ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
(Generate patch)

Comparing:
trunk/src/brains/Thermo.cpp (file contents), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/brains/Thermo.cpp (file contents), Revision 1465 by chuckv, Fri Jul 9 23:08:25 2010 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40 + */
41 +
42   #include <math.h>
43   #include <iostream>
3 using namespace std;
44  
45   #ifdef IS_MPI
46   #include <mpi.h>
47   #endif //is_mpi
48  
49   #include "brains/Thermo.hpp"
50 < #include "primitives/SRI.hpp"
11 < #include "integrators/Integrator.hpp"
50 > #include "primitives/Molecule.hpp"
51   #include "utils/simError.h"
52 < #include "math/MatVec3.h"
52 > #include "utils/PhysicalConstants.hpp"
53  
54 < #ifdef IS_MPI
16 < #define __C
17 < #include "brains/mpiSimulation.hpp"
18 < #endif // is_mpi
54 > namespace OpenMD {
55  
56 < inline double roundMe( double x ){
57 <          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
58 < }
56 >  RealType Thermo::getKinetic() {
57 >    SimInfo::MoleculeIterator miter;
58 >    std::vector<StuntDouble*>::iterator iiter;
59 >    Molecule* mol;
60 >    StuntDouble* integrableObject;    
61 >    Vector3d vel;
62 >    Vector3d angMom;
63 >    Mat3x3d I;
64 >    int i;
65 >    int j;
66 >    int k;
67 >    RealType mass;
68 >    RealType kinetic = 0.0;
69 >    RealType kinetic_global = 0.0;
70 >    
71 >    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
72 >      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
73 >           integrableObject = mol->nextIntegrableObject(iiter)) {
74 >        
75 >        mass = integrableObject->getMass();
76 >        vel = integrableObject->getVel();
77 >        
78 >        kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
79 >        
80 >        if (integrableObject->isDirectional()) {
81 >          angMom = integrableObject->getJ();
82 >          I = integrableObject->getI();
83  
84 < Thermo::Thermo( SimInfo* the_info ) {
85 <  info = the_info;
86 <  int baseSeed = the_info->getSeed();
87 <  
88 <  gaussStream = new gaussianSPRNG( baseSeed );
89 < }
84 >          if (integrableObject->isLinear()) {
85 >            i = integrableObject->linearAxis();
86 >            j = (i + 1) % 3;
87 >            k = (i + 2) % 3;
88 >            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
89 >          } else {                        
90 >            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
91 >              + angMom[2]*angMom[2]/I(2, 2);
92 >          }
93 >        }
94 >            
95 >      }
96 >    }
97 >    
98 > #ifdef IS_MPI
99  
100 < Thermo::~Thermo(){
101 <  delete gaussStream;
102 < }
100 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
101 >                  MPI_COMM_WORLD);
102 >    kinetic = kinetic_global;
103  
104 < double Thermo::getKinetic(){
104 > #endif //is_mpi
105  
106 <  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
38 <  double kinetic;
39 <  double amass;
40 <  double aVel[3], aJ[3], I[3][3];
41 <  int i, j, k, kl;
106 >    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
107  
108 <  double kinetic_global;
109 <  vector<StuntDouble *> integrableObjects = info->integrableObjects;
45 <  
46 <  kinetic = 0.0;
47 <  kinetic_global = 0.0;
108 >    return kinetic;
109 >  }
110  
111 <  for (kl=0; kl<integrableObjects.size(); kl++) {
112 <    integrableObjects[kl]->getVel(aVel);
113 <    amass = integrableObjects[kl]->getMass();
111 >  RealType Thermo::getPotential() {
112 >    RealType potential = 0.0;
113 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
114 >    RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
115  
116 <   for(j=0; j<3; j++)
54 <      kinetic += amass*aVel[j]*aVel[j];
116 >    // Get total potential for entire system from MPI.
117  
56   if (integrableObjects[kl]->isDirectional()){
57
58      integrableObjects[kl]->getJ( aJ );
59      integrableObjects[kl]->getI( I );
60
61      if (integrableObjects[kl]->isLinear()) {
62        i = integrableObjects[kl]->linearAxis();
63        j = (i+1)%3;
64        k = (i+2)%3;
65        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
66      } else {
67        for (j=0; j<3; j++)
68          kinetic += aJ[j]*aJ[j] / I[j][j];
69      }
70   }
71  }
118   #ifdef IS_MPI
73  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
74                MPI_SUM, MPI_COMM_WORLD);
75  kinetic = kinetic_global;
76 #endif //is_mpi
77  
78  kinetic = kinetic * 0.5 / e_convert;
119  
120 <  return kinetic;
121 < }
120 >    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
121 >                  MPI_COMM_WORLD);
122 >    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
123  
124 < double Thermo::getPotential(){
84 <  
85 <  double potential_local;
86 <  double potential;
87 <  int el, nSRI;
88 <  Molecule* molecules;
124 > #else
125  
126 <  molecules = info->molecules;
91 <  nSRI = info->n_SRI;
126 >    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
127  
128 <  potential_local = 0.0;
94 <  potential = 0.0;
95 <  potential_local += info->lrPot;
128 > #endif // is_mpi
129  
130 <  for( el=0; el<info->n_mol; el++ ){    
98 <    potential_local += molecules[el].getPotential();
130 >    return potential;
131    }
132  
133 <  // Get total potential for entire system from MPI.
134 < #ifdef IS_MPI
103 <  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
104 <                MPI_SUM, MPI_COMM_WORLD);
105 < #else
106 <  potential = potential_local;
107 < #endif // is_mpi
133 >  RealType Thermo::getTotalE() {
134 >    RealType total;
135  
136 <  return potential;
137 < }
136 >    total = this->getKinetic() + this->getPotential();
137 >    return total;
138 >  }
139  
140 < double Thermo::getTotalE(){
140 >  RealType Thermo::getTemperature() {
141 >    
142 >    RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
143 >    return temperature;
144 >  }
145  
146 <  double total;
146 >  RealType Thermo::getVolume() {
147 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
148 >    return curSnapshot->getVolume();
149 >  }
150  
151 <  total = this->getKinetic() + this->getPotential();
117 <  return total;
118 < }
151 >  RealType Thermo::getPressure() {
152  
153 < double Thermo::getTemperature(){
153 >    // Relies on the calculation of the full molecular pressure tensor
154  
122  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
123  double temperature;
155  
156 <  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
157 <  return temperature;
127 < }
156 >    Mat3x3d tensor;
157 >    RealType pressure;
158  
159 < double Thermo::getVolume() {
159 >    tensor = getPressureTensor();
160  
161 <  return info->boxVol;
132 < }
161 >    pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
162  
163 < double Thermo::getPressure() {
163 >    return pressure;
164 >  }
165  
166 <  // Relies on the calculation of the full molecular pressure tensor
137 <  
138 <  const double p_convert = 1.63882576e8;
139 <  double press[3][3];
140 <  double pressure;
166 >  RealType Thermo::getPressure(int direction) {
167  
168 <  this->getPressureTensor(press);
168 >    // Relies on the calculation of the full molecular pressure tensor
169  
170 <  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
170 >          
171 >    Mat3x3d tensor;
172 >    RealType pressure;
173  
174 <  return pressure;
147 < }
174 >    tensor = getPressureTensor();
175  
176 < double Thermo::getPressureX() {
176 >    pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
177  
178 <  // Relies on the calculation of the full molecular pressure tensor
179 <  
153 <  const double p_convert = 1.63882576e8;
154 <  double press[3][3];
155 <  double pressureX;
178 >    return pressure;
179 >  }
180  
181 <  this->getPressureTensor(press);
181 >  Mat3x3d Thermo::getPressureTensor() {
182 >    // returns pressure tensor in units amu*fs^-2*Ang^-1
183 >    // routine derived via viral theorem description in:
184 >    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
185 >    Mat3x3d pressureTensor;
186 >    Mat3x3d p_local(0.0);
187 >    Mat3x3d p_global(0.0);
188  
189 <  pressureX = p_convert * press[0][0];
189 >    SimInfo::MoleculeIterator i;
190 >    std::vector<StuntDouble*>::iterator j;
191 >    Molecule* mol;
192 >    StuntDouble* integrableObject;    
193 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
194 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
195 >           integrableObject = mol->nextIntegrableObject(j)) {
196  
197 <  return pressureX;
198 < }
197 >        RealType mass = integrableObject->getMass();
198 >        Vector3d vcom = integrableObject->getVel();
199 >        p_local += mass * outProduct(vcom, vcom);        
200 >      }
201 >    }
202 >    
203 > #ifdef IS_MPI
204 >    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
205 > #else
206 >    p_global = p_local;
207 > #endif // is_mpi
208  
209 < double Thermo::getPressureY() {
209 >    RealType volume = this->getVolume();
210 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
211 >    Mat3x3d tau = curSnapshot->statData.getTau();
212  
213 <  // Relies on the calculation of the full molecular pressure tensor
214 <  
215 <  const double p_convert = 1.63882576e8;
216 <  double press[3][3];
170 <  double pressureY;
213 >    pressureTensor =  (p_global + PhysicalConstants::energyConvert* tau)/volume;
214 >    
215 >    return pressureTensor;
216 >  }
217  
172  this->getPressureTensor(press);
218  
219 <  pressureY = p_convert * press[1][1];
219 >  void Thermo::saveStat(){
220 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
221 >    Stats& stat = currSnapshot->statData;
222 >    
223 >    stat[Stats::KINETIC_ENERGY] = getKinetic();
224 >    stat[Stats::POTENTIAL_ENERGY] = getPotential();
225 >    stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ;
226 >    stat[Stats::TEMPERATURE] = getTemperature();
227 >    stat[Stats::PRESSURE] = getPressure();
228 >    stat[Stats::VOLUME] = getVolume();      
229  
230 <  return pressureY;
231 < }
230 >    Mat3x3d tensor =getPressureTensor();
231 >    stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);      
232 >    stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);      
233 >    stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);      
234 >    stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);      
235 >    stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);      
236 >    stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);      
237 >    stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);      
238 >    stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);      
239 >    stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);      
240  
179 double Thermo::getPressureZ() {
241  
242 <  // Relies on the calculation of the full molecular pressure tensor
182 <  
183 <  const double p_convert = 1.63882576e8;
184 <  double press[3][3];
185 <  double pressureZ;
242 >    Globals* simParams = info_->getSimParams();
243  
244 <  this->getPressureTensor(press);
244 >    if (simParams->haveTaggedAtomPair() &&
245 >        simParams->havePrintTaggedPairDistance()) {
246 >      if ( simParams->getPrintTaggedPairDistance()) {
247 >        
248 >        std::pair<int, int> tap = simParams->getTaggedAtomPair();
249 >        Vector3d pos1, pos2, rab;
250  
251 <  pressureZ = p_convert * press[2][2];
251 > #ifdef IS_MPI        
252 >        std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl;
253  
254 <  return pressureZ;
255 < }
254 >        int mol1 = info_->getGlobalMolMembership(tap.first);
255 >        int mol2 = info_->getGlobalMolMembership(tap.second);
256 >        std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
257  
258 +        int proc1 = info_->getMolToProc(mol1);
259 +        int proc2 = info_->getMolToProc(mol2);
260  
261 < void Thermo::getPressureTensor(double press[3][3]){
196 <  // returns pressure tensor in units amu*fs^-2*Ang^-1
197 <  // routine derived via viral theorem description in:
198 <  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
261 >        std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
262  
263 <  const double e_convert = 4.184e-4;
263 >        RealType data[3];
264 >        if (proc1 == worldRank) {
265 >          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
266 >          std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
267 >          pos1 = sd1->getPos();
268 >          data[0] = pos1.x();
269 >          data[1] = pos1.y();
270 >          data[2] = pos1.z();          
271 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
272 >        } else {
273 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
274 >          pos1 = Vector3d(data);
275 >        }
276  
202  double molmass, volume;
203  double vcom[3];
204  double p_local[9], p_global[9];
205  int i, j, k;
277  
278 <  for (i=0; i < 9; i++) {    
279 <    p_local[i] = 0.0;
280 <    p_global[i] = 0.0;
281 <  }
282 <
283 <  // use velocities of integrableObjects and their masses:  
284 <
285 <  for (i=0; i < info->integrableObjects.size(); i++) {
286 <
287 <    molmass = info->integrableObjects[i]->getMass();
288 <    
289 <    info->integrableObjects[i]->getVel(vcom);
219 <    
220 <    p_local[0] += molmass * (vcom[0] * vcom[0]);
221 <    p_local[1] += molmass * (vcom[0] * vcom[1]);
222 <    p_local[2] += molmass * (vcom[0] * vcom[2]);
223 <    p_local[3] += molmass * (vcom[1] * vcom[0]);
224 <    p_local[4] += molmass * (vcom[1] * vcom[1]);
225 <    p_local[5] += molmass * (vcom[1] * vcom[2]);
226 <    p_local[6] += molmass * (vcom[2] * vcom[0]);
227 <    p_local[7] += molmass * (vcom[2] * vcom[1]);
228 <    p_local[8] += molmass * (vcom[2] * vcom[2]);
229 <
230 <  }
231 <
232 <  // Get total for entire system from MPI.
233 <  
234 < #ifdef IS_MPI
235 <  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
278 >        if (proc2 == worldRank) {
279 >          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
280 >          std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
281 >          pos2 = sd2->getPos();
282 >          data[0] = pos2.x();
283 >          data[1] = pos2.y();
284 >          data[2] = pos2.z();          
285 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
286 >        } else {
287 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
288 >          pos2 = Vector3d(data);
289 >        }
290   #else
291 <  for (i=0; i<9; i++) {
292 <    p_global[i] = p_local[i];
293 <  }
294 < #endif // is_mpi
295 <
296 <  volume = this->getVolume();
297 <
298 <
299 <
246 <  for(i = 0; i < 3; i++) {
247 <    for (j = 0; j < 3; j++) {
248 <      k = 3*i + j;
249 <      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
291 >        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
292 >        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
293 >        pos1 = at1->getPos();
294 >        pos2 = at2->getPos();
295 > #endif        
296 >        rab = pos2 - pos1;
297 >        currSnapshot->wrapVector(rab);
298 >        stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length();
299 >      }
300      }
251  }
252 }
253
254 void Thermo::velocitize() {
255  
256  double aVel[3], aJ[3], I[3][3];
257  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
258  double vdrift[3];
259  double vbar;
260  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
261  double av2;
262  double kebar;
263  double temperature;
264  int nobj;
265
266  if (!info->have_target_temp) {
267    sprintf( painCave.errMsg,
268             "You can't resample the velocities without a targetTemp!\n"
269             );
270    painCave.isFatal = 1;
271    painCave.severity = OOPSE_ERROR;
272    simError();
273    return;
274  }
275
276  nobj = info->integrableObjects.size();
277  
278  temperature   = info->target_temp;
279  
280  kebar = kb * temperature * (double)info->ndfRaw /
281    ( 2.0 * (double)info->ndf );
282  
283  for(vr = 0; vr < nobj; vr++){
284    
285    // uses equipartition theory to solve for vbar in angstrom/fs
286
287    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
288    vbar = sqrt( av2 );
289
290    // picks random velocities from a gaussian distribution
291    // centered on vbar
292
293    for (j=0; j<3; j++)
294      aVel[j] = vbar * gaussStream->getGaussian();
295    
296    info->integrableObjects[vr]->setVel( aVel );
297    
298    if(info->integrableObjects[vr]->isDirectional()){
299
300      info->integrableObjects[vr]->getI( I );
301
302      if (info->integrableObjects[vr]->isLinear()) {
303
304        l= info->integrableObjects[vr]->linearAxis();
305        m = (l+1)%3;
306        n = (l+2)%3;
307
308        aJ[l] = 0.0;
309        vbar = sqrt( 2.0 * kebar * I[m][m] );
310        aJ[m] = vbar * gaussStream->getGaussian();
311        vbar = sqrt( 2.0 * kebar * I[n][n] );
312        aJ[n] = vbar * gaussStream->getGaussian();
313        
314      } else {
315        for (j = 0 ; j < 3; j++) {
316          vbar = sqrt( 2.0 * kebar * I[j][j] );
317          aJ[j] = vbar * gaussStream->getGaussian();
318        }      
319      } // else isLinear
320
321      info->integrableObjects[vr]->setJ( aJ );
301        
302 <    }//isDirectional
303 <
325 <  }
326 <
327 <  // Get the Center of Mass drift velocity.
328 <
329 <  getCOMVel(vdrift);
330 <  
331 <  //  Corrects for the center of mass drift.
332 <  // sums all the momentum and divides by total mass.
333 <
334 <  for(vd = 0; vd < nobj; vd++){
302 >    /**@todo need refactorying*/
303 >    //Conserved Quantity is set by integrator and time is set by setTime
304      
336    info->integrableObjects[vd]->getVel(aVel);
337    
338    for (j=0; j < 3; j++)
339      aVel[j] -= vdrift[j];
340        
341    info->integrableObjects[vd]->setVel( aVel );
305    }
306  
307 < }
345 <
346 < void Thermo::getCOMVel(double vdrift[3]){
347 <
348 <  double mtot, mtot_local;
349 <  double aVel[3], amass;
350 <  double vdrift_local[3];
351 <  int vd, j;
352 <  int nobj;
353 <
354 <  nobj   = info->integrableObjects.size();
355 <
356 <  mtot_local = 0.0;
357 <  vdrift_local[0] = 0.0;
358 <  vdrift_local[1] = 0.0;
359 <  vdrift_local[2] = 0.0;
360 <  
361 <  for(vd = 0; vd < nobj; vd++){
362 <    
363 <    amass = info->integrableObjects[vd]->getMass();
364 <    info->integrableObjects[vd]->getVel( aVel );
365 <
366 <    for(j = 0; j < 3; j++)
367 <      vdrift_local[j] += aVel[j] * amass;
368 <    
369 <    mtot_local += amass;
370 <  }
371 <
372 < #ifdef IS_MPI
373 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
374 <  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
375 < #else
376 <  mtot = mtot_local;
377 <  for(vd = 0; vd < 3; vd++) {
378 <    vdrift[vd] = vdrift_local[vd];
379 <  }
380 < #endif
381 <    
382 <  for (vd = 0; vd < 3; vd++) {
383 <    vdrift[vd] = vdrift[vd] / mtot;
384 <  }
385 <  
386 < }
387 <
388 < void Thermo::getCOM(double COM[3]){
389 <
390 <  double mtot, mtot_local;
391 <  double aPos[3], amass;
392 <  double COM_local[3];
393 <  int i, j;
394 <  int nobj;
395 <
396 <  mtot_local = 0.0;
397 <  COM_local[0] = 0.0;
398 <  COM_local[1] = 0.0;
399 <  COM_local[2] = 0.0;
400 <
401 <  nobj = info->integrableObjects.size();
402 <  for(i = 0; i < nobj; i++){
403 <    
404 <    amass = info->integrableObjects[i]->getMass();
405 <    info->integrableObjects[i]->getPos( aPos );
406 <
407 <    for(j = 0; j < 3; j++)
408 <      COM_local[j] += aPos[j] * amass;
409 <    
410 <    mtot_local += amass;
411 <  }
412 <
413 < #ifdef IS_MPI
414 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
415 <  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
416 < #else
417 <  mtot = mtot_local;
418 <  for(i = 0; i < 3; i++) {
419 <    COM[i] = COM_local[i];
420 <  }
421 < #endif
422 <    
423 <  for (i = 0; i < 3; i++) {
424 <    COM[i] = COM[i] / mtot;
425 <  }
426 < }
427 <
428 < void Thermo::removeCOMdrift() {
429 <  double vdrift[3], aVel[3];
430 <  int vd, j, nobj;
431 <
432 <  nobj = info->integrableObjects.size();
433 <
434 <  // Get the Center of Mass drift velocity.
435 <
436 <  getCOMVel(vdrift);
437 <  
438 <  //  Corrects for the center of mass drift.
439 <  // sums all the momentum and divides by total mass.
440 <
441 <  for(vd = 0; vd < nobj; vd++){
442 <    
443 <    info->integrableObjects[vd]->getVel(aVel);
444 <    
445 <    for (j=0; j < 3; j++)
446 <      aVel[j] -= vdrift[j];
447 <        
448 <    info->integrableObjects[vd]->setVel( aVel );
449 <  }
450 < }
307 > } //end namespace OpenMD

Comparing:
trunk/src/brains/Thermo.cpp (property svn:keywords), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/brains/Thermo.cpp (property svn:keywords), Revision 1465 by chuckv, Fri Jul 9 23:08:25 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines