ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
(Generate patch)

Comparing:
trunk/src/brains/Thermo.cpp (file contents), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/brains/Thermo.cpp (file contents), Revision 1764 by gezelter, Tue Jul 3 18:32:27 2012 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 + */
42 +
43   #include <math.h>
44   #include <iostream>
3 using namespace std;
45  
46   #ifdef IS_MPI
47   #include <mpi.h>
48   #endif //is_mpi
49  
50   #include "brains/Thermo.hpp"
51 < #include "primitives/SRI.hpp"
11 < #include "integrators/Integrator.hpp"
51 > #include "primitives/Molecule.hpp"
52   #include "utils/simError.h"
53 < #include "math/MatVec3.h"
53 > #include "utils/PhysicalConstants.hpp"
54 > #include "types/FixedChargeAdapter.hpp"
55 > #include "types/FluctuatingChargeAdapter.hpp"
56 > #include "types/MultipoleAdapter.hpp"
57 > #include "math/ConvexHull.hpp"
58 > #include "math/AlphaHull.hpp"
59  
60 < #ifdef IS_MPI
61 < #define __C
17 < #include "brains/mpiSimulation.hpp"
18 < #endif // is_mpi
60 > using namespace std;
61 > namespace OpenMD {
62  
63 < inline double roundMe( double x ){
64 <          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
22 < }
63 >  RealType Thermo::getTranslationalKinetic() {
64 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
65  
66 < Thermo::Thermo( SimInfo* the_info ) {
67 <  info = the_info;
68 <  int baseSeed = the_info->getSeed();
69 <  
70 <  gaussStream = new gaussianSPRNG( baseSeed );
71 < }
66 >    if (!snap->hasTranslationalKineticEnergy) {
67 >      SimInfo::MoleculeIterator miter;
68 >      vector<StuntDouble*>::iterator iiter;
69 >      Molecule* mol;
70 >      StuntDouble* sd;    
71 >      Vector3d vel;
72 >      RealType mass;
73 >      RealType kinetic(0.0);
74 >      
75 >      for (mol = info_->beginMolecule(miter); mol != NULL;
76 >           mol = info_->nextMolecule(miter)) {
77 >        
78 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
79 >             sd = mol->nextIntegrableObject(iiter)) {
80 >          
81 >          mass = sd->getMass();
82 >          vel = sd->getVel();
83 >          
84 >          kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
85 >          
86 >        }
87 >      }
88 >      
89 > #ifdef IS_MPI
90 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
91 >                                MPI::SUM);
92 > #endif
93 >      
94 >      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
95 >      
96 >      
97 >      snap->setTranslationalKineticEnergy(kinetic);
98 >    }
99 >    return snap->getTranslationalKineticEnergy();
100 >  }
101  
102 < Thermo::~Thermo(){
103 <  delete gaussStream;
33 < }
102 >  RealType Thermo::getRotationalKinetic() {
103 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
104  
105 < double Thermo::getKinetic(){
106 <
107 <  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
108 <  double kinetic;
109 <  double amass;
110 <  double aVel[3], aJ[3], I[3][3];
111 <  int i, j, k, kl;
112 <
113 <  double kinetic_global;
114 <  vector<StuntDouble *> integrableObjects = info->integrableObjects;
115 <  
116 <  kinetic = 0.0;
117 <  kinetic_global = 0.0;
118 <
119 <  for (kl=0; kl<integrableObjects.size(); kl++) {
120 <    integrableObjects[kl]->getVel(aVel);
121 <    amass = integrableObjects[kl]->getMass();
122 <
123 <   for(j=0; j<3; j++)
124 <      kinetic += amass*aVel[j]*aVel[j];
125 <
126 <   if (integrableObjects[kl]->isDirectional()){
127 <
128 <      integrableObjects[kl]->getJ( aJ );
129 <      integrableObjects[kl]->getI( I );
130 <
131 <      if (integrableObjects[kl]->isLinear()) {
132 <        i = integrableObjects[kl]->linearAxis();
133 <        j = (i+1)%3;
134 <        k = (i+2)%3;
135 <        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
136 <      } else {
137 <        for (j=0; j<3; j++)
68 <          kinetic += aJ[j]*aJ[j] / I[j][j];
105 >    if (!snap->hasRotationalKineticEnergy) {
106 >      SimInfo::MoleculeIterator miter;
107 >      vector<StuntDouble*>::iterator iiter;
108 >      Molecule* mol;
109 >      StuntDouble* sd;    
110 >      Vector3d angMom;
111 >      Mat3x3d I;
112 >      int i, j, k;
113 >      RealType kinetic(0.0);
114 >      
115 >      for (mol = info_->beginMolecule(miter); mol != NULL;
116 >           mol = info_->nextMolecule(miter)) {
117 >        
118 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
119 >             sd = mol->nextIntegrableObject(iiter)) {
120 >          
121 >          if (sd->isDirectional()) {
122 >            angMom = sd->getJ();
123 >            I = sd->getI();
124 >            
125 >            if (sd->isLinear()) {
126 >              i = sd->linearAxis();
127 >              j = (i + 1) % 3;
128 >              k = (i + 2) % 3;
129 >              kinetic += angMom[j] * angMom[j] / I(j, j)
130 >                + angMom[k] * angMom[k] / I(k, k);
131 >            } else {                        
132 >              kinetic += angMom[0]*angMom[0]/I(0, 0)
133 >                + angMom[1]*angMom[1]/I(1, 1)
134 >                + angMom[2]*angMom[2]/I(2, 2);
135 >            }
136 >          }          
137 >        }
138        }
139 <   }
71 <  }
139 >      
140   #ifdef IS_MPI
141 <  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
142 <                MPI_SUM, MPI_COMM_WORLD);
143 <  kinetic = kinetic_global;
144 < #endif //is_mpi
145 <  
146 <  kinetic = kinetic * 0.5 / e_convert;
141 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
142 >                                MPI::SUM);
143 > #endif
144 >      
145 >      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
146 >          
147 >      snap->setRotationalKineticEnergy(kinetic);
148 >    }
149 >    return snap->getRotationalKineticEnergy();
150 >  }
151  
152 <  return kinetic;
81 < }
152 >      
153  
154 < double Thermo::getPotential(){
155 <  
85 <  double potential_local;
86 <  double potential;
87 <  int el, nSRI;
88 <  Molecule* molecules;
154 >  RealType Thermo::getKinetic() {
155 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
156  
157 <  molecules = info->molecules;
158 <  nSRI = info->n_SRI;
159 <
160 <  potential_local = 0.0;
161 <  potential = 0.0;
95 <  potential_local += info->lrPot;
96 <
97 <  for( el=0; el<info->n_mol; el++ ){    
98 <    potential_local += molecules[el].getPotential();
157 >    if (!snap->hasKineticEnergy) {
158 >      RealType ke = getTranslationalKinetic() + getRotationalKinetic();
159 >      snap->setKineticEnergy(ke);
160 >    }
161 >    return snap->getKineticEnergy();
162    }
163  
164 <  // Get total potential for entire system from MPI.
102 < #ifdef IS_MPI
103 <  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
104 <                MPI_SUM, MPI_COMM_WORLD);
105 < #else
106 <  potential = potential_local;
107 < #endif // is_mpi
164 >  RealType Thermo::getPotential() {
165  
166 <  return potential;
167 < }
166 >    // ForceManager computes the potential and stores it in the
167 >    // Snapshot.  All we have to do is report it.
168  
169 < double Thermo::getTotalE(){
169 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
170 >    return snap->getPotentialEnergy();
171 >  }
172  
173 <  double total;
173 >  RealType Thermo::getTotalEnergy() {
174  
175 <  total = this->getKinetic() + this->getPotential();
117 <  return total;
118 < }
175 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
176  
177 < double Thermo::getTemperature(){
177 >    if (!snap->hasTotalEnergy) {
178 >      snap->setTotalEnergy(this->getKinetic() + this->getPotential());
179 >    }
180  
181 <  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
182 <  double temperature;
181 >    return snap->getTotalEnergy();
182 >  }
183  
184 <  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
126 <  return temperature;
127 < }
184 >  RealType Thermo::getTemperature() {
185  
186 < double Thermo::getVolume() {
186 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
187  
188 <  return info->boxVol;
132 < }
188 >    if (!snap->hasTemperature) {
189  
190 < double Thermo::getPressure() {
190 >      RealType temperature = ( 2.0 * this->getKinetic() )
191 >        / (info_->getNdf()* PhysicalConstants::kb );
192  
193 <  // Relies on the calculation of the full molecular pressure tensor
194 <  
195 <  const double p_convert = 1.63882576e8;
196 <  double press[3][3];
197 <  double pressure;
193 >      snap->setTemperature(temperature);
194 >    }
195 >    
196 >    return snap->getTemperature();
197 >  }
198  
199 <  this->getPressureTensor(press);
199 >  RealType Thermo::getElectronicTemperature() {
200 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
201  
202 <  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
202 >    if (!snap->hasElectronicTemperature) {
203 >      
204 >      SimInfo::MoleculeIterator miter;
205 >      vector<Atom*>::iterator iiter;
206 >      Molecule* mol;
207 >      Atom* atom;    
208 >      RealType cvel;
209 >      RealType cmass;
210 >      RealType kinetic(0.0);
211 >      RealType eTemp;
212 >      
213 >      for (mol = info_->beginMolecule(miter); mol != NULL;
214 >           mol = info_->nextMolecule(miter)) {
215 >        
216 >        for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
217 >             atom = mol->nextFluctuatingCharge(iiter)) {
218 >          
219 >          cmass = atom->getChargeMass();
220 >          cvel = atom->getFlucQVel();
221 >          
222 >          kinetic += cmass * cvel * cvel;
223 >          
224 >        }
225 >      }
226 >    
227 > #ifdef IS_MPI
228 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
229 >                                MPI::SUM);
230 > #endif
231  
232 <  return pressure;
233 < }
232 >      kinetic *= 0.5;
233 >      eTemp =  (2.0 * kinetic) /
234 >        (info_->getNFluctuatingCharges() * PhysicalConstants::kb );
235 >    
236 >      snap->setElectronicTemperature(eTemp);
237 >    }
238  
239 < double Thermo::getPressureX() {
239 >    return snap->getElectronicTemperature();
240 >  }
241  
151  // Relies on the calculation of the full molecular pressure tensor
152  
153  const double p_convert = 1.63882576e8;
154  double press[3][3];
155  double pressureX;
242  
243 <  this->getPressureTensor(press);
243 >  RealType Thermo::getVolume() {
244 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
245 >    return snap->getVolume();
246 >  }
247  
248 <  pressureX = p_convert * press[0][0];
248 >  RealType Thermo::getPressure() {
249 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
250  
251 <  return pressureX;
252 < }
251 >    if (!snap->hasPressure) {
252 >      // Relies on the calculation of the full molecular pressure tensor
253 >      
254 >      Mat3x3d tensor;
255 >      RealType pressure;
256 >      
257 >      tensor = getPressureTensor();
258 >      
259 >      pressure = PhysicalConstants::pressureConvert *
260 >        (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
261 >      
262 >      snap->setPressure(pressure);
263 >    }
264 >    
265 >    return snap->getPressure();    
266 >  }
267  
268 < double Thermo::getPressureY() {
268 >  Mat3x3d Thermo::getPressureTensor() {
269 >    // returns pressure tensor in units amu*fs^-2*Ang^-1
270 >    // routine derived via viral theorem description in:
271 >    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
272 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
273  
274 <  // Relies on the calculation of the full molecular pressure tensor
167 <  
168 <  const double p_convert = 1.63882576e8;
169 <  double press[3][3];
170 <  double pressureY;
274 >    if (!snap->hasPressureTensor) {
275  
276 <  this->getPressureTensor(press);
276 >      Mat3x3d pressureTensor;
277 >      Mat3x3d p_tens(0.0);
278 >      RealType mass;
279 >      Vector3d vcom;
280 >      
281 >      SimInfo::MoleculeIterator i;
282 >      vector<StuntDouble*>::iterator j;
283 >      Molecule* mol;
284 >      StuntDouble* sd;    
285 >      for (mol = info_->beginMolecule(i); mol != NULL;
286 >           mol = info_->nextMolecule(i)) {
287 >        
288 >        for (sd = mol->beginIntegrableObject(j); sd != NULL;
289 >             sd = mol->nextIntegrableObject(j)) {
290 >          
291 >          mass = sd->getMass();
292 >          vcom = sd->getVel();
293 >          p_tens += mass * outProduct(vcom, vcom);        
294 >        }
295 >      }
296 >      
297 > #ifdef IS_MPI
298 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9,
299 >                                MPI::REALTYPE, MPI::SUM);
300 > #endif
301 >      
302 >      RealType volume = this->getVolume();
303 >      Mat3x3d stressTensor = snap->getStressTensor();
304 >      
305 >      pressureTensor =  (p_tens +
306 >                         PhysicalConstants::energyConvert * stressTensor)/volume;
307 >      
308 >      snap->setPressureTensor(pressureTensor);
309 >    }
310 >    return snap->getPressureTensor();
311 >  }
312  
174  pressureY = p_convert * press[1][1];
313  
176  return pressureY;
177 }
314  
179 double Thermo::getPressureZ() {
315  
316 <  // Relies on the calculation of the full molecular pressure tensor
317 <  
183 <  const double p_convert = 1.63882576e8;
184 <  double press[3][3];
185 <  double pressureZ;
316 >  Vector3d Thermo::getSystemDipole() {
317 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
318  
319 <  this->getPressureTensor(press);
319 >    if (!snap->hasSystemDipole) {
320 >      SimInfo::MoleculeIterator miter;
321 >      vector<Atom*>::iterator aiter;
322 >      Molecule* mol;
323 >      Atom* atom;
324 >      RealType charge;
325 >      RealType moment(0.0);
326 >      Vector3d ri(0.0);
327 >      Vector3d dipoleVector(0.0);
328 >      Vector3d nPos(0.0);
329 >      Vector3d pPos(0.0);
330 >      RealType nChg(0.0);
331 >      RealType pChg(0.0);
332 >      int nCount = 0;
333 >      int pCount = 0;
334 >      
335 >      RealType chargeToC = 1.60217733e-19;
336 >      RealType angstromToM = 1.0e-10;
337 >      RealType debyeToCm = 3.33564095198e-30;
338 >      
339 >      for (mol = info_->beginMolecule(miter); mol != NULL;
340 >           mol = info_->nextMolecule(miter)) {
341 >        
342 >        for (atom = mol->beginAtom(aiter); atom != NULL;
343 >             atom = mol->nextAtom(aiter)) {
344 >          
345 >          charge = 0.0;
346 >          
347 >          FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
348 >          if ( fca.isFixedCharge() ) {
349 >            charge = fca.getCharge();
350 >          }
351 >          
352 >          FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
353 >          if ( fqa.isFluctuatingCharge() ) {
354 >            charge += atom->getFlucQPos();
355 >          }
356 >          
357 >          charge *= chargeToC;
358 >          
359 >          ri = atom->getPos();
360 >          snap->wrapVector(ri);
361 >          ri *= angstromToM;
362 >          
363 >          if (charge < 0.0) {
364 >            nPos += ri;
365 >            nChg -= charge;
366 >            nCount++;
367 >          } else if (charge > 0.0) {
368 >            pPos += ri;
369 >            pChg += charge;
370 >            pCount++;
371 >          }
372 >          
373 >          MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
374 >          if (ma.isDipole() ) {
375 >            Vector3d u_i = atom->getElectroFrame().getColumn(2);
376 >            moment = ma.getDipoleMoment();
377 >            moment *= debyeToCm;
378 >            dipoleVector += u_i * moment;
379 >          }
380 >        }
381 >      }
382 >      
383 >      
384 > #ifdef IS_MPI
385 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE,
386 >                                MPI::SUM);
387 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE,
388 >                                MPI::SUM);
389  
390 <  pressureZ = p_convert * press[2][2];
390 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER,
391 >                                MPI::SUM);
392 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER,
393 >                                MPI::SUM);
394  
395 <  return pressureZ;
396 < }
395 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3,
396 >                                MPI::REALTYPE, MPI::SUM);
397 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3,
398 >                                MPI::REALTYPE, MPI::SUM);
399  
400 +      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(),
401 +                                3, MPI::REALTYPE, MPI::SUM);
402 + #endif
403 +      
404 +      // first load the accumulated dipole moment (if dipoles were present)
405 +      Vector3d boxDipole = dipoleVector;
406 +      // now include the dipole moment due to charges
407 +      // use the lesser of the positive and negative charge totals
408 +      RealType chg_value = nChg <= pChg ? nChg : pChg;
409 +      
410 +      // find the average positions
411 +      if (pCount > 0 && nCount > 0 ) {
412 +        pPos /= pCount;
413 +        nPos /= nCount;
414 +      }
415 +      
416 +      // dipole is from the negative to the positive (physics notation)
417 +      boxDipole += (pPos - nPos) * chg_value;
418 +      snap->setSystemDipole(boxDipole);
419 +    }
420  
421 < void Thermo::getPressureTensor(double press[3][3]){
422 <  // returns pressure tensor in units amu*fs^-2*Ang^-1
197 <  // routine derived via viral theorem description in:
198 <  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
421 >    return snap->getSystemDipole();
422 >  }
423  
424 <  const double e_convert = 4.184e-4;
424 >  // Returns the Heat Flux Vector for the system
425 >  Vector3d Thermo::getHeatFlux(){
426 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
427 >    SimInfo::MoleculeIterator miter;
428 >    vector<StuntDouble*>::iterator iiter;
429 >    Molecule* mol;
430 >    StuntDouble* sd;    
431 >    RigidBody::AtomIterator ai;
432 >    Atom* atom;      
433 >    Vector3d vel;
434 >    Vector3d angMom;
435 >    Mat3x3d I;
436 >    int i;
437 >    int j;
438 >    int k;
439 >    RealType mass;
440  
441 <  double molmass, volume;
442 <  double vcom[3];
443 <  double p_local[9], p_global[9];
444 <  int i, j, k;
441 >    Vector3d x_a;
442 >    RealType kinetic;
443 >    RealType potential;
444 >    RealType eatom;
445 >    RealType AvgE_a_ = 0;
446 >    // Convective portion of the heat flux
447 >    Vector3d heatFluxJc = V3Zero;
448  
449 <  for (i=0; i < 9; i++) {    
450 <    p_local[i] = 0.0;
451 <    p_global[i] = 0.0;
452 <  }
449 >    /* Calculate convective portion of the heat flux */
450 >    for (mol = info_->beginMolecule(miter); mol != NULL;
451 >         mol = info_->nextMolecule(miter)) {
452 >      
453 >      for (sd = mol->beginIntegrableObject(iiter);
454 >           sd != NULL;
455 >           sd = mol->nextIntegrableObject(iiter)) {
456 >        
457 >        mass = sd->getMass();
458 >        vel = sd->getVel();
459  
460 <  // use velocities of integrableObjects and their masses:  
460 >        kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
461 >        
462 >        if (sd->isDirectional()) {
463 >          angMom = sd->getJ();
464 >          I = sd->getI();
465  
466 <  for (i=0; i < info->integrableObjects.size(); i++) {
466 >          if (sd->isLinear()) {
467 >            i = sd->linearAxis();
468 >            j = (i + 1) % 3;
469 >            k = (i + 2) % 3;
470 >            kinetic += angMom[j] * angMom[j] / I(j, j)
471 >              + angMom[k] * angMom[k] / I(k, k);
472 >          } else {                        
473 >            kinetic += angMom[0]*angMom[0]/I(0, 0)
474 >              + angMom[1]*angMom[1]/I(1, 1)
475 >              + angMom[2]*angMom[2]/I(2, 2);
476 >          }
477 >        }
478  
479 <    molmass = info->integrableObjects[i]->getMass();
479 >        potential = 0.0;
480 >
481 >        if (sd->isRigidBody()) {
482 >          RigidBody* rb = dynamic_cast<RigidBody*>(sd);
483 >          for (atom = rb->beginAtom(ai); atom != NULL;
484 >               atom = rb->nextAtom(ai)) {
485 >            potential +=  atom->getParticlePot();
486 >          }          
487 >        } else {
488 >          potential = sd->getParticlePot();
489 >        }
490 >
491 >        potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
492 >        // The potential may not be a 1/2 factor
493 >        eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2
494 >        heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
495 >        heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
496 >        heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
497 >      }
498 >    }
499 >
500 >    /* The J_v vector is reduced in the forceManager so everyone has
501 >     *  the global Jv. Jc is computed over the local atoms and must be
502 >     *  reduced among all processors.
503 >     */
504 > #ifdef IS_MPI
505 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,
506 >                              MPI::SUM);
507 > #endif
508      
509 <    info->integrableObjects[i]->getVel(vcom);
510 <    
511 <    p_local[0] += molmass * (vcom[0] * vcom[0]);
512 <    p_local[1] += molmass * (vcom[0] * vcom[1]);
513 <    p_local[2] += molmass * (vcom[0] * vcom[2]);
514 <    p_local[3] += molmass * (vcom[1] * vcom[0]);
515 <    p_local[4] += molmass * (vcom[1] * vcom[1]);
516 <    p_local[5] += molmass * (vcom[1] * vcom[2]);
517 <    p_local[6] += molmass * (vcom[2] * vcom[0]);
518 <    p_local[7] += molmass * (vcom[2] * vcom[1]);
519 <    p_local[8] += molmass * (vcom[2] * vcom[2]);
520 <
521 <  }
522 <
523 <  // Get total for entire system from MPI.
524 <  
509 >    // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
510 >
511 >    Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
512 >      PhysicalConstants::energyConvert;
513 >        
514 >    // Correct for the fact the flux is 1/V (Jc + Jv)
515 >    return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
516 >  }
517 >
518 >
519 >  Vector3d Thermo::getComVel(){
520 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
521 >
522 >    if (!snap->hasCOMvel) {
523 >
524 >      SimInfo::MoleculeIterator i;
525 >      Molecule* mol;
526 >      
527 >      Vector3d comVel(0.0);
528 >      RealType totalMass(0.0);
529 >      
530 >      for (mol = info_->beginMolecule(i); mol != NULL;
531 >           mol = info_->nextMolecule(i)) {
532 >        RealType mass = mol->getMass();
533 >        totalMass += mass;
534 >        comVel += mass * mol->getComVel();
535 >      }  
536 >      
537   #ifdef IS_MPI
538 <  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
539 < #else
540 <  for (i=0; i<9; i++) {
541 <    p_global[i] = p_local[i];
538 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
539 >                                MPI::SUM);
540 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
541 >                                MPI::REALTYPE, MPI::SUM);
542 > #endif
543 >      
544 >      comVel /= totalMass;
545 >      snap->setCOMvel(comVel);
546 >    }
547 >    return snap->getCOMvel();
548    }
240 #endif // is_mpi
549  
550 <  volume = this->getVolume();
550 >  Vector3d Thermo::getCom(){
551 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
552  
553 <
554 <
555 <  for(i = 0; i < 3; i++) {
556 <    for (j = 0; j < 3; j++) {
557 <      k = 3*i + j;
558 <      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
553 >    if (!snap->hasCOM) {
554 >      
555 >      SimInfo::MoleculeIterator i;
556 >      Molecule* mol;
557 >      
558 >      Vector3d com(0.0);
559 >      RealType totalMass(0.0);
560 >      
561 >      for (mol = info_->beginMolecule(i); mol != NULL;
562 >           mol = info_->nextMolecule(i)) {
563 >        RealType mass = mol->getMass();
564 >        totalMass += mass;
565 >        com += mass * mol->getCom();
566 >      }  
567 >      
568 > #ifdef IS_MPI
569 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
570 >                                MPI::SUM);
571 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
572 >                                MPI::REALTYPE, MPI::SUM);
573 > #endif
574 >      
575 >      com /= totalMass;
576 >      snap->setCOM(com);
577      }
578 <  }
579 < }
578 >    return snap->getCOM();
579 >  }        
580  
581 < void Thermo::velocitize() {
582 <  
583 <  double aVel[3], aJ[3], I[3][3];
584 <  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
585 <  double vdrift[3];
586 <  double vbar;
260 <  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
261 <  double av2;
262 <  double kebar;
263 <  double temperature;
264 <  int nobj;
581 >  /**
582 >   * Returns center of mass and center of mass velocity in one
583 >   * function call.
584 >   */  
585 >  void Thermo::getComAll(Vector3d &com, Vector3d &comVel){
586 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
587  
588 <  if (!info->have_target_temp) {
589 <    sprintf( painCave.errMsg,
590 <             "You can't resample the velocities without a targetTemp!\n"
591 <             );
592 <    painCave.isFatal = 1;
593 <    painCave.severity = OOPSE_ERROR;
594 <    simError();
588 >    if (!(snap->hasCOM && snap->hasCOMvel)) {
589 >
590 >      SimInfo::MoleculeIterator i;
591 >      Molecule* mol;
592 >      
593 >      RealType totalMass(0.0);
594 >      
595 >      com = 0.0;
596 >      comVel = 0.0;
597 >      
598 >      for (mol = info_->beginMolecule(i); mol != NULL;
599 >           mol = info_->nextMolecule(i)) {
600 >        RealType mass = mol->getMass();
601 >        totalMass += mass;
602 >        com += mass * mol->getCom();
603 >        comVel += mass * mol->getComVel();          
604 >      }  
605 >      
606 > #ifdef IS_MPI
607 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
608 >                                MPI::SUM);
609 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
610 >                                MPI::REALTYPE, MPI::SUM);
611 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
612 >                                MPI::REALTYPE, MPI::SUM);
613 > #endif
614 >      
615 >      com /= totalMass;
616 >      comVel /= totalMass;
617 >      snap->setCOM(com);
618 >      snap->setCOMvel(comVel);
619 >    }    
620 >    com = snap->getCOM();
621 >    comVel = snap->getCOMvel();
622      return;
623 <  }
623 >  }        
624 >  
625 >  /**
626 >   * Return intertia tensor for entire system and angular momentum
627 >   * Vector.
628 >   *
629 >   *
630 >   *
631 >   *    [  Ixx -Ixy  -Ixz ]
632 >   * I =| -Iyx  Iyy  -Iyz |
633 >   *    [ -Izx -Iyz   Izz ]
634 >   */
635 >  void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,
636 >                                Vector3d &angularMomentum){
637  
638 <  nobj = info->integrableObjects.size();
277 <  
278 <  temperature   = info->target_temp;
279 <  
280 <  kebar = kb * temperature * (double)info->ndfRaw /
281 <    ( 2.0 * (double)info->ndf );
282 <  
283 <  for(vr = 0; vr < nobj; vr++){
638 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
639      
640 <    // uses equipartition theory to solve for vbar in angstrom/fs
641 <
642 <    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
643 <    vbar = sqrt( av2 );
644 <
645 <    // picks random velocities from a gaussian distribution
646 <    // centered on vbar
647 <
648 <    for (j=0; j<3; j++)
649 <      aVel[j] = vbar * gaussStream->getGaussian();
650 <    
651 <    info->integrableObjects[vr]->setVel( aVel );
652 <    
653 <    if(info->integrableObjects[vr]->isDirectional()){
654 <
655 <      info->integrableObjects[vr]->getI( I );
656 <
657 <      if (info->integrableObjects[vr]->isLinear()) {
658 <
659 <        l= info->integrableObjects[vr]->linearAxis();
660 <        m = (l+1)%3;
661 <        n = (l+2)%3;
662 <
308 <        aJ[l] = 0.0;
309 <        vbar = sqrt( 2.0 * kebar * I[m][m] );
310 <        aJ[m] = vbar * gaussStream->getGaussian();
311 <        vbar = sqrt( 2.0 * kebar * I[n][n] );
312 <        aJ[n] = vbar * gaussStream->getGaussian();
640 >    if (!(snap->hasInertiaTensor && snap->hasCOMw)) {
641 >      
642 >      RealType xx = 0.0;
643 >      RealType yy = 0.0;
644 >      RealType zz = 0.0;
645 >      RealType xy = 0.0;
646 >      RealType xz = 0.0;
647 >      RealType yz = 0.0;
648 >      Vector3d com(0.0);
649 >      Vector3d comVel(0.0);
650 >      
651 >      getComAll(com, comVel);
652 >      
653 >      SimInfo::MoleculeIterator i;
654 >      Molecule* mol;
655 >      
656 >      Vector3d thisq(0.0);
657 >      Vector3d thisv(0.0);
658 >      
659 >      RealType thisMass = 0.0;
660 >      
661 >      for (mol = info_->beginMolecule(i); mol != NULL;
662 >           mol = info_->nextMolecule(i)) {
663          
664 <      } else {
665 <        for (j = 0 ; j < 3; j++) {
666 <          vbar = sqrt( 2.0 * kebar * I[j][j] );
667 <          aJ[j] = vbar * gaussStream->getGaussian();
668 <        }      
669 <      } // else isLinear
670 <
671 <      info->integrableObjects[vr]->setJ( aJ );
664 >        thisq = mol->getCom()-com;
665 >        thisv = mol->getComVel()-comVel;
666 >        thisMass = mol->getMass();
667 >        // Compute moment of intertia coefficients.
668 >        xx += thisq[0]*thisq[0]*thisMass;
669 >        yy += thisq[1]*thisq[1]*thisMass;
670 >        zz += thisq[2]*thisq[2]*thisMass;
671 >        
672 >        // compute products of intertia
673 >        xy += thisq[0]*thisq[1]*thisMass;
674 >        xz += thisq[0]*thisq[2]*thisMass;
675 >        yz += thisq[1]*thisq[2]*thisMass;
676 >        
677 >        angularMomentum += cross( thisq, thisv ) * thisMass;            
678 >      }
679        
680 <    }//isDirectional
681 <
680 >      inertiaTensor(0,0) = yy + zz;
681 >      inertiaTensor(0,1) = -xy;
682 >      inertiaTensor(0,2) = -xz;
683 >      inertiaTensor(1,0) = -xy;
684 >      inertiaTensor(1,1) = xx + zz;
685 >      inertiaTensor(1,2) = -yz;
686 >      inertiaTensor(2,0) = -xz;
687 >      inertiaTensor(2,1) = -yz;
688 >      inertiaTensor(2,2) = xx + yy;
689 >      
690 > #ifdef IS_MPI
691 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(),
692 >                                9, MPI::REALTYPE, MPI::SUM);
693 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
694 >                                angularMomentum.getArrayPointer(), 3,
695 >                                MPI::REALTYPE, MPI::SUM);
696 > #endif
697 >      
698 >      snap->setCOMw(angularMomentum);
699 >      snap->setInertiaTensor(inertiaTensor);
700 >    }
701 >    
702 >    angularMomentum = snap->getCOMw();
703 >    inertiaTensor = snap->getInertiaTensor();
704 >    
705 >    return;
706    }
707  
708 <  // Get the Center of Mass drift velocity.
709 <
710 <  getCOMVel(vdrift);
330 <  
331 <  //  Corrects for the center of mass drift.
332 <  // sums all the momentum and divides by total mass.
333 <
334 <  for(vd = 0; vd < nobj; vd++){
708 >  // Returns the angular momentum of the system
709 >  Vector3d Thermo::getAngularMomentum(){
710 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
711      
712 <    info->integrableObjects[vd]->getVel(aVel);
713 <    
714 <    for (j=0; j < 3; j++)
715 <      aVel[j] -= vdrift[j];
712 >    if (!snap->hasCOMw) {
713 >      
714 >      Vector3d com(0.0);
715 >      Vector3d comVel(0.0);
716 >      Vector3d angularMomentum(0.0);
717 >      
718 >      getComAll(com, comVel);
719 >      
720 >      SimInfo::MoleculeIterator i;
721 >      Molecule* mol;
722 >      
723 >      Vector3d thisr(0.0);
724 >      Vector3d thisp(0.0);
725 >      
726 >      RealType thisMass;
727 >      
728 >      for (mol = info_->beginMolecule(i); mol != NULL;
729 >           mol = info_->nextMolecule(i)) {
730 >        thisMass = mol->getMass();
731 >        thisr = mol->getCom() - com;
732 >        thisp = (mol->getComVel() - comVel) * thisMass;
733          
734 <    info->integrableObjects[vd]->setVel( aVel );
734 >        angularMomentum += cross( thisr, thisp );      
735 >      }  
736 >      
737 > #ifdef IS_MPI
738 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
739 >                                angularMomentum.getArrayPointer(), 3,
740 >                                MPI::REALTYPE, MPI::SUM);
741 > #endif
742 >      
743 >      snap->setCOMw(angularMomentum);
744 >    }
745 >    
746 >    return snap->getCOMw();
747    }
343
344 }
345
346 void Thermo::getCOMVel(double vdrift[3]){
347
348  double mtot, mtot_local;
349  double aVel[3], amass;
350  double vdrift_local[3];
351  int vd, j;
352  int nobj;
353
354  nobj   = info->integrableObjects.size();
355
356  mtot_local = 0.0;
357  vdrift_local[0] = 0.0;
358  vdrift_local[1] = 0.0;
359  vdrift_local[2] = 0.0;
748    
749 <  for(vd = 0; vd < nobj; vd++){
749 >  
750 >  /**
751 >   * Returns the Volume of the system based on a ellipsoid with
752 >   * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
753 >   * where R_i are related to the principle inertia moments
754 >   *  R_i = sqrt(C*I_i/N), this reduces to
755 >   *  V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).
756 >   * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
757 >   */
758 >  RealType Thermo::getGyrationalVolume(){
759 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
760      
761 <    amass = info->integrableObjects[vd]->getMass();
762 <    info->integrableObjects[vd]->getVel( aVel );
761 >    if (!snap->hasGyrationalVolume) {
762 >      
763 >      Mat3x3d intTensor;
764 >      RealType det;
765 >      Vector3d dummyAngMom;
766 >      RealType sysconstants;
767 >      RealType geomCnst;
768 >      RealType volume;
769 >      
770 >      geomCnst = 3.0/2.0;
771 >      /* Get the inertial tensor and angular momentum for free*/
772 >      getInertiaTensor(intTensor, dummyAngMom);
773 >      
774 >      det = intTensor.determinant();
775 >      sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects());
776 >      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
777  
778 <    for(j = 0; j < 3; j++)
779 <      vdrift_local[j] += aVel[j] * amass;
780 <    
369 <    mtot_local += amass;
778 >      snap->setGyrationalVolume(volume);
779 >    }
780 >    return snap->getGyrationalVolume();
781    }
782 +  
783 +  void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){
784 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
785  
786 < #ifdef IS_MPI
373 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
374 <  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
375 < #else
376 <  mtot = mtot_local;
377 <  for(vd = 0; vd < 3; vd++) {
378 <    vdrift[vd] = vdrift_local[vd];
379 <  }
380 < #endif
786 >    if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) {
787      
788 <  for (vd = 0; vd < 3; vd++) {
789 <    vdrift[vd] = vdrift[vd] / mtot;
788 >      Mat3x3d intTensor;
789 >      Vector3d dummyAngMom;
790 >      RealType sysconstants;
791 >      RealType geomCnst;
792 >      
793 >      geomCnst = 3.0/2.0;
794 >      /* Get the inertia tensor and angular momentum for free*/
795 >      this->getInertiaTensor(intTensor, dummyAngMom);
796 >      
797 >      detI = intTensor.determinant();
798 >      sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects());
799 >      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
800 >      snap->setGyrationalVolume(volume);
801 >    } else {
802 >      volume = snap->getGyrationalVolume();
803 >      detI = snap->getInertiaTensor().determinant();
804 >    }
805 >    return;
806    }
807    
808 < }
809 <
810 < void Thermo::getCOM(double COM[3]){
389 <
390 <  double mtot, mtot_local;
391 <  double aPos[3], amass;
392 <  double COM_local[3];
393 <  int i, j;
394 <  int nobj;
395 <
396 <  mtot_local = 0.0;
397 <  COM_local[0] = 0.0;
398 <  COM_local[1] = 0.0;
399 <  COM_local[2] = 0.0;
400 <
401 <  nobj = info->integrableObjects.size();
402 <  for(i = 0; i < nobj; i++){
808 >  RealType Thermo::getTaggedAtomPairDistance(){
809 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
810 >    Globals* simParams = info_->getSimParams();
811      
812 <    amass = info->integrableObjects[i]->getMass();
813 <    info->integrableObjects[i]->getPos( aPos );
812 >    if (simParams->haveTaggedAtomPair() &&
813 >        simParams->havePrintTaggedPairDistance()) {
814 >      if ( simParams->getPrintTaggedPairDistance()) {
815 >        
816 >        pair<int, int> tap = simParams->getTaggedAtomPair();
817 >        Vector3d pos1, pos2, rab;
818 >        
819 > #ifdef IS_MPI        
820 >        int mol1 = info_->getGlobalMolMembership(tap.first);
821 >        int mol2 = info_->getGlobalMolMembership(tap.second);
822  
823 <    for(j = 0; j < 3; j++)
824 <      COM_local[j] += aPos[j] * amass;
409 <    
410 <    mtot_local += amass;
411 <  }
823 >        int proc1 = info_->getMolToProc(mol1);
824 >        int proc2 = info_->getMolToProc(mol2);
825  
826 < #ifdef IS_MPI
827 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
828 <  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
826 >        RealType data[3];
827 >        if (proc1 == worldRank) {
828 >          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
829 >          pos1 = sd1->getPos();
830 >          data[0] = pos1.x();
831 >          data[1] = pos1.y();
832 >          data[2] = pos1.z();          
833 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
834 >        } else {
835 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
836 >          pos1 = Vector3d(data);
837 >        }
838 >
839 >        if (proc2 == worldRank) {
840 >          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
841 >          pos2 = sd2->getPos();
842 >          data[0] = pos2.x();
843 >          data[1] = pos2.y();
844 >          data[2] = pos2.z();          
845 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
846 >        } else {
847 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
848 >          pos2 = Vector3d(data);
849 >        }
850   #else
851 <  mtot = mtot_local;
852 <  for(i = 0; i < 3; i++) {
853 <    COM[i] = COM_local[i];
851 >        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
852 >        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
853 >        pos1 = at1->getPos();
854 >        pos2 = at2->getPos();
855 > #endif        
856 >        rab = pos2 - pos1;
857 >        currSnapshot->wrapVector(rab);
858 >        return rab.length();
859 >      }
860 >      return 0.0;    
861 >    }
862 >    return 0.0;
863    }
864 < #endif
864 >
865 >  RealType Thermo::getHullVolume(){
866 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
867      
868 <  for (i = 0; i < 3; i++) {
424 <    COM[i] = COM[i] / mtot;
425 <  }
426 < }
868 >    if (!snap->hasHullVolume) {
869  
870 < void Thermo::removeCOMdrift() {
429 <  double vdrift[3], aVel[3];
430 <  int vd, j, nobj;
870 >      Hull* surfaceMesh_;
871  
872 <  nobj = info->integrableObjects.size();
873 <
874 <  // Get the Center of Mass drift velocity.
875 <
876 <  getCOMVel(vdrift);
877 <  
878 <  //  Corrects for the center of mass drift.
879 <  // sums all the momentum and divides by total mass.
880 <
881 <  for(vd = 0; vd < nobj; vd++){
882 <    
883 <    info->integrableObjects[vd]->getVel(aVel);
884 <    
885 <    for (j=0; j < 3; j++)
886 <      aVel[j] -= vdrift[j];
887 <        
888 <    info->integrableObjects[vd]->setVel( aVel );
889 <  }
872 >      Globals* simParams = info_->getSimParams();
873 >      const std::string ht = simParams->getHULL_Method();
874 >      
875 >      if (ht == "Convex") {
876 >        surfaceMesh_ = new ConvexHull();
877 >      } else if (ht == "AlphaShape") {
878 >        surfaceMesh_ = new AlphaHull(simParams->getAlpha());
879 >      } else {
880 >        return 0.0;
881 >      }
882 >      
883 >      // Build a vector of stunt doubles to determine if they are
884 >      // surface atoms
885 >      std::vector<StuntDouble*> localSites_;
886 >      Molecule* mol;
887 >      StuntDouble* sd;
888 >      SimInfo::MoleculeIterator i;
889 >      Molecule::IntegrableObjectIterator  j;
890 >      
891 >      for (mol = info_->beginMolecule(i); mol != NULL;
892 >           mol = info_->nextMolecule(i)) {          
893 >        for (sd = mol->beginIntegrableObject(j);
894 >             sd != NULL;
895 >             sd = mol->nextIntegrableObject(j)) {  
896 >          localSites_.push_back(sd);
897 >        }
898 >      }  
899 >      
900 >      // Compute surface Mesh
901 >      surfaceMesh_->computeHull(localSites_);
902 >      snap->setHullVolume(surfaceMesh_->getVolume());
903 >    }
904 >    return snap->getHullVolume();
905 >  }  
906   }

Comparing:
trunk/src/brains/Thermo.cpp (property svn:keywords), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/brains/Thermo.cpp (property svn:keywords), Revision 1764 by gezelter, Tue Jul 3 18:32:27 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines