 <        k = (i+2)%3;
65 <        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
66 <      } else {
67 <        for (j=0; j<3; j++)
68 <          kinetic += aJ[j]*aJ[j] / I[j][j];
84 >          if (integrableObject->isLinear()) {
85 >            i = integrableObject->linearAxis();
86 >            j = (i + 1) % 3;
87 >            k = (i + 2) % 3;
88 >            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
89 >          } else {                        
90 >            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
91 >              + angMom[2]*angMom[2]/I(2, 2);
92 >          }
93 >        }
94 >            
95        }
96 <   }
97 <  }
96 >    }
97 >    
98   #ifdef IS_MPI
73  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
74                MPI_SUM, MPI_COMM_WORLD);
75  kinetic = kinetic_global;
76 #endif //is_mpi
77  
78  kinetic = kinetic * 0.5 / e_convert;
99  
100 <  return kinetic;
101 < }
100 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
101 >                  MPI_COMM_WORLD);
102 >    kinetic = kinetic_global;
103  
104 < double Thermo::getPotential(){
84 <  
85 <  double potential_local;
86 <  double potential;
87 <  int el, nSRI;
88 <  Molecule* molecules;
104 > #endif //is_mpi
105  
106 <  molecules = info->molecules;
91 <  nSRI = info->n_SRI;
106 >    kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert;
107  
108 <  potential_local = 0.0;
94 <  potential = 0.0;
95 <  potential_local += info->lrPot;
96 <
97 <  for( el=0; el<info->n_mol; el++ ){    
98 <    potential_local += molecules[el].getPotential();
108 >    return kinetic;
109    }
110  
111 <  // Get total potential for entire system from MPI.
112 < #ifdef IS_MPI
113 <  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
114 <                MPI_SUM, MPI_COMM_WORLD);
105 < #else
106 <  potential = potential_local;
107 < #endif // is_mpi
111 >  RealType Thermo::getPotential() {
112 >    RealType potential = 0.0;
113 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
114 >    RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
115  
116 <  return potential;
110 < }
116 >    // Get total potential for entire system from MPI.
117  
118 < double Thermo::getTotalE(){
118 > #ifdef IS_MPI
119  
120 <  double total;
120 >    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
121 >                  MPI_COMM_WORLD);
122 >    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
123  
124 <  total = this->getKinetic() + this->getPotential();
117 <  return total;
118 < }
124 > #else
125  
126 < double Thermo::getTemperature(){
126 >    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
127  
128 <  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
123 <  double temperature;
128 > #endif // is_mpi
129  
130 <  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
131 <  return temperature;
127 < }
130 >    return potential;
131 >  }
132  
133 < double Thermo::getVolume() {
133 >  RealType Thermo::getTotalE() {
134 >    RealType total;
135  
136 <  return info->boxVol;
137 < }
136 >    total = this->getKinetic() + this->getPotential();
137 >    return total;
138 >  }
139  
140 < double Thermo::getPressure() {
140 >  RealType Thermo::getTemperature() {
141 >    
142 >    RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb );
143 >    return temperature;
144 >  }
145  
146 <  // Relies on the calculation of the full molecular pressure tensor
147 <  
148 <  const double p_convert = 1.63882576e8;
149 <  double press[3][3];
140 <  double pressure;
146 >  RealType Thermo::getVolume() {
147 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
148 >    return curSnapshot->getVolume();
149 >  }
150  
151 <  this->getPressureTensor(press);
151 >  RealType Thermo::getPressure() {
152  
153 <  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
153 >    // Relies on the calculation of the full molecular pressure tensor
154  
146  return pressure;
147 }
155  
156 < double Thermo::getPressureX() {
156 >    Mat3x3d tensor;
157 >    RealType pressure;
158  
159 <  // Relies on the calculation of the full molecular pressure tensor
152 <  
153 <  const double p_convert = 1.63882576e8;
154 <  double press[3][3];
155 <  double pressureX;
159 >    tensor = getPressureTensor();
160  
161 <  this->getPressureTensor(press);
161 >    pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
162  
163 <  pressureX = p_convert * press[0][0];
163 >    return pressure;
164 >  }
165  
166 <  return pressureX;
162 < }
166 >  RealType Thermo::getPressure(int direction) {
167  
168 < double Thermo::getPressureY() {
168 >    // Relies on the calculation of the full molecular pressure tensor
169  
170 <  // Relies on the calculation of the full molecular pressure tensor
171 <  
172 <  const double p_convert = 1.63882576e8;
169 <  double press[3][3];
170 <  double pressureY;
170 >          
171 >    Mat3x3d tensor;
172 >    RealType pressure;
173  
174 <  this->getPressureTensor(press);
174 >    tensor = getPressureTensor();
175  
176 <  pressureY = p_convert * press[1][1];
176 >    pressure = OOPSEConstant::pressureConvert * tensor(direction, direction);
177  
178 <  return pressureY;
179 < }
178 >    return pressure;
179 >  }
180  
181 < double Thermo::getPressureZ() {
181 >  Mat3x3d Thermo::getPressureTensor() {
182 >    // returns pressure tensor in units amu*fs^-2*Ang^-1
183 >    // routine derived via viral theorem description in:
184 >    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
185 >    Mat3x3d pressureTensor;
186 >    Mat3x3d p_local(0.0);
187 >    Mat3x3d p_global(0.0);
188  
189 <  // Relies on the calculation of the full molecular pressure tensor
190 <  
191 <  const double p_convert = 1.63882576e8;
192 <  double press[3][3];
193 <  double pressureZ;
189 >    SimInfo::MoleculeIterator i;
190 >    std::vector<StuntDouble*>::iterator j;
191 >    Molecule* mol;
192 >    StuntDouble* integrableObject;    
193 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
194 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
195 >           integrableObject = mol->nextIntegrableObject(j)) {
196  
197 <  this->getPressureTensor(press);
198 <
199 <  pressureZ = p_convert * press[2][2];
200 <
201 <  return pressureZ;
192 < }
193 <
194 <
195 < void Thermo::getPressureTensor(double press[3][3]){
196 <  // returns pressure tensor in units amu*fs^-2*Ang^-1
197 <  // routine derived via viral theorem description in:
198 <  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
199 <
200 <  const double e_convert = 4.184e-4;
201 <
202 <  double molmass, volume;
203 <  double vcom[3];
204 <  double p_local[9], p_global[9];
205 <  int i, j, k;
206 <
207 <  for (i=0; i < 9; i++) {    
208 <    p_local[i] = 0.0;
209 <    p_global[i] = 0.0;
210 <  }
211 <
212 <  // use velocities of integrableObjects and their masses:  
213 <
214 <  for (i=0; i < info->integrableObjects.size(); i++) {
215 <
216 <    molmass = info->integrableObjects[i]->getMass();
197 >        RealType mass = integrableObject->getMass();
198 >        Vector3d vcom = integrableObject->getVel();
199 >        p_local += mass * outProduct(vcom, vcom);        
200 >      }
201 >    }
202      
218    info->integrableObjects[i]->getVel(vcom);
219    
220    p_local[0] += molmass * (vcom[0] * vcom[0]);
221    p_local[1] += molmass * (vcom[0] * vcom[1]);
222    p_local[2] += molmass * (vcom[0] * vcom[2]);
223    p_local[3] += molmass * (vcom[1] * vcom[0]);
224    p_local[4] += molmass * (vcom[1] * vcom[1]);
225    p_local[5] += molmass * (vcom[1] * vcom[2]);
226    p_local[6] += molmass * (vcom[2] * vcom[0]);
227    p_local[7] += molmass * (vcom[2] * vcom[1]);
228    p_local[8] += molmass * (vcom[2] * vcom[2]);
229
230  }
231
232  // Get total for entire system from MPI.
233  
203   #ifdef IS_MPI
204 <  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
204 >    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
205   #else
206 <  for (i=0; i<9; i++) {
238 <    p_global[i] = p_local[i];
239 <  }
206 >    p_global = p_local;
207   #endif // is_mpi
208  
209 <  volume = this->getVolume();
210 <
211 <
245 <
246 <  for(i = 0; i < 3; i++) {
247 <    for (j = 0; j < 3; j++) {
248 <      k = 3*i + j;
249 <      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
250 <    }
251 <  }
252 < }
253 <
254 < void Thermo::velocitize() {
255 <  
256 <  double aVel[3], aJ[3], I[3][3];
257 <  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
258 <  double vdrift[3];
259 <  double vbar;
260 <  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
261 <  double av2;
262 <  double kebar;
263 <  double temperature;
264 <  int nobj;
265 <
266 <  if (!info->have_target_temp) {
267 <    sprintf( painCave.errMsg,
268 <             "You can't resample the velocities without a targetTemp!\n"
269 <             );
270 <    painCave.isFatal = 1;
271 <    painCave.severity = OOPSE_ERROR;
272 <    simError();
273 <    return;
274 <  }
275 <
276 <  nobj = info->integrableObjects.size();
277 <  
278 <  temperature   = info->target_temp;
279 <  
280 <  kebar = kb * temperature * (double)info->ndfRaw /
281 <    ( 2.0 * (double)info->ndf );
282 <  
283 <  for(vr = 0; vr < nobj; vr++){
209 >    RealType volume = this->getVolume();
210 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
211 >    Mat3x3d tau = curSnapshot->statData.getTau();
212      
213 <    // uses equipartition theory to solve for vbar in angstrom/fs
286 <
287 <    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
288 <    vbar = sqrt( av2 );
289 <
290 <    // picks random velocities from a gaussian distribution
291 <    // centered on vbar
292 <
293 <    for (j=0; j<3; j++)
294 <      aVel[j] = vbar * gaussStream->getGaussian();
213 >    pressureTensor =  (p_global + OOPSEConstant::energyConvert* tau)/volume;
214      
215 <    info->integrableObjects[vr]->setVel( aVel );
297 <    
298 <    if(info->integrableObjects[vr]->isDirectional()){
299 <
300 <      info->integrableObjects[vr]->getI( I );
301 <
302 <      if (info->integrableObjects[vr]->isLinear()) {
303 <
304 <        l= info->integrableObjects[vr]->linearAxis();
305 <        m = (l+1)%3;
306 <        n = (l+2)%3;
307 <
308 <        aJ[l] = 0.0;
309 <        vbar = sqrt( 2.0 * kebar * I[m][m] );
310 <        aJ[m] = vbar * gaussStream->getGaussian();
311 <        vbar = sqrt( 2.0 * kebar * I[n][n] );
312 <        aJ[n] = vbar * gaussStream->getGaussian();
313 <        
314 <      } else {
315 <        for (j = 0 ; j < 3; j++) {
316 <          vbar = sqrt( 2.0 * kebar * I[j][j] );
317 <          aJ[j] = vbar * gaussStream->getGaussian();
318 <        }      
319 <      } // else isLinear
320 <
321 <      info->integrableObjects[vr]->setJ( aJ );
322 <      
323 <    }//isDirectional
324 <
215 >    return pressureTensor;
216    }
217  
327  // Get the Center of Mass drift velocity.
218  
219 <  getCOMVel(vdrift);
220 <  
221 <  //  Corrects for the center of mass drift.
332 <  // sums all the momentum and divides by total mass.
333 <
334 <  for(vd = 0; vd < nobj; vd++){
219 >  void Thermo::saveStat(){
220 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
221 >    Stats& stat = currSnapshot->statData;
222      
223 <    info->integrableObjects[vd]->getVel(aVel);
224 <    
225 <    for (j=0; j < 3; j++)
226 <      aVel[j] -= vdrift[j];
227 <        
228 <    info->integrableObjects[vd]->setVel( aVel );
342 <  }
223 >    stat[Stats::KINETIC_ENERGY] = getKinetic();
224 >    stat[Stats::POTENTIAL_ENERGY] = getPotential();
225 >    stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ;
226 >    stat[Stats::TEMPERATURE] = getTemperature();
227 >    stat[Stats::PRESSURE] = getPressure();
228 >    stat[Stats::VOLUME] = getVolume();      
229  
230 < }
230 >    Mat3x3d tensor =getPressureTensor();
231 >    stat[Stats::PRESSURE_TENSOR_X] = tensor(0, 0);      
232 >    stat[Stats::PRESSURE_TENSOR_Y] = tensor(1, 1);      
233 >    stat[Stats::PRESSURE_TENSOR_Z] = tensor(2, 2);      
234  
346 void Thermo::getCOMVel(double vdrift[3]){
235  
236 <  double mtot, mtot_local;
237 <  double aVel[3], amass;
350 <  double vdrift_local[3];
351 <  int vd, j;
352 <  int nobj;
353 <
354 <  nobj   = info->integrableObjects.size();
355 <
356 <  mtot_local = 0.0;
357 <  vdrift_local[0] = 0.0;
358 <  vdrift_local[1] = 0.0;
359 <  vdrift_local[2] = 0.0;
360 <  
361 <  for(vd = 0; vd < nobj; vd++){
236 >    /**@todo need refactorying*/
237 >    //Conserved Quantity is set by integrator and time is set by setTime
238      
363    amass = info->integrableObjects[vd]->getMass();
364    info->integrableObjects[vd]->getVel( aVel );
365
366    for(j = 0; j < 3; j++)
367      vdrift_local[j] += aVel[j] * amass;
368    
369    mtot_local += amass;
239    }
240  
241 < #ifdef IS_MPI
373 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
374 <  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
375 < #else
376 <  mtot = mtot_local;
377 <  for(vd = 0; vd < 3; vd++) {
378 <    vdrift[vd] = vdrift_local[vd];
379 <  }
380 < #endif
381 <    
382 <  for (vd = 0; vd < 3; vd++) {
383 <    vdrift[vd] = vdrift[vd] / mtot;
384 <  }
385 <  
386 < }
387 <
388 < void Thermo::getCOM(double COM[3]){
389 <
390 <  double mtot, mtot_local;
391 <  double aPos[3], amass;
392 <  double COM_local[3];
393 <  int i, j;
394 <  int nobj;
395 <
396 <  mtot_local = 0.0;
397 <  COM_local[0] = 0.0;
398 <  COM_local[1] = 0.0;
399 <  COM_local[2] = 0.0;
400 <
401 <  nobj = info->integrableObjects.size();
402 <  for(i = 0; i < nobj; i++){
403 <    
404 <    amass = info->integrableObjects[i]->getMass();
405 <    info->integrableObjects[i]->getPos( aPos );
406 <
407 <    for(j = 0; j < 3; j++)
408 <      COM_local[j] += aPos[j] * amass;
409 <    
410 <    mtot_local += amass;
411 <  }
412 <
413 < #ifdef IS_MPI
414 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
415 <  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
416 < #else
417 <  mtot = mtot_local;
418 <  for(i = 0; i < 3; i++) {
419 <    COM[i] = COM_local[i];
420 <  }
421 < #endif
422 <    
423 <  for (i = 0; i < 3; i++) {
424 <    COM[i] = COM[i] / mtot;
425 <  }
426 < }
427 <
428 < void Thermo::removeCOMdrift() {
429 <  double vdrift[3], aVel[3];
430 <  int vd, j, nobj;
431 <
432 <  nobj = info->integrableObjects.size();
433 <
434 <  // Get the Center of Mass drift velocity.
435 <
436 <  getCOMVel(vdrift);
437 <  
438 <  //  Corrects for the center of mass drift.
439 <  // sums all the momentum and divides by total mass.
440 <
441 <  for(vd = 0; vd < nobj; vd++){
442 <    
443 <    info->integrableObjects[vd]->getVel(aVel);
444 <    
445 <    for (j=0; j < 3; j++)
446 <      aVel[j] -= vdrift[j];
447 <        
448 <    info->integrableObjects[vd]->setVel( aVel );
449 <  }
450 < }
241 > } //end namespace oopse

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines