ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
(Generate patch)

Comparing:
trunk/src/brains/Thermo.cpp (file contents), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/brains/Thermo.cpp (file contents), Revision 1723 by gezelter, Thu May 24 20:59:54 2012 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 + */
42 +
43   #include <math.h>
44   #include <iostream>
3 using namespace std;
45  
46   #ifdef IS_MPI
47   #include <mpi.h>
48   #endif //is_mpi
49  
50   #include "brains/Thermo.hpp"
51 < #include "primitives/SRI.hpp"
11 < #include "integrators/Integrator.hpp"
51 > #include "primitives/Molecule.hpp"
52   #include "utils/simError.h"
53 < #include "math/MatVec3.h"
53 > #include "utils/PhysicalConstants.hpp"
54 > #include "types/MultipoleAdapter.hpp"
55  
56 + namespace OpenMD {
57 +
58 +  RealType Thermo::getKinetic() {
59 +    SimInfo::MoleculeIterator miter;
60 +    std::vector<StuntDouble*>::iterator iiter;
61 +    Molecule* mol;
62 +    StuntDouble* integrableObject;    
63 +    Vector3d vel;
64 +    Vector3d angMom;
65 +    Mat3x3d I;
66 +    int i;
67 +    int j;
68 +    int k;
69 +    RealType mass;
70 +    RealType kinetic = 0.0;
71 +    RealType kinetic_global = 0.0;
72 +    
73 +    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
74 +      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
75 +           integrableObject = mol->nextIntegrableObject(iiter)) {
76 +        
77 +        mass = integrableObject->getMass();
78 +        vel = integrableObject->getVel();
79 +        
80 +        kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
81 +        
82 +        if (integrableObject->isDirectional()) {
83 +          angMom = integrableObject->getJ();
84 +          I = integrableObject->getI();
85 +
86 +          if (integrableObject->isLinear()) {
87 +            i = integrableObject->linearAxis();
88 +            j = (i + 1) % 3;
89 +            k = (i + 2) % 3;
90 +            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
91 +          } else {                        
92 +            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
93 +              + angMom[2]*angMom[2]/I(2, 2);
94 +          }
95 +        }
96 +            
97 +      }
98 +    }
99 +    
100   #ifdef IS_MPI
16 #define __C
17 #include "brains/mpiSimulation.hpp"
18 #endif // is_mpi
101  
102 < inline double roundMe( double x ){
103 <          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
104 < }
102 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
103 >                  MPI_COMM_WORLD);
104 >    kinetic = kinetic_global;
105  
106 < Thermo::Thermo( SimInfo* the_info ) {
25 <  info = the_info;
26 <  int baseSeed = the_info->getSeed();
27 <  
28 <  gaussStream = new gaussianSPRNG( baseSeed );
29 < }
106 > #endif //is_mpi
107  
108 < Thermo::~Thermo(){
32 <  delete gaussStream;
33 < }
108 >    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
109  
110 < double Thermo::getKinetic(){
110 >    return kinetic;
111 >  }
112  
113 <  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
114 <  double kinetic;
115 <  double amass;
116 <  double aVel[3], aJ[3], I[3][3];
41 <  int i, j, k, kl;
113 >  RealType Thermo::getPotential() {
114 >    RealType potential = 0.0;
115 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
116 >    RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
117  
118 <  double kinetic_global;
44 <  vector<StuntDouble *> integrableObjects = info->integrableObjects;
45 <  
46 <  kinetic = 0.0;
47 <  kinetic_global = 0.0;
118 >    // Get total potential for entire system from MPI.
119  
120 <  for (kl=0; kl<integrableObjects.size(); kl++) {
50 <    integrableObjects[kl]->getVel(aVel);
51 <    amass = integrableObjects[kl]->getMass();
120 > #ifdef IS_MPI
121  
122 <   for(j=0; j<3; j++)
123 <      kinetic += amass*aVel[j]*aVel[j];
122 >    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
123 >                  MPI_COMM_WORLD);
124 >    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
125  
126 <   if (integrableObjects[kl]->isDirectional()){
57 <
58 <      integrableObjects[kl]->getJ( aJ );
59 <      integrableObjects[kl]->getI( I );
126 > #else
127  
128 <      if (integrableObjects[kl]->isLinear()) {
62 <        i = integrableObjects[kl]->linearAxis();
63 <        j = (i+1)%3;
64 <        k = (i+2)%3;
65 <        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
66 <      } else {
67 <        for (j=0; j<3; j++)
68 <          kinetic += aJ[j]*aJ[j] / I[j][j];
69 <      }
70 <   }
71 <  }
72 < #ifdef IS_MPI
73 <  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
74 <                MPI_SUM, MPI_COMM_WORLD);
75 <  kinetic = kinetic_global;
76 < #endif //is_mpi
77 <  
78 <  kinetic = kinetic * 0.5 / e_convert;
128 >    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
129  
130 <  return kinetic;
81 < }
130 > #endif // is_mpi
131  
132 < double Thermo::getPotential(){
133 <  
85 <  double potential_local;
86 <  double potential;
87 <  int el, nSRI;
88 <  Molecule* molecules;
132 >    return potential;
133 >  }
134  
135 <  molecules = info->molecules;
136 <  nSRI = info->n_SRI;
135 >  RealType Thermo::getTotalE() {
136 >    RealType total;
137  
138 <  potential_local = 0.0;
139 <  potential = 0.0;
140 <  potential_local += info->lrPot;
138 >    total = this->getKinetic() + this->getPotential();
139 >    return total;
140 >  }
141  
142 <  for( el=0; el<info->n_mol; el++ ){    
143 <    potential_local += molecules[el].getPotential();
142 >  RealType Thermo::getTemperature() {
143 >    
144 >    RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
145 >    return temperature;
146    }
147  
148 <  // Get total potential for entire system from MPI.
148 >  RealType Thermo::getElectronicTemperature() {
149 >    SimInfo::MoleculeIterator miter;
150 >    std::vector<Atom*>::iterator iiter;
151 >    Molecule* mol;
152 >    Atom* atom;    
153 >    RealType cvel;
154 >    RealType cmass;
155 >    RealType kinetic = 0.0;
156 >    RealType kinetic_global = 0.0;
157 >    
158 >    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
159 >      for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
160 >           atom = mol->nextFluctuatingCharge(iiter)) {
161 >        cmass = atom->getChargeMass();
162 >        cvel = atom->getFlucQVel();
163 >        
164 >        kinetic += cmass * cvel * cvel;
165 >        
166 >      }
167 >    }
168 >    
169   #ifdef IS_MPI
103  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
104                MPI_SUM, MPI_COMM_WORLD);
105 #else
106  potential = potential_local;
107 #endif // is_mpi
170  
171 <  return potential;
172 < }
171 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
172 >                  MPI_COMM_WORLD);
173 >    kinetic = kinetic_global;
174  
175 < double Thermo::getTotalE(){
175 > #endif //is_mpi
176  
177 <  double total;
177 >    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
178 >    return ( 2.0 * kinetic) / (info_->getNFluctuatingCharges()* PhysicalConstants::kb );    
179 >  }
180  
116  total = this->getKinetic() + this->getPotential();
117  return total;
118 }
181  
120 double Thermo::getTemperature(){
182  
122  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
123  double temperature;
183  
184 <  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
185 <  return temperature;
186 < }
184 >  RealType Thermo::getVolume() {
185 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
186 >    return curSnapshot->getVolume();
187 >  }
188  
189 < double Thermo::getVolume() {
189 >  RealType Thermo::getPressure() {
190  
191 <  return info->boxVol;
132 < }
191 >    // Relies on the calculation of the full molecular pressure tensor
192  
134 double Thermo::getPressure() {
193  
194 <  // Relies on the calculation of the full molecular pressure tensor
195 <  
138 <  const double p_convert = 1.63882576e8;
139 <  double press[3][3];
140 <  double pressure;
194 >    Mat3x3d tensor;
195 >    RealType pressure;
196  
197 <  this->getPressureTensor(press);
197 >    tensor = getPressureTensor();
198  
199 <  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
199 >    pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
200  
201 <  return pressure;
202 < }
201 >    return pressure;
202 >  }
203  
204 < double Thermo::getPressureX() {
204 >  RealType Thermo::getPressure(int direction) {
205  
206 <  // Relies on the calculation of the full molecular pressure tensor
152 <  
153 <  const double p_convert = 1.63882576e8;
154 <  double press[3][3];
155 <  double pressureX;
206 >    // Relies on the calculation of the full molecular pressure tensor
207  
208 <  this->getPressureTensor(press);
208 >          
209 >    Mat3x3d tensor;
210 >    RealType pressure;
211  
212 <  pressureX = p_convert * press[0][0];
212 >    tensor = getPressureTensor();
213  
214 <  return pressureX;
162 < }
214 >    pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
215  
216 < double Thermo::getPressureY() {
216 >    return pressure;
217 >  }
218  
219 <  // Relies on the calculation of the full molecular pressure tensor
220 <  
221 <  const double p_convert = 1.63882576e8;
222 <  double press[3][3];
223 <  double pressureY;
219 >  Mat3x3d Thermo::getPressureTensor() {
220 >    // returns pressure tensor in units amu*fs^-2*Ang^-1
221 >    // routine derived via viral theorem description in:
222 >    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
223 >    Mat3x3d pressureTensor;
224 >    Mat3x3d p_local(0.0);
225 >    Mat3x3d p_global(0.0);
226  
227 <  this->getPressureTensor(press);
227 >    SimInfo::MoleculeIterator i;
228 >    std::vector<StuntDouble*>::iterator j;
229 >    Molecule* mol;
230 >    StuntDouble* integrableObject;    
231 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
232 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
233 >           integrableObject = mol->nextIntegrableObject(j)) {
234  
235 <  pressureY = p_convert * press[1][1];
235 >        RealType mass = integrableObject->getMass();
236 >        Vector3d vcom = integrableObject->getVel();
237 >        p_local += mass * outProduct(vcom, vcom);        
238 >      }
239 >    }
240 >    
241 > #ifdef IS_MPI
242 >    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
243 > #else
244 >    p_global = p_local;
245 > #endif // is_mpi
246  
247 <  return pressureY;
248 < }
247 >    RealType volume = this->getVolume();
248 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
249 >    Mat3x3d stressTensor = curSnapshot->getStressTensor();
250  
251 < double Thermo::getPressureZ() {
251 >    pressureTensor =  (p_global +
252 >                       PhysicalConstants::energyConvert * stressTensor)/volume;
253 >    
254 >    return pressureTensor;
255 >  }
256  
181  // Relies on the calculation of the full molecular pressure tensor
182  
183  const double p_convert = 1.63882576e8;
184  double press[3][3];
185  double pressureZ;
257  
258 <  this->getPressureTensor(press);
258 >  void Thermo::saveStat(){
259 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
260 >    Stats& stat = currSnapshot->statData;
261 >    
262 >    stat[Stats::KINETIC_ENERGY] = getKinetic();
263 >    stat[Stats::POTENTIAL_ENERGY] = getPotential();
264 >    stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ;
265 >    stat[Stats::TEMPERATURE] = getTemperature();
266 >    stat[Stats::PRESSURE] = getPressure();
267 >    stat[Stats::VOLUME] = getVolume();      
268  
269 <  pressureZ = p_convert * press[2][2];
269 >    Mat3x3d tensor =getPressureTensor();
270 >    stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);      
271 >    stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);      
272 >    stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);      
273 >    stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);      
274 >    stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);      
275 >    stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);      
276 >    stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);      
277 >    stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);      
278 >    stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);      
279  
280 <  return pressureZ;
281 < }
280 >    // grab the simulation box dipole moment if specified
281 >    if (info_->getCalcBoxDipole()){
282 >      Vector3d totalDipole = getBoxDipole();
283 >      stat[Stats::BOX_DIPOLE_X] = totalDipole(0);
284 >      stat[Stats::BOX_DIPOLE_Y] = totalDipole(1);
285 >      stat[Stats::BOX_DIPOLE_Z] = totalDipole(2);
286 >    }
287  
288 +    Globals* simParams = info_->getSimParams();
289 +    // grab the heat flux if desired
290 +    if (simParams->havePrintHeatFlux()) {
291 +      if (simParams->getPrintHeatFlux()){
292 +        Vector3d heatFlux = getHeatFlux();
293 +        stat[Stats::HEATFLUX_X] = heatFlux(0);
294 +        stat[Stats::HEATFLUX_Y] = heatFlux(1);
295 +        stat[Stats::HEATFLUX_Z] = heatFlux(2);
296 +      }
297 +    }
298  
299 < void Thermo::getPressureTensor(double press[3][3]){
300 <  // returns pressure tensor in units amu*fs^-2*Ang^-1
301 <  // routine derived via viral theorem description in:
302 <  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
299 >    if (simParams->haveTaggedAtomPair() &&
300 >        simParams->havePrintTaggedPairDistance()) {
301 >      if ( simParams->getPrintTaggedPairDistance()) {
302 >        
303 >        std::pair<int, int> tap = simParams->getTaggedAtomPair();
304 >        Vector3d pos1, pos2, rab;
305  
306 <  const double e_convert = 4.184e-4;
306 > #ifdef IS_MPI        
307 >        std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl;
308  
309 <  double molmass, volume;
310 <  double vcom[3];
311 <  double p_local[9], p_global[9];
205 <  int i, j, k;
309 >        int mol1 = info_->getGlobalMolMembership(tap.first);
310 >        int mol2 = info_->getGlobalMolMembership(tap.second);
311 >        std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
312  
313 <  for (i=0; i < 9; i++) {    
314 <    p_local[i] = 0.0;
209 <    p_global[i] = 0.0;
210 <  }
313 >        int proc1 = info_->getMolToProc(mol1);
314 >        int proc2 = info_->getMolToProc(mol2);
315  
316 <  // use velocities of integrableObjects and their masses:  
316 >        std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
317  
318 <  for (i=0; i < info->integrableObjects.size(); i++) {
319 <
320 <    molmass = info->integrableObjects[i]->getMass();
321 <    
322 <    info->integrableObjects[i]->getVel(vcom);
323 <    
324 <    p_local[0] += molmass * (vcom[0] * vcom[0]);
325 <    p_local[1] += molmass * (vcom[0] * vcom[1]);
326 <    p_local[2] += molmass * (vcom[0] * vcom[2]);
327 <    p_local[3] += molmass * (vcom[1] * vcom[0]);
328 <    p_local[4] += molmass * (vcom[1] * vcom[1]);
329 <    p_local[5] += molmass * (vcom[1] * vcom[2]);
330 <    p_local[6] += molmass * (vcom[2] * vcom[0]);
227 <    p_local[7] += molmass * (vcom[2] * vcom[1]);
228 <    p_local[8] += molmass * (vcom[2] * vcom[2]);
229 <
230 <  }
231 <
232 <  // Get total for entire system from MPI.
233 <  
234 < #ifdef IS_MPI
235 <  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
236 < #else
237 <  for (i=0; i<9; i++) {
238 <    p_global[i] = p_local[i];
239 <  }
240 < #endif // is_mpi
241 <
242 <  volume = this->getVolume();
318 >        RealType data[3];
319 >        if (proc1 == worldRank) {
320 >          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
321 >          std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
322 >          pos1 = sd1->getPos();
323 >          data[0] = pos1.x();
324 >          data[1] = pos1.y();
325 >          data[2] = pos1.z();          
326 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
327 >        } else {
328 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
329 >          pos1 = Vector3d(data);
330 >        }
331  
332  
333 <
334 <  for(i = 0; i < 3; i++) {
335 <    for (j = 0; j < 3; j++) {
336 <      k = 3*i + j;
337 <      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
333 >        if (proc2 == worldRank) {
334 >          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
335 >          std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
336 >          pos2 = sd2->getPos();
337 >          data[0] = pos2.x();
338 >          data[1] = pos2.y();
339 >          data[2] = pos2.z();          
340 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
341 >        } else {
342 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
343 >          pos2 = Vector3d(data);
344 >        }
345 > #else
346 >        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
347 >        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
348 >        pos1 = at1->getPos();
349 >        pos2 = at2->getPos();
350 > #endif        
351 >        rab = pos2 - pos1;
352 >        currSnapshot->wrapVector(rab);
353 >        stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length();
354 >      }
355      }
356 +      
357 +    /**@todo need refactorying*/
358 +    //Conserved Quantity is set by integrator and time is set by setTime
359 +    
360    }
252 }
361  
254 void Thermo::velocitize() {
255  
256  double aVel[3], aJ[3], I[3][3];
257  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
258  double vdrift[3];
259  double vbar;
260  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
261  double av2;
262  double kebar;
263  double temperature;
264  int nobj;
362  
363 <  if (!info->have_target_temp) {
364 <    sprintf( painCave.errMsg,
365 <             "You can't resample the velocities without a targetTemp!\n"
366 <             );
367 <    painCave.isFatal = 1;
368 <    painCave.severity = OOPSE_ERROR;
369 <    simError();
370 <    return;
371 <  }
363 >  Vector3d Thermo::getBoxDipole() {
364 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
365 >    SimInfo::MoleculeIterator miter;
366 >    std::vector<Atom*>::iterator aiter;
367 >    Molecule* mol;
368 >    Atom* atom;
369 >    RealType charge;
370 >    RealType moment(0.0);
371 >    Vector3d ri(0.0);
372 >    Vector3d dipoleVector(0.0);
373 >    Vector3d nPos(0.0);
374 >    Vector3d pPos(0.0);
375 >    RealType nChg(0.0);
376 >    RealType pChg(0.0);
377 >    int nCount = 0;
378 >    int pCount = 0;
379  
380 <  nobj = info->integrableObjects.size();
381 <  
382 <  temperature   = info->target_temp;
279 <  
280 <  kebar = kb * temperature * (double)info->ndfRaw /
281 <    ( 2.0 * (double)info->ndf );
282 <  
283 <  for(vr = 0; vr < nobj; vr++){
380 >    RealType chargeToC = 1.60217733e-19;
381 >    RealType angstromToM = 1.0e-10;
382 >    RealType debyeToCm = 3.33564095198e-30;
383      
384 <    // uses equipartition theory to solve for vbar in angstrom/fs
384 >    for (mol = info_->beginMolecule(miter); mol != NULL;
385 >         mol = info_->nextMolecule(miter)) {
386  
387 <    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
388 <    vbar = sqrt( av2 );
387 >      for (atom = mol->beginAtom(aiter); atom != NULL;
388 >           atom = mol->nextAtom(aiter)) {
389 >        
390 >        if (atom->isCharge() ) {
391 >          charge = 0.0;
392 >          GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
393 >          if (data != NULL) {
394  
395 <    // picks random velocities from a gaussian distribution
396 <    // centered on vbar
395 >            charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
396 >            charge *= chargeToC;
397  
398 <    for (j=0; j<3; j++)
399 <      aVel[j] = vbar * gaussStream->getGaussian();
398 >            ri = atom->getPos();
399 >            currSnapshot->wrapVector(ri);
400 >            ri *= angstromToM;
401 >
402 >            if (charge < 0.0) {
403 >              nPos += ri;
404 >              nChg -= charge;
405 >              nCount++;
406 >            } else if (charge > 0.0) {
407 >              pPos += ri;
408 >              pChg += charge;
409 >              pCount++;
410 >            }                      
411 >          }
412 >        }
413 >        
414 >        MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
415 >        if (ma.isDipole() ) {
416 >          Vector3d u_i = atom->getElectroFrame().getColumn(2);
417 >          moment = ma.getDipoleMoment();
418 >          moment *= debyeToCm;
419 >          dipoleVector += u_i * moment;
420 >        }
421 >      }
422 >    }
423      
424 <    info->integrableObjects[vr]->setVel( aVel );
425 <    
426 <    if(info->integrableObjects[vr]->isDirectional()){
424 >                      
425 > #ifdef IS_MPI
426 >    RealType pChg_global, nChg_global;
427 >    int pCount_global, nCount_global;
428 >    Vector3d pPos_global, nPos_global, dipVec_global;
429  
430 <      info->integrableObjects[vr]->getI( I );
430 >    MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
431 >                  MPI_COMM_WORLD);
432 >    pChg = pChg_global;
433 >    MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
434 >                  MPI_COMM_WORLD);
435 >    nChg = nChg_global;
436 >    MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
437 >                  MPI_COMM_WORLD);
438 >    pCount = pCount_global;
439 >    MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
440 >                  MPI_COMM_WORLD);
441 >    nCount = nCount_global;
442 >    MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
443 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
444 >    pPos = pPos_global;
445 >    MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
446 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
447 >    nPos = nPos_global;
448 >    MPI_Allreduce(dipoleVector.getArrayPointer(),
449 >                  dipVec_global.getArrayPointer(), 3,
450 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
451 >    dipoleVector = dipVec_global;
452 > #endif //is_mpi
453  
454 <      if (info->integrableObjects[vr]->isLinear()) {
454 >    // first load the accumulated dipole moment (if dipoles were present)
455 >    Vector3d boxDipole = dipoleVector;
456 >    // now include the dipole moment due to charges
457 >    // use the lesser of the positive and negative charge totals
458 >    RealType chg_value = nChg <= pChg ? nChg : pChg;
459 >      
460 >    // find the average positions
461 >    if (pCount > 0 && nCount > 0 ) {
462 >      pPos /= pCount;
463 >      nPos /= nCount;
464 >    }
465  
466 <        l= info->integrableObjects[vr]->linearAxis();
467 <        m = (l+1)%3;
306 <        n = (l+2)%3;
466 >    // dipole is from the negative to the positive (physics notation)
467 >    boxDipole += (pPos - nPos) * chg_value;
468  
469 <        aJ[l] = 0.0;
309 <        vbar = sqrt( 2.0 * kebar * I[m][m] );
310 <        aJ[m] = vbar * gaussStream->getGaussian();
311 <        vbar = sqrt( 2.0 * kebar * I[n][n] );
312 <        aJ[n] = vbar * gaussStream->getGaussian();
313 <        
314 <      } else {
315 <        for (j = 0 ; j < 3; j++) {
316 <          vbar = sqrt( 2.0 * kebar * I[j][j] );
317 <          aJ[j] = vbar * gaussStream->getGaussian();
318 <        }      
319 <      } // else isLinear
320 <
321 <      info->integrableObjects[vr]->setJ( aJ );
322 <      
323 <    }//isDirectional
324 <
469 >    return boxDipole;
470    }
471  
472 <  // Get the Center of Mass drift velocity.
472 >  // Returns the Heat Flux Vector for the system
473 >  Vector3d Thermo::getHeatFlux(){
474 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
475 >    SimInfo::MoleculeIterator miter;
476 >    std::vector<StuntDouble*>::iterator iiter;
477 >    Molecule* mol;
478 >    StuntDouble* integrableObject;    
479 >    RigidBody::AtomIterator ai;
480 >    Atom* atom;      
481 >    Vector3d vel;
482 >    Vector3d angMom;
483 >    Mat3x3d I;
484 >    int i;
485 >    int j;
486 >    int k;
487 >    RealType mass;
488  
489 <  getCOMVel(vdrift);
490 <  
491 <  //  Corrects for the center of mass drift.
492 <  // sums all the momentum and divides by total mass.
489 >    Vector3d x_a;
490 >    RealType kinetic;
491 >    RealType potential;
492 >    RealType eatom;
493 >    RealType AvgE_a_ = 0;
494 >    // Convective portion of the heat flux
495 >    Vector3d heatFluxJc = V3Zero;
496  
497 <  for(vd = 0; vd < nobj; vd++){
498 <    
499 <    info->integrableObjects[vd]->getVel(aVel);
500 <    
501 <    for (j=0; j < 3; j++)
502 <      aVel[j] -= vdrift[j];
497 >    /* Calculate convective portion of the heat flux */
498 >    for (mol = info_->beginMolecule(miter); mol != NULL;
499 >         mol = info_->nextMolecule(miter)) {
500 >      
501 >      for (integrableObject = mol->beginIntegrableObject(iiter);
502 >           integrableObject != NULL;
503 >           integrableObject = mol->nextIntegrableObject(iiter)) {
504          
505 <    info->integrableObjects[vd]->setVel( aVel );
506 <  }
505 >        mass = integrableObject->getMass();
506 >        vel = integrableObject->getVel();
507  
508 < }
508 >        kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
509 >        
510 >        if (integrableObject->isDirectional()) {
511 >          angMom = integrableObject->getJ();
512 >          I = integrableObject->getI();
513  
514 < void Thermo::getCOMVel(double vdrift[3]){
514 >          if (integrableObject->isLinear()) {
515 >            i = integrableObject->linearAxis();
516 >            j = (i + 1) % 3;
517 >            k = (i + 2) % 3;
518 >            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
519 >          } else {                        
520 >            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
521 >              + angMom[2]*angMom[2]/I(2, 2);
522 >          }
523 >        }
524  
525 <  double mtot, mtot_local;
349 <  double aVel[3], amass;
350 <  double vdrift_local[3];
351 <  int vd, j;
352 <  int nobj;
525 >        potential = 0.0;
526  
527 <  nobj   = info->integrableObjects.size();
527 >        if (integrableObject->isRigidBody()) {
528 >          RigidBody* rb = dynamic_cast<RigidBody*>(integrableObject);
529 >          for (atom = rb->beginAtom(ai); atom != NULL;
530 >               atom = rb->nextAtom(ai)) {
531 >            potential +=  atom->getParticlePot();
532 >          }          
533 >        } else {
534 >          potential = integrableObject->getParticlePot();
535 >          cerr << "ppot = "  << potential << "\n";
536 >        }
537  
538 <  mtot_local = 0.0;
539 <  vdrift_local[0] = 0.0;
540 <  vdrift_local[1] = 0.0;
541 <  vdrift_local[2] = 0.0;
542 <  
543 <  for(vd = 0; vd < nobj; vd++){
544 <    
545 <    amass = info->integrableObjects[vd]->getMass();
364 <    info->integrableObjects[vd]->getVel( aVel );
538 >        potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
539 >        // The potential may not be a 1/2 factor
540 >        eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2
541 >        heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
542 >        heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
543 >        heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
544 >      }
545 >    }
546  
547 <    for(j = 0; j < 3; j++)
367 <      vdrift_local[j] += aVel[j] * amass;
368 <    
369 <    mtot_local += amass;
370 <  }
547 >    std::cerr << "Heat flux heatFluxJc is: " << heatFluxJc << std::endl;
548  
549 +    /* The J_v vector is reduced in fortan so everyone has the global
550 +     *  Jv. Jc is computed over the local atoms and must be reduced
551 +     *  among all processors.
552 +     */
553   #ifdef IS_MPI
554 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
555 <  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
375 < #else
376 <  mtot = mtot_local;
377 <  for(vd = 0; vd < 3; vd++) {
378 <    vdrift[vd] = vdrift_local[vd];
379 <  }
554 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,
555 >                              MPI::SUM);
556   #endif
557      
558 <  for (vd = 0; vd < 3; vd++) {
383 <    vdrift[vd] = vdrift[vd] / mtot;
384 <  }
385 <  
386 < }
558 >    // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
559  
560 < void Thermo::getCOM(double COM[3]){
561 <
390 <  double mtot, mtot_local;
391 <  double aPos[3], amass;
392 <  double COM_local[3];
393 <  int i, j;
394 <  int nobj;
395 <
396 <  mtot_local = 0.0;
397 <  COM_local[0] = 0.0;
398 <  COM_local[1] = 0.0;
399 <  COM_local[2] = 0.0;
400 <
401 <  nobj = info->integrableObjects.size();
402 <  for(i = 0; i < nobj; i++){
560 >    Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
561 >      PhysicalConstants::energyConvert;
562      
563 <    amass = info->integrableObjects[i]->getMass();
564 <    info->integrableObjects[i]->getPos( aPos );
406 <
407 <    for(j = 0; j < 3; j++)
408 <      COM_local[j] += aPos[j] * amass;
563 >    std::cerr << "Heat flux Jc is: " << heatFluxJc << std::endl;
564 >    std::cerr << "Heat flux Jv is: " << heatFluxJv << std::endl;
565      
566 <    mtot_local += amass;
566 >    // Correct for the fact the flux is 1/V (Jc + Jv)
567 >    return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
568    }
569 <
413 < #ifdef IS_MPI
414 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
415 <  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
416 < #else
417 <  mtot = mtot_local;
418 <  for(i = 0; i < 3; i++) {
419 <    COM[i] = COM_local[i];
420 <  }
421 < #endif
422 <    
423 <  for (i = 0; i < 3; i++) {
424 <    COM[i] = COM[i] / mtot;
425 <  }
426 < }
427 <
428 < void Thermo::removeCOMdrift() {
429 <  double vdrift[3], aVel[3];
430 <  int vd, j, nobj;
431 <
432 <  nobj = info->integrableObjects.size();
433 <
434 <  // Get the Center of Mass drift velocity.
435 <
436 <  getCOMVel(vdrift);
437 <  
438 <  //  Corrects for the center of mass drift.
439 <  // sums all the momentum and divides by total mass.
440 <
441 <  for(vd = 0; vd < nobj; vd++){
442 <    
443 <    info->integrableObjects[vd]->getVel(aVel);
444 <    
445 <    for (j=0; j < 3; j++)
446 <      aVel[j] -= vdrift[j];
447 <        
448 <    info->integrableObjects[vd]->setVel( aVel );
449 <  }
450 < }
569 > } //end namespace OpenMD

Comparing:
trunk/src/brains/Thermo.cpp (property svn:keywords), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/brains/Thermo.cpp (property svn:keywords), Revision 1723 by gezelter, Thu May 24 20:59:54 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines