1 |
+ |
/* |
2 |
+ |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
+ |
* |
4 |
+ |
* The University of Notre Dame grants you ("Licensee") a |
5 |
+ |
* non-exclusive, royalty free, license to use, modify and |
6 |
+ |
* redistribute this software in source and binary code form, provided |
7 |
+ |
* that the following conditions are met: |
8 |
+ |
* |
9 |
+ |
* 1. Redistributions of source code must retain the above copyright |
10 |
+ |
* notice, this list of conditions and the following disclaimer. |
11 |
+ |
* |
12 |
+ |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
+ |
* notice, this list of conditions and the following disclaimer in the |
14 |
+ |
* documentation and/or other materials provided with the |
15 |
+ |
* distribution. |
16 |
+ |
* |
17 |
+ |
* This software is provided "AS IS," without a warranty of any |
18 |
+ |
* kind. All express or implied conditions, representations and |
19 |
+ |
* warranties, including any implied warranty of merchantability, |
20 |
+ |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
+ |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
+ |
* be liable for any damages suffered by licensee as a result of |
23 |
+ |
* using, modifying or distributing the software or its |
24 |
+ |
* derivatives. In no event will the University of Notre Dame or its |
25 |
+ |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
+ |
* direct, indirect, special, consequential, incidental or punitive |
27 |
+ |
* damages, however caused and regardless of the theory of liability, |
28 |
+ |
* arising out of the use of or inability to use software, even if the |
29 |
+ |
* University of Notre Dame has been advised of the possibility of |
30 |
+ |
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
+ |
*/ |
42 |
+ |
|
43 |
|
#include <math.h> |
44 |
|
#include <iostream> |
3 |
– |
using namespace std; |
45 |
|
|
46 |
|
#ifdef IS_MPI |
47 |
|
#include <mpi.h> |
48 |
|
#endif //is_mpi |
49 |
|
|
50 |
|
#include "brains/Thermo.hpp" |
51 |
< |
#include "primitives/SRI.hpp" |
11 |
< |
#include "integrators/Integrator.hpp" |
51 |
> |
#include "primitives/Molecule.hpp" |
52 |
|
#include "utils/simError.h" |
53 |
< |
#include "math/MatVec3.h" |
53 |
> |
#include "utils/PhysicalConstants.hpp" |
54 |
> |
#include "types/FixedChargeAdapter.hpp" |
55 |
> |
#include "types/FluctuatingChargeAdapter.hpp" |
56 |
> |
#include "types/MultipoleAdapter.hpp" |
57 |
> |
#ifdef HAVE_QHULL |
58 |
> |
#include "math/ConvexHull.hpp" |
59 |
> |
#include "math/AlphaHull.hpp" |
60 |
> |
#endif |
61 |
|
|
62 |
< |
#ifdef IS_MPI |
63 |
< |
#define __C |
17 |
< |
#include "brains/mpiSimulation.hpp" |
18 |
< |
#endif // is_mpi |
62 |
> |
using namespace std; |
63 |
> |
namespace OpenMD { |
64 |
|
|
65 |
< |
inline double roundMe( double x ){ |
66 |
< |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
22 |
< |
} |
65 |
> |
RealType Thermo::getTranslationalKinetic() { |
66 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
67 |
|
|
68 |
< |
Thermo::Thermo( SimInfo* the_info ) { |
69 |
< |
info = the_info; |
70 |
< |
int baseSeed = the_info->getSeed(); |
71 |
< |
|
72 |
< |
gaussStream = new gaussianSPRNG( baseSeed ); |
73 |
< |
} |
68 |
> |
if (!snap->hasTranslationalKineticEnergy) { |
69 |
> |
SimInfo::MoleculeIterator miter; |
70 |
> |
vector<StuntDouble*>::iterator iiter; |
71 |
> |
Molecule* mol; |
72 |
> |
StuntDouble* sd; |
73 |
> |
Vector3d vel; |
74 |
> |
RealType mass; |
75 |
> |
RealType kinetic(0.0); |
76 |
> |
|
77 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
78 |
> |
mol = info_->nextMolecule(miter)) { |
79 |
> |
|
80 |
> |
for (sd = mol->beginIntegrableObject(iiter); sd != NULL; |
81 |
> |
sd = mol->nextIntegrableObject(iiter)) { |
82 |
> |
|
83 |
> |
mass = sd->getMass(); |
84 |
> |
vel = sd->getVel(); |
85 |
> |
|
86 |
> |
kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
87 |
> |
|
88 |
> |
} |
89 |
> |
} |
90 |
> |
|
91 |
> |
#ifdef IS_MPI |
92 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, |
93 |
> |
MPI::SUM); |
94 |
> |
#endif |
95 |
> |
|
96 |
> |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
97 |
> |
|
98 |
> |
|
99 |
> |
snap->setTranslationalKineticEnergy(kinetic); |
100 |
> |
} |
101 |
> |
return snap->getTranslationalKineticEnergy(); |
102 |
> |
} |
103 |
|
|
104 |
< |
Thermo::~Thermo(){ |
105 |
< |
delete gaussStream; |
33 |
< |
} |
104 |
> |
RealType Thermo::getRotationalKinetic() { |
105 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
106 |
|
|
107 |
< |
double Thermo::getKinetic(){ |
107 |
> |
if (!snap->hasRotationalKineticEnergy) { |
108 |
> |
SimInfo::MoleculeIterator miter; |
109 |
> |
vector<StuntDouble*>::iterator iiter; |
110 |
> |
Molecule* mol; |
111 |
> |
StuntDouble* sd; |
112 |
> |
Vector3d angMom; |
113 |
> |
Mat3x3d I; |
114 |
> |
int i, j, k; |
115 |
> |
RealType kinetic(0.0); |
116 |
> |
|
117 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
118 |
> |
mol = info_->nextMolecule(miter)) { |
119 |
> |
|
120 |
> |
for (sd = mol->beginIntegrableObject(iiter); sd != NULL; |
121 |
> |
sd = mol->nextIntegrableObject(iiter)) { |
122 |
> |
|
123 |
> |
if (sd->isDirectional()) { |
124 |
> |
angMom = sd->getJ(); |
125 |
> |
I = sd->getI(); |
126 |
> |
|
127 |
> |
if (sd->isLinear()) { |
128 |
> |
i = sd->linearAxis(); |
129 |
> |
j = (i + 1) % 3; |
130 |
> |
k = (i + 2) % 3; |
131 |
> |
kinetic += angMom[j] * angMom[j] / I(j, j) |
132 |
> |
+ angMom[k] * angMom[k] / I(k, k); |
133 |
> |
} else { |
134 |
> |
kinetic += angMom[0]*angMom[0]/I(0, 0) |
135 |
> |
+ angMom[1]*angMom[1]/I(1, 1) |
136 |
> |
+ angMom[2]*angMom[2]/I(2, 2); |
137 |
> |
} |
138 |
> |
} |
139 |
> |
} |
140 |
> |
} |
141 |
> |
|
142 |
> |
#ifdef IS_MPI |
143 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, |
144 |
> |
MPI::SUM); |
145 |
> |
#endif |
146 |
> |
|
147 |
> |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
148 |
> |
|
149 |
> |
snap->setRotationalKineticEnergy(kinetic); |
150 |
> |
} |
151 |
> |
return snap->getRotationalKineticEnergy(); |
152 |
> |
} |
153 |
|
|
154 |
< |
const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 |
38 |
< |
double kinetic; |
39 |
< |
double amass; |
40 |
< |
double aVel[3], aJ[3], I[3][3]; |
41 |
< |
int i, j, k, kl; |
154 |
> |
|
155 |
|
|
156 |
< |
double kinetic_global; |
157 |
< |
vector<StuntDouble *> integrableObjects = info->integrableObjects; |
45 |
< |
|
46 |
< |
kinetic = 0.0; |
47 |
< |
kinetic_global = 0.0; |
156 |
> |
RealType Thermo::getKinetic() { |
157 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
158 |
|
|
159 |
< |
for (kl=0; kl<integrableObjects.size(); kl++) { |
160 |
< |
integrableObjects[kl]->getVel(aVel); |
161 |
< |
amass = integrableObjects[kl]->getMass(); |
159 |
> |
if (!snap->hasKineticEnergy) { |
160 |
> |
RealType ke = getTranslationalKinetic() + getRotationalKinetic(); |
161 |
> |
snap->setKineticEnergy(ke); |
162 |
> |
} |
163 |
> |
return snap->getKineticEnergy(); |
164 |
> |
} |
165 |
|
|
166 |
< |
for(j=0; j<3; j++) |
54 |
< |
kinetic += amass*aVel[j]*aVel[j]; |
166 |
> |
RealType Thermo::getPotential() { |
167 |
|
|
168 |
< |
if (integrableObjects[kl]->isDirectional()){ |
169 |
< |
|
58 |
< |
integrableObjects[kl]->getJ( aJ ); |
59 |
< |
integrableObjects[kl]->getI( I ); |
168 |
> |
// ForceManager computes the potential and stores it in the |
169 |
> |
// Snapshot. All we have to do is report it. |
170 |
|
|
171 |
< |
if (integrableObjects[kl]->isLinear()) { |
172 |
< |
i = integrableObjects[kl]->linearAxis(); |
63 |
< |
j = (i+1)%3; |
64 |
< |
k = (i+2)%3; |
65 |
< |
kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; |
66 |
< |
} else { |
67 |
< |
for (j=0; j<3; j++) |
68 |
< |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
69 |
< |
} |
70 |
< |
} |
171 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
172 |
> |
return snap->getPotentialEnergy(); |
173 |
|
} |
72 |
– |
#ifdef IS_MPI |
73 |
– |
MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, |
74 |
– |
MPI_SUM, MPI_COMM_WORLD); |
75 |
– |
kinetic = kinetic_global; |
76 |
– |
#endif //is_mpi |
77 |
– |
|
78 |
– |
kinetic = kinetic * 0.5 / e_convert; |
174 |
|
|
175 |
< |
return kinetic; |
81 |
< |
} |
175 |
> |
RealType Thermo::getTotalEnergy() { |
176 |
|
|
177 |
< |
double Thermo::getPotential(){ |
84 |
< |
|
85 |
< |
double potential_local; |
86 |
< |
double potential; |
87 |
< |
int el, nSRI; |
88 |
< |
Molecule* molecules; |
177 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
178 |
|
|
179 |
< |
molecules = info->molecules; |
180 |
< |
nSRI = info->n_SRI; |
179 |
> |
if (!snap->hasTotalEnergy) { |
180 |
> |
snap->setTotalEnergy(this->getKinetic() + this->getPotential()); |
181 |
> |
} |
182 |
|
|
183 |
< |
potential_local = 0.0; |
94 |
< |
potential = 0.0; |
95 |
< |
potential_local += info->lrPot; |
96 |
< |
|
97 |
< |
for( el=0; el<info->n_mol; el++ ){ |
98 |
< |
potential_local += molecules[el].getPotential(); |
183 |
> |
return snap->getTotalEnergy(); |
184 |
|
} |
185 |
|
|
186 |
< |
// Get total potential for entire system from MPI. |
102 |
< |
#ifdef IS_MPI |
103 |
< |
MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, |
104 |
< |
MPI_SUM, MPI_COMM_WORLD); |
105 |
< |
#else |
106 |
< |
potential = potential_local; |
107 |
< |
#endif // is_mpi |
186 |
> |
RealType Thermo::getTemperature() { |
187 |
|
|
188 |
< |
return potential; |
110 |
< |
} |
188 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
189 |
|
|
190 |
< |
double Thermo::getTotalE(){ |
190 |
> |
if (!snap->hasTemperature) { |
191 |
|
|
192 |
< |
double total; |
192 |
> |
RealType temperature = ( 2.0 * this->getKinetic() ) |
193 |
> |
/ (info_->getNdf()* PhysicalConstants::kb ); |
194 |
|
|
195 |
< |
total = this->getKinetic() + this->getPotential(); |
196 |
< |
return total; |
197 |
< |
} |
195 |
> |
snap->setTemperature(temperature); |
196 |
> |
} |
197 |
> |
|
198 |
> |
return snap->getTemperature(); |
199 |
> |
} |
200 |
|
|
201 |
< |
double Thermo::getTemperature(){ |
201 |
> |
RealType Thermo::getElectronicTemperature() { |
202 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
203 |
|
|
204 |
< |
const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) |
205 |
< |
double temperature; |
204 |
> |
if (!snap->hasElectronicTemperature) { |
205 |
> |
|
206 |
> |
SimInfo::MoleculeIterator miter; |
207 |
> |
vector<Atom*>::iterator iiter; |
208 |
> |
Molecule* mol; |
209 |
> |
Atom* atom; |
210 |
> |
RealType cvel; |
211 |
> |
RealType cmass; |
212 |
> |
RealType kinetic(0.0); |
213 |
> |
RealType eTemp; |
214 |
> |
|
215 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
216 |
> |
mol = info_->nextMolecule(miter)) { |
217 |
> |
|
218 |
> |
for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL; |
219 |
> |
atom = mol->nextFluctuatingCharge(iiter)) { |
220 |
> |
|
221 |
> |
cmass = atom->getChargeMass(); |
222 |
> |
cvel = atom->getFlucQVel(); |
223 |
> |
|
224 |
> |
kinetic += cmass * cvel * cvel; |
225 |
> |
|
226 |
> |
} |
227 |
> |
} |
228 |
> |
|
229 |
> |
#ifdef IS_MPI |
230 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, |
231 |
> |
MPI::SUM); |
232 |
> |
#endif |
233 |
|
|
234 |
< |
temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); |
235 |
< |
return temperature; |
236 |
< |
} |
234 |
> |
kinetic *= 0.5; |
235 |
> |
eTemp = (2.0 * kinetic) / |
236 |
> |
(info_->getNFluctuatingCharges() * PhysicalConstants::kb ); |
237 |
> |
|
238 |
> |
snap->setElectronicTemperature(eTemp); |
239 |
> |
} |
240 |
|
|
241 |
< |
double Thermo::getVolume() { |
241 |
> |
return snap->getElectronicTemperature(); |
242 |
> |
} |
243 |
|
|
131 |
– |
return info->boxVol; |
132 |
– |
} |
244 |
|
|
245 |
< |
double Thermo::getPressure() { |
245 |
> |
RealType Thermo::getVolume() { |
246 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
247 |
> |
return snap->getVolume(); |
248 |
> |
} |
249 |
|
|
250 |
< |
// Relies on the calculation of the full molecular pressure tensor |
251 |
< |
|
138 |
< |
const double p_convert = 1.63882576e8; |
139 |
< |
double press[3][3]; |
140 |
< |
double pressure; |
250 |
> |
RealType Thermo::getPressure() { |
251 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
252 |
|
|
253 |
< |
this->getPressureTensor(press); |
253 |
> |
if (!snap->hasPressure) { |
254 |
> |
// Relies on the calculation of the full molecular pressure tensor |
255 |
> |
|
256 |
> |
Mat3x3d tensor; |
257 |
> |
RealType pressure; |
258 |
> |
|
259 |
> |
tensor = getPressureTensor(); |
260 |
> |
|
261 |
> |
pressure = PhysicalConstants::pressureConvert * |
262 |
> |
(tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; |
263 |
> |
|
264 |
> |
snap->setPressure(pressure); |
265 |
> |
} |
266 |
> |
|
267 |
> |
return snap->getPressure(); |
268 |
> |
} |
269 |
|
|
270 |
< |
pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; |
270 |
> |
Mat3x3d Thermo::getPressureTensor() { |
271 |
> |
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
272 |
> |
// routine derived via viral theorem description in: |
273 |
> |
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
274 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
275 |
|
|
276 |
< |
return pressure; |
147 |
< |
} |
276 |
> |
if (!snap->hasPressureTensor) { |
277 |
|
|
278 |
< |
double Thermo::getPressureX() { |
278 |
> |
Mat3x3d pressureTensor; |
279 |
> |
Mat3x3d p_tens(0.0); |
280 |
> |
RealType mass; |
281 |
> |
Vector3d vcom; |
282 |
> |
|
283 |
> |
SimInfo::MoleculeIterator i; |
284 |
> |
vector<StuntDouble*>::iterator j; |
285 |
> |
Molecule* mol; |
286 |
> |
StuntDouble* sd; |
287 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
288 |
> |
mol = info_->nextMolecule(i)) { |
289 |
> |
|
290 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
291 |
> |
sd = mol->nextIntegrableObject(j)) { |
292 |
> |
|
293 |
> |
mass = sd->getMass(); |
294 |
> |
vcom = sd->getVel(); |
295 |
> |
p_tens += mass * outProduct(vcom, vcom); |
296 |
> |
} |
297 |
> |
} |
298 |
> |
|
299 |
> |
#ifdef IS_MPI |
300 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9, |
301 |
> |
MPI::REALTYPE, MPI::SUM); |
302 |
> |
#endif |
303 |
> |
|
304 |
> |
RealType volume = this->getVolume(); |
305 |
> |
Mat3x3d stressTensor = snap->getStressTensor(); |
306 |
> |
|
307 |
> |
pressureTensor = (p_tens + |
308 |
> |
PhysicalConstants::energyConvert * stressTensor)/volume; |
309 |
> |
|
310 |
> |
snap->setPressureTensor(pressureTensor); |
311 |
> |
} |
312 |
> |
return snap->getPressureTensor(); |
313 |
> |
} |
314 |
|
|
151 |
– |
// Relies on the calculation of the full molecular pressure tensor |
152 |
– |
|
153 |
– |
const double p_convert = 1.63882576e8; |
154 |
– |
double press[3][3]; |
155 |
– |
double pressureX; |
315 |
|
|
157 |
– |
this->getPressureTensor(press); |
316 |
|
|
159 |
– |
pressureX = p_convert * press[0][0]; |
317 |
|
|
318 |
< |
return pressureX; |
319 |
< |
} |
318 |
> |
Vector3d Thermo::getSystemDipole() { |
319 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
320 |
|
|
321 |
< |
double Thermo::getPressureY() { |
321 |
> |
if (!snap->hasSystemDipole) { |
322 |
> |
SimInfo::MoleculeIterator miter; |
323 |
> |
vector<Atom*>::iterator aiter; |
324 |
> |
Molecule* mol; |
325 |
> |
Atom* atom; |
326 |
> |
RealType charge; |
327 |
> |
Vector3d ri(0.0); |
328 |
> |
Vector3d dipoleVector(0.0); |
329 |
> |
Vector3d nPos(0.0); |
330 |
> |
Vector3d pPos(0.0); |
331 |
> |
RealType nChg(0.0); |
332 |
> |
RealType pChg(0.0); |
333 |
> |
int nCount = 0; |
334 |
> |
int pCount = 0; |
335 |
> |
|
336 |
> |
RealType chargeToC = 1.60217733e-19; |
337 |
> |
RealType angstromToM = 1.0e-10; |
338 |
> |
RealType debyeToCm = 3.33564095198e-30; |
339 |
> |
|
340 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
341 |
> |
mol = info_->nextMolecule(miter)) { |
342 |
> |
|
343 |
> |
for (atom = mol->beginAtom(aiter); atom != NULL; |
344 |
> |
atom = mol->nextAtom(aiter)) { |
345 |
> |
|
346 |
> |
charge = 0.0; |
347 |
> |
|
348 |
> |
FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType()); |
349 |
> |
if ( fca.isFixedCharge() ) { |
350 |
> |
charge = fca.getCharge(); |
351 |
> |
} |
352 |
> |
|
353 |
> |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType()); |
354 |
> |
if ( fqa.isFluctuatingCharge() ) { |
355 |
> |
charge += atom->getFlucQPos(); |
356 |
> |
} |
357 |
> |
|
358 |
> |
charge *= chargeToC; |
359 |
> |
|
360 |
> |
ri = atom->getPos(); |
361 |
> |
snap->wrapVector(ri); |
362 |
> |
ri *= angstromToM; |
363 |
> |
|
364 |
> |
if (charge < 0.0) { |
365 |
> |
nPos += ri; |
366 |
> |
nChg -= charge; |
367 |
> |
nCount++; |
368 |
> |
} else if (charge > 0.0) { |
369 |
> |
pPos += ri; |
370 |
> |
pChg += charge; |
371 |
> |
pCount++; |
372 |
> |
} |
373 |
> |
|
374 |
> |
if (atom->isDipole()) { |
375 |
> |
dipoleVector += atom->getDipole() * debyeToCm; |
376 |
> |
} |
377 |
> |
} |
378 |
> |
} |
379 |
> |
|
380 |
> |
|
381 |
> |
#ifdef IS_MPI |
382 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE, |
383 |
> |
MPI::SUM); |
384 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE, |
385 |
> |
MPI::SUM); |
386 |
|
|
387 |
< |
// Relies on the calculation of the full molecular pressure tensor |
388 |
< |
|
389 |
< |
const double p_convert = 1.63882576e8; |
390 |
< |
double press[3][3]; |
170 |
< |
double pressureY; |
387 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER, |
388 |
> |
MPI::SUM); |
389 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER, |
390 |
> |
MPI::SUM); |
391 |
|
|
392 |
< |
this->getPressureTensor(press); |
392 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3, |
393 |
> |
MPI::REALTYPE, MPI::SUM); |
394 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3, |
395 |
> |
MPI::REALTYPE, MPI::SUM); |
396 |
|
|
397 |
< |
pressureY = p_convert * press[1][1]; |
397 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(), |
398 |
> |
3, MPI::REALTYPE, MPI::SUM); |
399 |
> |
#endif |
400 |
> |
|
401 |
> |
// first load the accumulated dipole moment (if dipoles were present) |
402 |
> |
Vector3d boxDipole = dipoleVector; |
403 |
> |
// now include the dipole moment due to charges |
404 |
> |
// use the lesser of the positive and negative charge totals |
405 |
> |
RealType chg_value = nChg <= pChg ? nChg : pChg; |
406 |
> |
|
407 |
> |
// find the average positions |
408 |
> |
if (pCount > 0 && nCount > 0 ) { |
409 |
> |
pPos /= pCount; |
410 |
> |
nPos /= nCount; |
411 |
> |
} |
412 |
> |
|
413 |
> |
// dipole is from the negative to the positive (physics notation) |
414 |
> |
boxDipole += (pPos - nPos) * chg_value; |
415 |
> |
snap->setSystemDipole(boxDipole); |
416 |
> |
} |
417 |
|
|
418 |
< |
return pressureY; |
419 |
< |
} |
418 |
> |
return snap->getSystemDipole(); |
419 |
> |
} |
420 |
|
|
421 |
< |
double Thermo::getPressureZ() { |
421 |
> |
// Returns the Heat Flux Vector for the system |
422 |
> |
Vector3d Thermo::getHeatFlux(){ |
423 |
> |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
424 |
> |
SimInfo::MoleculeIterator miter; |
425 |
> |
vector<StuntDouble*>::iterator iiter; |
426 |
> |
Molecule* mol; |
427 |
> |
StuntDouble* sd; |
428 |
> |
RigidBody::AtomIterator ai; |
429 |
> |
Atom* atom; |
430 |
> |
Vector3d vel; |
431 |
> |
Vector3d angMom; |
432 |
> |
Mat3x3d I; |
433 |
> |
int i; |
434 |
> |
int j; |
435 |
> |
int k; |
436 |
> |
RealType mass; |
437 |
|
|
438 |
< |
// Relies on the calculation of the full molecular pressure tensor |
439 |
< |
|
440 |
< |
const double p_convert = 1.63882576e8; |
441 |
< |
double press[3][3]; |
442 |
< |
double pressureZ; |
438 |
> |
Vector3d x_a; |
439 |
> |
RealType kinetic; |
440 |
> |
RealType potential; |
441 |
> |
RealType eatom; |
442 |
> |
// Convective portion of the heat flux |
443 |
> |
Vector3d heatFluxJc = V3Zero; |
444 |
|
|
445 |
< |
this->getPressureTensor(press); |
445 |
> |
/* Calculate convective portion of the heat flux */ |
446 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
447 |
> |
mol = info_->nextMolecule(miter)) { |
448 |
> |
|
449 |
> |
for (sd = mol->beginIntegrableObject(iiter); |
450 |
> |
sd != NULL; |
451 |
> |
sd = mol->nextIntegrableObject(iiter)) { |
452 |
> |
|
453 |
> |
mass = sd->getMass(); |
454 |
> |
vel = sd->getVel(); |
455 |
|
|
456 |
< |
pressureZ = p_convert * press[2][2]; |
456 |
> |
kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
457 |
> |
|
458 |
> |
if (sd->isDirectional()) { |
459 |
> |
angMom = sd->getJ(); |
460 |
> |
I = sd->getI(); |
461 |
|
|
462 |
< |
return pressureZ; |
463 |
< |
} |
462 |
> |
if (sd->isLinear()) { |
463 |
> |
i = sd->linearAxis(); |
464 |
> |
j = (i + 1) % 3; |
465 |
> |
k = (i + 2) % 3; |
466 |
> |
kinetic += angMom[j] * angMom[j] / I(j, j) |
467 |
> |
+ angMom[k] * angMom[k] / I(k, k); |
468 |
> |
} else { |
469 |
> |
kinetic += angMom[0]*angMom[0]/I(0, 0) |
470 |
> |
+ angMom[1]*angMom[1]/I(1, 1) |
471 |
> |
+ angMom[2]*angMom[2]/I(2, 2); |
472 |
> |
} |
473 |
> |
} |
474 |
|
|
475 |
+ |
potential = 0.0; |
476 |
|
|
477 |
< |
void Thermo::getPressureTensor(double press[3][3]){ |
478 |
< |
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
479 |
< |
// routine derived via viral theorem description in: |
480 |
< |
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
477 |
> |
if (sd->isRigidBody()) { |
478 |
> |
RigidBody* rb = dynamic_cast<RigidBody*>(sd); |
479 |
> |
for (atom = rb->beginAtom(ai); atom != NULL; |
480 |
> |
atom = rb->nextAtom(ai)) { |
481 |
> |
potential += atom->getParticlePot(); |
482 |
> |
} |
483 |
> |
} else { |
484 |
> |
potential = sd->getParticlePot(); |
485 |
> |
} |
486 |
|
|
487 |
< |
const double e_convert = 4.184e-4; |
487 |
> |
potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 |
488 |
> |
// The potential may not be a 1/2 factor |
489 |
> |
eatom = (kinetic + potential)/2.0; // amu A^2/fs^2 |
490 |
> |
heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 |
491 |
> |
heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 |
492 |
> |
heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 |
493 |
> |
} |
494 |
> |
} |
495 |
|
|
496 |
< |
double molmass, volume; |
497 |
< |
double vcom[3]; |
498 |
< |
double p_local[9], p_global[9]; |
499 |
< |
int i, j, k; |
500 |
< |
|
501 |
< |
for (i=0; i < 9; i++) { |
502 |
< |
p_local[i] = 0.0; |
503 |
< |
p_global[i] = 0.0; |
210 |
< |
} |
211 |
< |
|
212 |
< |
// use velocities of integrableObjects and their masses: |
213 |
< |
|
214 |
< |
for (i=0; i < info->integrableObjects.size(); i++) { |
215 |
< |
|
216 |
< |
molmass = info->integrableObjects[i]->getMass(); |
496 |
> |
/* The J_v vector is reduced in the forceManager so everyone has |
497 |
> |
* the global Jv. Jc is computed over the local atoms and must be |
498 |
> |
* reduced among all processors. |
499 |
> |
*/ |
500 |
> |
#ifdef IS_MPI |
501 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE, |
502 |
> |
MPI::SUM); |
503 |
> |
#endif |
504 |
|
|
505 |
< |
info->integrableObjects[i]->getVel(vcom); |
219 |
< |
|
220 |
< |
p_local[0] += molmass * (vcom[0] * vcom[0]); |
221 |
< |
p_local[1] += molmass * (vcom[0] * vcom[1]); |
222 |
< |
p_local[2] += molmass * (vcom[0] * vcom[2]); |
223 |
< |
p_local[3] += molmass * (vcom[1] * vcom[0]); |
224 |
< |
p_local[4] += molmass * (vcom[1] * vcom[1]); |
225 |
< |
p_local[5] += molmass * (vcom[1] * vcom[2]); |
226 |
< |
p_local[6] += molmass * (vcom[2] * vcom[0]); |
227 |
< |
p_local[7] += molmass * (vcom[2] * vcom[1]); |
228 |
< |
p_local[8] += molmass * (vcom[2] * vcom[2]); |
505 |
> |
// (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 |
506 |
|
|
507 |
+ |
Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() * |
508 |
+ |
PhysicalConstants::energyConvert; |
509 |
+ |
|
510 |
+ |
// Correct for the fact the flux is 1/V (Jc + Jv) |
511 |
+ |
return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3 |
512 |
|
} |
513 |
|
|
232 |
– |
// Get total for entire system from MPI. |
233 |
– |
|
234 |
– |
#ifdef IS_MPI |
235 |
– |
MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
236 |
– |
#else |
237 |
– |
for (i=0; i<9; i++) { |
238 |
– |
p_global[i] = p_local[i]; |
239 |
– |
} |
240 |
– |
#endif // is_mpi |
514 |
|
|
515 |
< |
volume = this->getVolume(); |
515 |
> |
Vector3d Thermo::getComVel(){ |
516 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
517 |
|
|
518 |
+ |
if (!snap->hasCOMvel) { |
519 |
|
|
520 |
< |
|
521 |
< |
for(i = 0; i < 3; i++) { |
522 |
< |
for (j = 0; j < 3; j++) { |
523 |
< |
k = 3*i + j; |
524 |
< |
press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; |
520 |
> |
SimInfo::MoleculeIterator i; |
521 |
> |
Molecule* mol; |
522 |
> |
|
523 |
> |
Vector3d comVel(0.0); |
524 |
> |
RealType totalMass(0.0); |
525 |
> |
|
526 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
527 |
> |
mol = info_->nextMolecule(i)) { |
528 |
> |
RealType mass = mol->getMass(); |
529 |
> |
totalMass += mass; |
530 |
> |
comVel += mass * mol->getComVel(); |
531 |
> |
} |
532 |
> |
|
533 |
> |
#ifdef IS_MPI |
534 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, |
535 |
> |
MPI::SUM); |
536 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3, |
537 |
> |
MPI::REALTYPE, MPI::SUM); |
538 |
> |
#endif |
539 |
> |
|
540 |
> |
comVel /= totalMass; |
541 |
> |
snap->setCOMvel(comVel); |
542 |
|
} |
543 |
+ |
return snap->getCOMvel(); |
544 |
|
} |
252 |
– |
} |
545 |
|
|
546 |
< |
void Thermo::velocitize() { |
547 |
< |
|
256 |
< |
double aVel[3], aJ[3], I[3][3]; |
257 |
< |
int i, j, l, m, n, vr, vd; // velocity randomizer loop counters |
258 |
< |
double vdrift[3]; |
259 |
< |
double vbar; |
260 |
< |
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
261 |
< |
double av2; |
262 |
< |
double kebar; |
263 |
< |
double temperature; |
264 |
< |
int nobj; |
546 |
> |
Vector3d Thermo::getCom(){ |
547 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
548 |
|
|
549 |
< |
if (!info->have_target_temp) { |
550 |
< |
sprintf( painCave.errMsg, |
551 |
< |
"You can't resample the velocities without a targetTemp!\n" |
552 |
< |
); |
553 |
< |
painCave.isFatal = 1; |
554 |
< |
painCave.severity = OOPSE_ERROR; |
555 |
< |
simError(); |
556 |
< |
return; |
557 |
< |
} |
549 |
> |
if (!snap->hasCOM) { |
550 |
> |
|
551 |
> |
SimInfo::MoleculeIterator i; |
552 |
> |
Molecule* mol; |
553 |
> |
|
554 |
> |
Vector3d com(0.0); |
555 |
> |
RealType totalMass(0.0); |
556 |
> |
|
557 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
558 |
> |
mol = info_->nextMolecule(i)) { |
559 |
> |
RealType mass = mol->getMass(); |
560 |
> |
totalMass += mass; |
561 |
> |
com += mass * mol->getCom(); |
562 |
> |
} |
563 |
> |
|
564 |
> |
#ifdef IS_MPI |
565 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, |
566 |
> |
MPI::SUM); |
567 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3, |
568 |
> |
MPI::REALTYPE, MPI::SUM); |
569 |
> |
#endif |
570 |
> |
|
571 |
> |
com /= totalMass; |
572 |
> |
snap->setCOM(com); |
573 |
> |
} |
574 |
> |
return snap->getCOM(); |
575 |
> |
} |
576 |
|
|
577 |
< |
nobj = info->integrableObjects.size(); |
578 |
< |
|
579 |
< |
temperature = info->target_temp; |
580 |
< |
|
581 |
< |
kebar = kb * temperature * (double)info->ndfRaw / |
582 |
< |
( 2.0 * (double)info->ndf ); |
282 |
< |
|
283 |
< |
for(vr = 0; vr < nobj; vr++){ |
284 |
< |
|
285 |
< |
// uses equipartition theory to solve for vbar in angstrom/fs |
577 |
> |
/** |
578 |
> |
* Returns center of mass and center of mass velocity in one |
579 |
> |
* function call. |
580 |
> |
*/ |
581 |
> |
void Thermo::getComAll(Vector3d &com, Vector3d &comVel){ |
582 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
583 |
|
|
584 |
< |
av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); |
288 |
< |
vbar = sqrt( av2 ); |
584 |
> |
if (!(snap->hasCOM && snap->hasCOMvel)) { |
585 |
|
|
586 |
< |
// picks random velocities from a gaussian distribution |
587 |
< |
// centered on vbar |
586 |
> |
SimInfo::MoleculeIterator i; |
587 |
> |
Molecule* mol; |
588 |
> |
|
589 |
> |
RealType totalMass(0.0); |
590 |
> |
|
591 |
> |
com = 0.0; |
592 |
> |
comVel = 0.0; |
593 |
> |
|
594 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
595 |
> |
mol = info_->nextMolecule(i)) { |
596 |
> |
RealType mass = mol->getMass(); |
597 |
> |
totalMass += mass; |
598 |
> |
com += mass * mol->getCom(); |
599 |
> |
comVel += mass * mol->getComVel(); |
600 |
> |
} |
601 |
> |
|
602 |
> |
#ifdef IS_MPI |
603 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, |
604 |
> |
MPI::SUM); |
605 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3, |
606 |
> |
MPI::REALTYPE, MPI::SUM); |
607 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3, |
608 |
> |
MPI::REALTYPE, MPI::SUM); |
609 |
> |
#endif |
610 |
> |
|
611 |
> |
com /= totalMass; |
612 |
> |
comVel /= totalMass; |
613 |
> |
snap->setCOM(com); |
614 |
> |
snap->setCOMvel(comVel); |
615 |
> |
} |
616 |
> |
com = snap->getCOM(); |
617 |
> |
comVel = snap->getCOMvel(); |
618 |
> |
return; |
619 |
> |
} |
620 |
> |
|
621 |
> |
/** |
622 |
> |
* \brief Return inertia tensor for entire system and angular momentum |
623 |
> |
* Vector. |
624 |
> |
* |
625 |
> |
* |
626 |
> |
* |
627 |
> |
* [ Ixx -Ixy -Ixz ] |
628 |
> |
* I =| -Iyx Iyy -Iyz | |
629 |
> |
* [ -Izx -Iyz Izz ] |
630 |
> |
*/ |
631 |
> |
void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor, |
632 |
> |
Vector3d &angularMomentum){ |
633 |
|
|
634 |
< |
for (j=0; j<3; j++) |
294 |
< |
aVel[j] = vbar * gaussStream->getGaussian(); |
634 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
635 |
|
|
636 |
< |
info->integrableObjects[vr]->setVel( aVel ); |
636 |
> |
if (!(snap->hasInertiaTensor && snap->hasCOMw)) { |
637 |
> |
|
638 |
> |
RealType xx = 0.0; |
639 |
> |
RealType yy = 0.0; |
640 |
> |
RealType zz = 0.0; |
641 |
> |
RealType xy = 0.0; |
642 |
> |
RealType xz = 0.0; |
643 |
> |
RealType yz = 0.0; |
644 |
> |
Vector3d com(0.0); |
645 |
> |
Vector3d comVel(0.0); |
646 |
> |
|
647 |
> |
getComAll(com, comVel); |
648 |
> |
|
649 |
> |
SimInfo::MoleculeIterator i; |
650 |
> |
Molecule* mol; |
651 |
> |
|
652 |
> |
Vector3d thisq(0.0); |
653 |
> |
Vector3d thisv(0.0); |
654 |
> |
|
655 |
> |
RealType thisMass = 0.0; |
656 |
> |
|
657 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
658 |
> |
mol = info_->nextMolecule(i)) { |
659 |
> |
|
660 |
> |
thisq = mol->getCom()-com; |
661 |
> |
thisv = mol->getComVel()-comVel; |
662 |
> |
thisMass = mol->getMass(); |
663 |
> |
// Compute moment of intertia coefficients. |
664 |
> |
xx += thisq[0]*thisq[0]*thisMass; |
665 |
> |
yy += thisq[1]*thisq[1]*thisMass; |
666 |
> |
zz += thisq[2]*thisq[2]*thisMass; |
667 |
> |
|
668 |
> |
// compute products of intertia |
669 |
> |
xy += thisq[0]*thisq[1]*thisMass; |
670 |
> |
xz += thisq[0]*thisq[2]*thisMass; |
671 |
> |
yz += thisq[1]*thisq[2]*thisMass; |
672 |
> |
|
673 |
> |
angularMomentum += cross( thisq, thisv ) * thisMass; |
674 |
> |
} |
675 |
> |
|
676 |
> |
inertiaTensor(0,0) = yy + zz; |
677 |
> |
inertiaTensor(0,1) = -xy; |
678 |
> |
inertiaTensor(0,2) = -xz; |
679 |
> |
inertiaTensor(1,0) = -xy; |
680 |
> |
inertiaTensor(1,1) = xx + zz; |
681 |
> |
inertiaTensor(1,2) = -yz; |
682 |
> |
inertiaTensor(2,0) = -xz; |
683 |
> |
inertiaTensor(2,1) = -yz; |
684 |
> |
inertiaTensor(2,2) = xx + yy; |
685 |
> |
|
686 |
> |
#ifdef IS_MPI |
687 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(), |
688 |
> |
9, MPI::REALTYPE, MPI::SUM); |
689 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, |
690 |
> |
angularMomentum.getArrayPointer(), 3, |
691 |
> |
MPI::REALTYPE, MPI::SUM); |
692 |
> |
#endif |
693 |
> |
|
694 |
> |
snap->setCOMw(angularMomentum); |
695 |
> |
snap->setInertiaTensor(inertiaTensor); |
696 |
> |
} |
697 |
|
|
698 |
< |
if(info->integrableObjects[vr]->isDirectional()){ |
698 |
> |
angularMomentum = snap->getCOMw(); |
699 |
> |
inertiaTensor = snap->getInertiaTensor(); |
700 |
> |
|
701 |
> |
return; |
702 |
> |
} |
703 |
|
|
300 |
– |
info->integrableObjects[vr]->getI( I ); |
704 |
|
|
705 |
< |
if (info->integrableObjects[vr]->isLinear()) { |
706 |
< |
|
707 |
< |
l= info->integrableObjects[vr]->linearAxis(); |
708 |
< |
m = (l+1)%3; |
709 |
< |
n = (l+2)%3; |
710 |
< |
|
711 |
< |
aJ[l] = 0.0; |
712 |
< |
vbar = sqrt( 2.0 * kebar * I[m][m] ); |
713 |
< |
aJ[m] = vbar * gaussStream->getGaussian(); |
714 |
< |
vbar = sqrt( 2.0 * kebar * I[n][n] ); |
715 |
< |
aJ[n] = vbar * gaussStream->getGaussian(); |
705 |
> |
Mat3x3d Thermo::getBoundingBox(){ |
706 |
> |
|
707 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
708 |
> |
|
709 |
> |
if (!(snap->hasBoundingBox)) { |
710 |
> |
|
711 |
> |
SimInfo::MoleculeIterator i; |
712 |
> |
Molecule::RigidBodyIterator ri; |
713 |
> |
Molecule::AtomIterator ai; |
714 |
> |
Molecule* mol; |
715 |
> |
RigidBody* rb; |
716 |
> |
Atom* atom; |
717 |
> |
Vector3d pos, bMax, bMin; |
718 |
> |
int index = 0; |
719 |
> |
|
720 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
721 |
> |
mol = info_->nextMolecule(i)) { |
722 |
|
|
723 |
< |
} else { |
724 |
< |
for (j = 0 ; j < 3; j++) { |
725 |
< |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
726 |
< |
aJ[j] = vbar * gaussStream->getGaussian(); |
727 |
< |
} |
728 |
< |
} // else isLinear |
723 |
> |
//change the positions of atoms which belong to the rigidbodies |
724 |
> |
for (rb = mol->beginRigidBody(ri); rb != NULL; |
725 |
> |
rb = mol->nextRigidBody(ri)) { |
726 |
> |
rb->updateAtoms(); |
727 |
> |
} |
728 |
> |
|
729 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
730 |
> |
atom = mol->nextAtom(ai)) { |
731 |
> |
|
732 |
> |
pos = atom->getPos(); |
733 |
|
|
734 |
< |
info->integrableObjects[vr]->setJ( aJ ); |
734 |
> |
if (index == 0) { |
735 |
> |
bMax = pos; |
736 |
> |
bMin = pos; |
737 |
> |
} else { |
738 |
> |
for (int i = 0; i < 3; i++) { |
739 |
> |
bMax[i] = max(bMax[i], pos[i]); |
740 |
> |
bMin[i] = min(bMin[i], pos[i]); |
741 |
> |
} |
742 |
> |
} |
743 |
> |
index++; |
744 |
> |
} |
745 |
> |
} |
746 |
|
|
747 |
< |
}//isDirectional |
747 |
> |
#ifdef IS_MPI |
748 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bMax[0], 3, MPI::REALTYPE, |
749 |
> |
MPI::MAX); |
750 |
|
|
751 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bMin[0], 3, MPI::REALTYPE, |
752 |
+ |
MPI::MIN); |
753 |
+ |
#endif |
754 |
+ |
Mat3x3d bBox = Mat3x3d(0.0); |
755 |
+ |
for (int i = 0; i < 3; i++) { |
756 |
+ |
bBox(i,i) = bMax[i] - bMin[i]; |
757 |
+ |
} |
758 |
+ |
snap->setBoundingBox(bBox); |
759 |
+ |
} |
760 |
+ |
|
761 |
+ |
return snap->getBoundingBox(); |
762 |
|
} |
326 |
– |
|
327 |
– |
// Get the Center of Mass drift velocity. |
328 |
– |
|
329 |
– |
getCOMVel(vdrift); |
763 |
|
|
764 |
< |
// Corrects for the center of mass drift. |
765 |
< |
// sums all the momentum and divides by total mass. |
766 |
< |
|
767 |
< |
for(vd = 0; vd < nobj; vd++){ |
764 |
> |
|
765 |
> |
// Returns the angular momentum of the system |
766 |
> |
Vector3d Thermo::getAngularMomentum(){ |
767 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
768 |
|
|
769 |
< |
info->integrableObjects[vd]->getVel(aVel); |
770 |
< |
|
771 |
< |
for (j=0; j < 3; j++) |
772 |
< |
aVel[j] -= vdrift[j]; |
769 |
> |
if (!snap->hasCOMw) { |
770 |
> |
|
771 |
> |
Vector3d com(0.0); |
772 |
> |
Vector3d comVel(0.0); |
773 |
> |
Vector3d angularMomentum(0.0); |
774 |
> |
|
775 |
> |
getComAll(com, comVel); |
776 |
> |
|
777 |
> |
SimInfo::MoleculeIterator i; |
778 |
> |
Molecule* mol; |
779 |
> |
|
780 |
> |
Vector3d thisr(0.0); |
781 |
> |
Vector3d thisp(0.0); |
782 |
> |
|
783 |
> |
RealType thisMass; |
784 |
> |
|
785 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
786 |
> |
mol = info_->nextMolecule(i)) { |
787 |
> |
thisMass = mol->getMass(); |
788 |
> |
thisr = mol->getCom() - com; |
789 |
> |
thisp = (mol->getComVel() - comVel) * thisMass; |
790 |
|
|
791 |
< |
info->integrableObjects[vd]->setVel( aVel ); |
791 |
> |
angularMomentum += cross( thisr, thisp ); |
792 |
> |
} |
793 |
> |
|
794 |
> |
#ifdef IS_MPI |
795 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, |
796 |
> |
angularMomentum.getArrayPointer(), 3, |
797 |
> |
MPI::REALTYPE, MPI::SUM); |
798 |
> |
#endif |
799 |
> |
|
800 |
> |
snap->setCOMw(angularMomentum); |
801 |
> |
} |
802 |
> |
|
803 |
> |
return snap->getCOMw(); |
804 |
|
} |
343 |
– |
|
344 |
– |
} |
345 |
– |
|
346 |
– |
void Thermo::getCOMVel(double vdrift[3]){ |
347 |
– |
|
348 |
– |
double mtot, mtot_local; |
349 |
– |
double aVel[3], amass; |
350 |
– |
double vdrift_local[3]; |
351 |
– |
int vd, j; |
352 |
– |
int nobj; |
353 |
– |
|
354 |
– |
nobj = info->integrableObjects.size(); |
355 |
– |
|
356 |
– |
mtot_local = 0.0; |
357 |
– |
vdrift_local[0] = 0.0; |
358 |
– |
vdrift_local[1] = 0.0; |
359 |
– |
vdrift_local[2] = 0.0; |
805 |
|
|
806 |
< |
for(vd = 0; vd < nobj; vd++){ |
806 |
> |
|
807 |
> |
/** |
808 |
> |
* Returns the Volume of the system based on a ellipsoid with |
809 |
> |
* semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
810 |
> |
* where R_i are related to the principle inertia moments |
811 |
> |
* R_i = sqrt(C*I_i/N), this reduces to |
812 |
> |
* V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). |
813 |
> |
* See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
814 |
> |
*/ |
815 |
> |
RealType Thermo::getGyrationalVolume(){ |
816 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
817 |
|
|
818 |
< |
amass = info->integrableObjects[vd]->getMass(); |
819 |
< |
info->integrableObjects[vd]->getVel( aVel ); |
818 |
> |
if (!snap->hasGyrationalVolume) { |
819 |
> |
|
820 |
> |
Mat3x3d intTensor; |
821 |
> |
RealType det; |
822 |
> |
Vector3d dummyAngMom; |
823 |
> |
RealType sysconstants; |
824 |
> |
RealType geomCnst; |
825 |
> |
RealType volume; |
826 |
> |
|
827 |
> |
geomCnst = 3.0/2.0; |
828 |
> |
/* Get the inertial tensor and angular momentum for free*/ |
829 |
> |
getInertiaTensor(intTensor, dummyAngMom); |
830 |
> |
|
831 |
> |
det = intTensor.determinant(); |
832 |
> |
sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects()); |
833 |
> |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
834 |
|
|
835 |
< |
for(j = 0; j < 3; j++) |
836 |
< |
vdrift_local[j] += aVel[j] * amass; |
837 |
< |
|
369 |
< |
mtot_local += amass; |
835 |
> |
snap->setGyrationalVolume(volume); |
836 |
> |
} |
837 |
> |
return snap->getGyrationalVolume(); |
838 |
|
} |
839 |
+ |
|
840 |
+ |
void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){ |
841 |
+ |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
842 |
|
|
843 |
< |
#ifdef IS_MPI |
373 |
< |
MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
374 |
< |
MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
375 |
< |
#else |
376 |
< |
mtot = mtot_local; |
377 |
< |
for(vd = 0; vd < 3; vd++) { |
378 |
< |
vdrift[vd] = vdrift_local[vd]; |
379 |
< |
} |
380 |
< |
#endif |
843 |
> |
if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) { |
844 |
|
|
845 |
< |
for (vd = 0; vd < 3; vd++) { |
846 |
< |
vdrift[vd] = vdrift[vd] / mtot; |
845 |
> |
Mat3x3d intTensor; |
846 |
> |
Vector3d dummyAngMom; |
847 |
> |
RealType sysconstants; |
848 |
> |
RealType geomCnst; |
849 |
> |
|
850 |
> |
geomCnst = 3.0/2.0; |
851 |
> |
/* Get the inertia tensor and angular momentum for free*/ |
852 |
> |
this->getInertiaTensor(intTensor, dummyAngMom); |
853 |
> |
|
854 |
> |
detI = intTensor.determinant(); |
855 |
> |
sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects()); |
856 |
> |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
857 |
> |
snap->setGyrationalVolume(volume); |
858 |
> |
} else { |
859 |
> |
volume = snap->getGyrationalVolume(); |
860 |
> |
detI = snap->getInertiaTensor().determinant(); |
861 |
> |
} |
862 |
> |
return; |
863 |
|
} |
864 |
|
|
865 |
< |
} |
866 |
< |
|
867 |
< |
void Thermo::getCOM(double COM[3]){ |
389 |
< |
|
390 |
< |
double mtot, mtot_local; |
391 |
< |
double aPos[3], amass; |
392 |
< |
double COM_local[3]; |
393 |
< |
int i, j; |
394 |
< |
int nobj; |
395 |
< |
|
396 |
< |
mtot_local = 0.0; |
397 |
< |
COM_local[0] = 0.0; |
398 |
< |
COM_local[1] = 0.0; |
399 |
< |
COM_local[2] = 0.0; |
400 |
< |
|
401 |
< |
nobj = info->integrableObjects.size(); |
402 |
< |
for(i = 0; i < nobj; i++){ |
865 |
> |
RealType Thermo::getTaggedAtomPairDistance(){ |
866 |
> |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
867 |
> |
Globals* simParams = info_->getSimParams(); |
868 |
|
|
869 |
< |
amass = info->integrableObjects[i]->getMass(); |
870 |
< |
info->integrableObjects[i]->getPos( aPos ); |
869 |
> |
if (simParams->haveTaggedAtomPair() && |
870 |
> |
simParams->havePrintTaggedPairDistance()) { |
871 |
> |
if ( simParams->getPrintTaggedPairDistance()) { |
872 |
> |
|
873 |
> |
pair<int, int> tap = simParams->getTaggedAtomPair(); |
874 |
> |
Vector3d pos1, pos2, rab; |
875 |
> |
|
876 |
> |
#ifdef IS_MPI |
877 |
> |
int mol1 = info_->getGlobalMolMembership(tap.first); |
878 |
> |
int mol2 = info_->getGlobalMolMembership(tap.second); |
879 |
|
|
880 |
< |
for(j = 0; j < 3; j++) |
881 |
< |
COM_local[j] += aPos[j] * amass; |
409 |
< |
|
410 |
< |
mtot_local += amass; |
411 |
< |
} |
880 |
> |
int proc1 = info_->getMolToProc(mol1); |
881 |
> |
int proc2 = info_->getMolToProc(mol2); |
882 |
|
|
883 |
< |
#ifdef IS_MPI |
884 |
< |
MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
885 |
< |
MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
883 |
> |
RealType data[3]; |
884 |
> |
if (proc1 == worldRank) { |
885 |
> |
StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); |
886 |
> |
pos1 = sd1->getPos(); |
887 |
> |
data[0] = pos1.x(); |
888 |
> |
data[1] = pos1.y(); |
889 |
> |
data[2] = pos1.z(); |
890 |
> |
MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1); |
891 |
> |
} else { |
892 |
> |
MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1); |
893 |
> |
pos1 = Vector3d(data); |
894 |
> |
} |
895 |
> |
|
896 |
> |
if (proc2 == worldRank) { |
897 |
> |
StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); |
898 |
> |
pos2 = sd2->getPos(); |
899 |
> |
data[0] = pos2.x(); |
900 |
> |
data[1] = pos2.y(); |
901 |
> |
data[2] = pos2.z(); |
902 |
> |
MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2); |
903 |
> |
} else { |
904 |
> |
MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2); |
905 |
> |
pos2 = Vector3d(data); |
906 |
> |
} |
907 |
|
#else |
908 |
< |
mtot = mtot_local; |
909 |
< |
for(i = 0; i < 3; i++) { |
910 |
< |
COM[i] = COM_local[i]; |
908 |
> |
StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first); |
909 |
> |
StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); |
910 |
> |
pos1 = at1->getPos(); |
911 |
> |
pos2 = at2->getPos(); |
912 |
> |
#endif |
913 |
> |
rab = pos2 - pos1; |
914 |
> |
currSnapshot->wrapVector(rab); |
915 |
> |
return rab.length(); |
916 |
> |
} |
917 |
> |
return 0.0; |
918 |
> |
} |
919 |
> |
return 0.0; |
920 |
|
} |
421 |
– |
#endif |
422 |
– |
|
423 |
– |
for (i = 0; i < 3; i++) { |
424 |
– |
COM[i] = COM[i] / mtot; |
425 |
– |
} |
426 |
– |
} |
921 |
|
|
922 |
< |
void Thermo::removeCOMdrift() { |
923 |
< |
double vdrift[3], aVel[3]; |
430 |
< |
int vd, j, nobj; |
922 |
> |
RealType Thermo::getHullVolume(){ |
923 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
924 |
|
|
925 |
< |
nobj = info->integrableObjects.size(); |
925 |
> |
#ifdef HAVE_QHULL |
926 |
> |
if (!snap->hasHullVolume) { |
927 |
> |
Hull* surfaceMesh_; |
928 |
|
|
929 |
< |
// Get the Center of Mass drift velocity. |
929 |
> |
Globals* simParams = info_->getSimParams(); |
930 |
> |
const std::string ht = simParams->getHULL_Method(); |
931 |
> |
|
932 |
> |
if (ht == "Convex") { |
933 |
> |
surfaceMesh_ = new ConvexHull(); |
934 |
> |
} else if (ht == "AlphaShape") { |
935 |
> |
surfaceMesh_ = new AlphaHull(simParams->getAlpha()); |
936 |
> |
} else { |
937 |
> |
return 0.0; |
938 |
> |
} |
939 |
> |
|
940 |
> |
// Build a vector of stunt doubles to determine if they are |
941 |
> |
// surface atoms |
942 |
> |
std::vector<StuntDouble*> localSites_; |
943 |
> |
Molecule* mol; |
944 |
> |
StuntDouble* sd; |
945 |
> |
SimInfo::MoleculeIterator i; |
946 |
> |
Molecule::IntegrableObjectIterator j; |
947 |
> |
|
948 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
949 |
> |
mol = info_->nextMolecule(i)) { |
950 |
> |
for (sd = mol->beginIntegrableObject(j); |
951 |
> |
sd != NULL; |
952 |
> |
sd = mol->nextIntegrableObject(j)) { |
953 |
> |
localSites_.push_back(sd); |
954 |
> |
} |
955 |
> |
} |
956 |
> |
|
957 |
> |
// Compute surface Mesh |
958 |
> |
surfaceMesh_->computeHull(localSites_); |
959 |
> |
snap->setHullVolume(surfaceMesh_->getVolume()); |
960 |
|
|
961 |
< |
getCOMVel(vdrift); |
962 |
< |
|
438 |
< |
// Corrects for the center of mass drift. |
439 |
< |
// sums all the momentum and divides by total mass. |
961 |
> |
delete surfaceMesh_; |
962 |
> |
} |
963 |
|
|
964 |
< |
for(vd = 0; vd < nobj; vd++){ |
965 |
< |
|
966 |
< |
info->integrableObjects[vd]->getVel(aVel); |
967 |
< |
|
445 |
< |
for (j=0; j < 3; j++) |
446 |
< |
aVel[j] -= vdrift[j]; |
447 |
< |
|
448 |
< |
info->integrableObjects[vd]->setVel( aVel ); |
964 |
> |
return snap->getHullVolume(); |
965 |
> |
#else |
966 |
> |
return 0.0; |
967 |
> |
#endif |
968 |
|
} |
969 |
+ |
|
970 |
+ |
|
971 |
|
} |