1 |
+ |
/* |
2 |
+ |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
+ |
* |
4 |
+ |
* The University of Notre Dame grants you ("Licensee") a |
5 |
+ |
* non-exclusive, royalty free, license to use, modify and |
6 |
+ |
* redistribute this software in source and binary code form, provided |
7 |
+ |
* that the following conditions are met: |
8 |
+ |
* |
9 |
+ |
* 1. Acknowledgement of the program authors must be made in any |
10 |
+ |
* publication of scientific results based in part on use of the |
11 |
+ |
* program. An acceptable form of acknowledgement is citation of |
12 |
+ |
* the article in which the program was described (Matthew |
13 |
+ |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
+ |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
+ |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
+ |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
+ |
* |
18 |
+ |
* 2. Redistributions of source code must retain the above copyright |
19 |
+ |
* notice, this list of conditions and the following disclaimer. |
20 |
+ |
* |
21 |
+ |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
+ |
* notice, this list of conditions and the following disclaimer in the |
23 |
+ |
* documentation and/or other materials provided with the |
24 |
+ |
* distribution. |
25 |
+ |
* |
26 |
+ |
* This software is provided "AS IS," without a warranty of any |
27 |
+ |
* kind. All express or implied conditions, representations and |
28 |
+ |
* warranties, including any implied warranty of merchantability, |
29 |
+ |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
+ |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
+ |
* be liable for any damages suffered by licensee as a result of |
32 |
+ |
* using, modifying or distributing the software or its |
33 |
+ |
* derivatives. In no event will the University of Notre Dame or its |
34 |
+ |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
+ |
* direct, indirect, special, consequential, incidental or punitive |
36 |
+ |
* damages, however caused and regardless of the theory of liability, |
37 |
+ |
* arising out of the use of or inability to use software, even if the |
38 |
+ |
* University of Notre Dame has been advised of the possibility of |
39 |
+ |
* such damages. |
40 |
+ |
*/ |
41 |
+ |
|
42 |
|
#include <math.h> |
43 |
|
#include <iostream> |
3 |
– |
using namespace std; |
44 |
|
|
45 |
|
#ifdef IS_MPI |
46 |
|
#include <mpi.h> |
47 |
|
#endif //is_mpi |
48 |
|
|
49 |
< |
#include "Thermo.hpp" |
50 |
< |
#include "SRI.hpp" |
51 |
< |
#include "Integrator.hpp" |
52 |
< |
#include "simError.h" |
13 |
< |
#include "MatVec3.h" |
49 |
> |
#include "brains/Thermo.hpp" |
50 |
> |
#include "primitives/Molecule.hpp" |
51 |
> |
#include "utils/simError.h" |
52 |
> |
#include "utils/OOPSEConstant.hpp" |
53 |
|
|
54 |
< |
#ifdef IS_MPI |
16 |
< |
#define __C |
17 |
< |
#include "mpiSimulation.hpp" |
18 |
< |
#endif // is_mpi |
54 |
> |
namespace oopse { |
55 |
|
|
56 |
< |
inline double roundMe( double x ){ |
57 |
< |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
58 |
< |
} |
56 |
> |
RealType Thermo::getKinetic() { |
57 |
> |
SimInfo::MoleculeIterator miter; |
58 |
> |
std::vector<StuntDouble*>::iterator iiter; |
59 |
> |
Molecule* mol; |
60 |
> |
StuntDouble* integrableObject; |
61 |
> |
Vector3d vel; |
62 |
> |
Vector3d angMom; |
63 |
> |
Mat3x3d I; |
64 |
> |
int i; |
65 |
> |
int j; |
66 |
> |
int k; |
67 |
> |
RealType kinetic = 0.0; |
68 |
> |
RealType kinetic_global = 0.0; |
69 |
> |
|
70 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { |
71 |
> |
for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; |
72 |
> |
integrableObject = mol->nextIntegrableObject(iiter)) { |
73 |
> |
|
74 |
> |
RealType mass = integrableObject->getMass(); |
75 |
> |
Vector3d vel = integrableObject->getVel(); |
76 |
> |
|
77 |
> |
kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
78 |
> |
|
79 |
> |
if (integrableObject->isDirectional()) { |
80 |
> |
angMom = integrableObject->getJ(); |
81 |
> |
I = integrableObject->getI(); |
82 |
|
|
83 |
< |
Thermo::Thermo( SimInfo* the_info ) { |
84 |
< |
info = the_info; |
85 |
< |
int baseSeed = the_info->getSeed(); |
86 |
< |
|
87 |
< |
gaussStream = new gaussianSPRNG( baseSeed ); |
88 |
< |
} |
83 |
> |
if (integrableObject->isLinear()) { |
84 |
> |
i = integrableObject->linearAxis(); |
85 |
> |
j = (i + 1) % 3; |
86 |
> |
k = (i + 2) % 3; |
87 |
> |
kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); |
88 |
> |
} else { |
89 |
> |
kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) |
90 |
> |
+ angMom[2]*angMom[2]/I(2, 2); |
91 |
> |
} |
92 |
> |
} |
93 |
> |
|
94 |
> |
} |
95 |
> |
} |
96 |
> |
|
97 |
> |
#ifdef IS_MPI |
98 |
|
|
99 |
< |
Thermo::~Thermo(){ |
100 |
< |
delete gaussStream; |
101 |
< |
} |
99 |
> |
MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, |
100 |
> |
MPI_COMM_WORLD); |
101 |
> |
kinetic = kinetic_global; |
102 |
|
|
103 |
< |
double Thermo::getKinetic(){ |
103 |
> |
#endif //is_mpi |
104 |
|
|
105 |
< |
const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 |
38 |
< |
double kinetic; |
39 |
< |
double amass; |
40 |
< |
double aVel[3], aJ[3], I[3][3]; |
41 |
< |
int i, j, k, kl; |
105 |
> |
kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert; |
106 |
|
|
107 |
< |
double kinetic_global; |
108 |
< |
vector<StuntDouble *> integrableObjects = info->integrableObjects; |
45 |
< |
|
46 |
< |
kinetic = 0.0; |
47 |
< |
kinetic_global = 0.0; |
107 |
> |
return kinetic; |
108 |
> |
} |
109 |
|
|
110 |
< |
for (kl=0; kl<integrableObjects.size(); kl++) { |
111 |
< |
integrableObjects[kl]->getVel(aVel); |
112 |
< |
amass = integrableObjects[kl]->getMass(); |
110 |
> |
RealType Thermo::getPotential() { |
111 |
> |
RealType potential = 0.0; |
112 |
> |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
113 |
> |
RealType shortRangePot_local = curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; |
114 |
|
|
115 |
< |
for(j=0; j<3; j++) |
54 |
< |
kinetic += amass*aVel[j]*aVel[j]; |
115 |
> |
// Get total potential for entire system from MPI. |
116 |
|
|
56 |
– |
if (integrableObjects[kl]->isDirectional()){ |
57 |
– |
|
58 |
– |
integrableObjects[kl]->getJ( aJ ); |
59 |
– |
integrableObjects[kl]->getI( I ); |
60 |
– |
|
61 |
– |
if (integrableObjects[kl]->isLinear()) { |
62 |
– |
i = integrableObjects[kl]->linearAxis(); |
63 |
– |
j = (i+1)%3; |
64 |
– |
k = (i+2)%3; |
65 |
– |
kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; |
66 |
– |
} else { |
67 |
– |
for (j=0; j<3; j++) |
68 |
– |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
69 |
– |
} |
70 |
– |
} |
71 |
– |
} |
117 |
|
#ifdef IS_MPI |
73 |
– |
MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, |
74 |
– |
MPI_SUM, MPI_COMM_WORLD); |
75 |
– |
kinetic = kinetic_global; |
76 |
– |
#endif //is_mpi |
77 |
– |
|
78 |
– |
kinetic = kinetic * 0.5 / e_convert; |
118 |
|
|
119 |
< |
return kinetic; |
120 |
< |
} |
119 |
> |
MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM, |
120 |
> |
MPI_COMM_WORLD); |
121 |
> |
potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
122 |
|
|
123 |
< |
double Thermo::getPotential(){ |
84 |
< |
|
85 |
< |
double potential_local; |
86 |
< |
double potential; |
87 |
< |
int el, nSRI; |
88 |
< |
Molecule* molecules; |
123 |
> |
#else |
124 |
|
|
125 |
< |
molecules = info->molecules; |
91 |
< |
nSRI = info->n_SRI; |
125 |
> |
potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
126 |
|
|
127 |
< |
potential_local = 0.0; |
94 |
< |
potential = 0.0; |
95 |
< |
potential_local += info->lrPot; |
127 |
> |
#endif // is_mpi |
128 |
|
|
129 |
< |
for( el=0; el<info->n_mol; el++ ){ |
98 |
< |
potential_local += molecules[el].getPotential(); |
129 |
> |
return potential; |
130 |
|
} |
131 |
|
|
132 |
< |
// Get total potential for entire system from MPI. |
133 |
< |
#ifdef IS_MPI |
103 |
< |
MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, |
104 |
< |
MPI_SUM, MPI_COMM_WORLD); |
105 |
< |
#else |
106 |
< |
potential = potential_local; |
107 |
< |
#endif // is_mpi |
132 |
> |
RealType Thermo::getTotalE() { |
133 |
> |
RealType total; |
134 |
|
|
135 |
< |
return potential; |
136 |
< |
} |
135 |
> |
total = this->getKinetic() + this->getPotential(); |
136 |
> |
return total; |
137 |
> |
} |
138 |
|
|
139 |
< |
double Thermo::getTotalE(){ |
139 |
> |
RealType Thermo::getTemperature() { |
140 |
> |
|
141 |
> |
RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb ); |
142 |
> |
return temperature; |
143 |
> |
} |
144 |
|
|
145 |
< |
double total; |
145 |
> |
RealType Thermo::getVolume() { |
146 |
> |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
147 |
> |
return curSnapshot->getVolume(); |
148 |
> |
} |
149 |
|
|
150 |
< |
total = this->getKinetic() + this->getPotential(); |
117 |
< |
return total; |
118 |
< |
} |
150 |
> |
RealType Thermo::getPressure() { |
151 |
|
|
152 |
< |
double Thermo::getTemperature(){ |
152 |
> |
// Relies on the calculation of the full molecular pressure tensor |
153 |
|
|
122 |
– |
const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) |
123 |
– |
double temperature; |
154 |
|
|
155 |
< |
temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); |
156 |
< |
return temperature; |
127 |
< |
} |
155 |
> |
Mat3x3d tensor; |
156 |
> |
RealType pressure; |
157 |
|
|
158 |
< |
double Thermo::getVolume() { |
158 |
> |
tensor = getPressureTensor(); |
159 |
|
|
160 |
< |
return info->boxVol; |
132 |
< |
} |
160 |
> |
pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; |
161 |
|
|
162 |
< |
double Thermo::getPressure() { |
162 |
> |
return pressure; |
163 |
> |
} |
164 |
|
|
165 |
< |
// Relies on the calculation of the full molecular pressure tensor |
137 |
< |
|
138 |
< |
const double p_convert = 1.63882576e8; |
139 |
< |
double press[3][3]; |
140 |
< |
double pressure; |
165 |
> |
RealType Thermo::getPressure(int direction) { |
166 |
|
|
167 |
< |
this->getPressureTensor(press); |
167 |
> |
// Relies on the calculation of the full molecular pressure tensor |
168 |
|
|
169 |
< |
pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; |
169 |
> |
|
170 |
> |
Mat3x3d tensor; |
171 |
> |
RealType pressure; |
172 |
|
|
173 |
< |
return pressure; |
147 |
< |
} |
173 |
> |
tensor = getPressureTensor(); |
174 |
|
|
175 |
< |
double Thermo::getPressureX() { |
175 |
> |
pressure = OOPSEConstant::pressureConvert * tensor(direction, direction); |
176 |
|
|
177 |
< |
// Relies on the calculation of the full molecular pressure tensor |
178 |
< |
|
153 |
< |
const double p_convert = 1.63882576e8; |
154 |
< |
double press[3][3]; |
155 |
< |
double pressureX; |
177 |
> |
return pressure; |
178 |
> |
} |
179 |
|
|
157 |
– |
this->getPressureTensor(press); |
180 |
|
|
159 |
– |
pressureX = p_convert * press[0][0]; |
181 |
|
|
182 |
< |
return pressureX; |
183 |
< |
} |
182 |
> |
Mat3x3d Thermo::getPressureTensor() { |
183 |
> |
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
184 |
> |
// routine derived via viral theorem description in: |
185 |
> |
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
186 |
> |
Mat3x3d pressureTensor; |
187 |
> |
Mat3x3d p_local(0.0); |
188 |
> |
Mat3x3d p_global(0.0); |
189 |
|
|
190 |
< |
double Thermo::getPressureY() { |
190 |
> |
SimInfo::MoleculeIterator i; |
191 |
> |
std::vector<StuntDouble*>::iterator j; |
192 |
> |
Molecule* mol; |
193 |
> |
StuntDouble* integrableObject; |
194 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
195 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
196 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
197 |
|
|
198 |
< |
// Relies on the calculation of the full molecular pressure tensor |
199 |
< |
|
200 |
< |
const double p_convert = 1.63882576e8; |
201 |
< |
double press[3][3]; |
202 |
< |
double pressureY; |
198 |
> |
RealType mass = integrableObject->getMass(); |
199 |
> |
Vector3d vcom = integrableObject->getVel(); |
200 |
> |
p_local += mass * outProduct(vcom, vcom); |
201 |
> |
} |
202 |
> |
} |
203 |
> |
|
204 |
> |
#ifdef IS_MPI |
205 |
> |
MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
206 |
> |
#else |
207 |
> |
p_global = p_local; |
208 |
> |
#endif // is_mpi |
209 |
|
|
210 |
< |
this->getPressureTensor(press); |
210 |
> |
RealType volume = this->getVolume(); |
211 |
> |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
212 |
> |
Mat3x3d tau = curSnapshot->statData.getTau(); |
213 |
|
|
214 |
< |
pressureY = p_convert * press[1][1]; |
214 |
> |
pressureTensor = (p_global + OOPSEConstant::energyConvert* tau)/volume; |
215 |
|
|
216 |
< |
return pressureY; |
177 |
< |
} |
178 |
< |
|
179 |
< |
double Thermo::getPressureZ() { |
180 |
< |
|
181 |
< |
// Relies on the calculation of the full molecular pressure tensor |
182 |
< |
|
183 |
< |
const double p_convert = 1.63882576e8; |
184 |
< |
double press[3][3]; |
185 |
< |
double pressureZ; |
186 |
< |
|
187 |
< |
this->getPressureTensor(press); |
188 |
< |
|
189 |
< |
pressureZ = p_convert * press[2][2]; |
190 |
< |
|
191 |
< |
return pressureZ; |
192 |
< |
} |
193 |
< |
|
194 |
< |
|
195 |
< |
void Thermo::getPressureTensor(double press[3][3]){ |
196 |
< |
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
197 |
< |
// routine derived via viral theorem description in: |
198 |
< |
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
199 |
< |
|
200 |
< |
const double e_convert = 4.184e-4; |
201 |
< |
|
202 |
< |
double molmass, volume; |
203 |
< |
double vcom[3]; |
204 |
< |
double p_local[9], p_global[9]; |
205 |
< |
int i, j, k; |
206 |
< |
|
207 |
< |
for (i=0; i < 9; i++) { |
208 |
< |
p_local[i] = 0.0; |
209 |
< |
p_global[i] = 0.0; |
216 |
> |
return pressureTensor; |
217 |
|
} |
218 |
|
|
219 |
< |
// use velocities of integrableObjects and their masses: |
220 |
< |
|
221 |
< |
for (i=0; i < info->integrableObjects.size(); i++) { |
215 |
< |
|
216 |
< |
molmass = info->integrableObjects[i]->getMass(); |
219 |
> |
void Thermo::saveStat(){ |
220 |
> |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
221 |
> |
Stats& stat = currSnapshot->statData; |
222 |
|
|
223 |
< |
info->integrableObjects[i]->getVel(vcom); |
224 |
< |
|
225 |
< |
p_local[0] += molmass * (vcom[0] * vcom[0]); |
226 |
< |
p_local[1] += molmass * (vcom[0] * vcom[1]); |
227 |
< |
p_local[2] += molmass * (vcom[0] * vcom[2]); |
228 |
< |
p_local[3] += molmass * (vcom[1] * vcom[0]); |
224 |
< |
p_local[4] += molmass * (vcom[1] * vcom[1]); |
225 |
< |
p_local[5] += molmass * (vcom[1] * vcom[2]); |
226 |
< |
p_local[6] += molmass * (vcom[2] * vcom[0]); |
227 |
< |
p_local[7] += molmass * (vcom[2] * vcom[1]); |
228 |
< |
p_local[8] += molmass * (vcom[2] * vcom[2]); |
223 |
> |
stat[Stats::KINETIC_ENERGY] = getKinetic(); |
224 |
> |
stat[Stats::POTENTIAL_ENERGY] = getPotential(); |
225 |
> |
stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY] + stat[Stats::POTENTIAL_ENERGY] ; |
226 |
> |
stat[Stats::TEMPERATURE] = getTemperature(); |
227 |
> |
stat[Stats::PRESSURE] = getPressure(); |
228 |
> |
stat[Stats::VOLUME] = getVolume(); |
229 |
|
|
230 |
< |
} |
230 |
> |
Mat3x3d tensor =getPressureTensor(); |
231 |
> |
stat[Stats::PRESSURE_TENSOR_X] = tensor(0, 0); |
232 |
> |
stat[Stats::PRESSURE_TENSOR_Y] = tensor(1, 1); |
233 |
> |
stat[Stats::PRESSURE_TENSOR_Z] = tensor(2, 2); |
234 |
|
|
232 |
– |
// Get total for entire system from MPI. |
233 |
– |
|
234 |
– |
#ifdef IS_MPI |
235 |
– |
MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
236 |
– |
#else |
237 |
– |
for (i=0; i<9; i++) { |
238 |
– |
p_global[i] = p_local[i]; |
239 |
– |
} |
240 |
– |
#endif // is_mpi |
235 |
|
|
236 |
< |
volume = this->getVolume(); |
237 |
< |
|
244 |
< |
|
245 |
< |
|
246 |
< |
for(i = 0; i < 3; i++) { |
247 |
< |
for (j = 0; j < 3; j++) { |
248 |
< |
k = 3*i + j; |
249 |
< |
press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; |
250 |
< |
} |
251 |
< |
} |
252 |
< |
} |
253 |
< |
|
254 |
< |
void Thermo::velocitize() { |
255 |
< |
|
256 |
< |
double aVel[3], aJ[3], I[3][3]; |
257 |
< |
int i, j, l, m, n, vr, vd; // velocity randomizer loop counters |
258 |
< |
double vdrift[3]; |
259 |
< |
double vbar; |
260 |
< |
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
261 |
< |
double av2; |
262 |
< |
double kebar; |
263 |
< |
double temperature; |
264 |
< |
int nobj; |
265 |
< |
|
266 |
< |
if (!info->have_target_temp) { |
267 |
< |
sprintf( painCave.errMsg, |
268 |
< |
"You can't resample the velocities without a targetTemp!\n" |
269 |
< |
); |
270 |
< |
painCave.isFatal = 1; |
271 |
< |
painCave.severity = OOPSE_ERROR; |
272 |
< |
simError(); |
273 |
< |
return; |
274 |
< |
} |
275 |
< |
|
276 |
< |
nobj = info->integrableObjects.size(); |
277 |
< |
|
278 |
< |
temperature = info->target_temp; |
279 |
< |
|
280 |
< |
kebar = kb * temperature * (double)info->ndfRaw / |
281 |
< |
( 2.0 * (double)info->ndf ); |
282 |
< |
|
283 |
< |
for(vr = 0; vr < nobj; vr++){ |
236 |
> |
/**@todo need refactorying*/ |
237 |
> |
//Conserved Quantity is set by integrator and time is set by setTime |
238 |
|
|
285 |
– |
// uses equipartition theory to solve for vbar in angstrom/fs |
286 |
– |
|
287 |
– |
av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); |
288 |
– |
vbar = sqrt( av2 ); |
289 |
– |
|
290 |
– |
// picks random velocities from a gaussian distribution |
291 |
– |
// centered on vbar |
292 |
– |
|
293 |
– |
for (j=0; j<3; j++) |
294 |
– |
aVel[j] = vbar * gaussStream->getGaussian(); |
295 |
– |
|
296 |
– |
info->integrableObjects[vr]->setVel( aVel ); |
297 |
– |
|
298 |
– |
if(info->integrableObjects[vr]->isDirectional()){ |
299 |
– |
|
300 |
– |
info->integrableObjects[vr]->getI( I ); |
301 |
– |
|
302 |
– |
if (info->integrableObjects[vr]->isLinear()) { |
303 |
– |
|
304 |
– |
l= info->integrableObjects[vr]->linearAxis(); |
305 |
– |
m = (l+1)%3; |
306 |
– |
n = (l+2)%3; |
307 |
– |
|
308 |
– |
aJ[l] = 0.0; |
309 |
– |
vbar = sqrt( 2.0 * kebar * I[m][m] ); |
310 |
– |
aJ[m] = vbar * gaussStream->getGaussian(); |
311 |
– |
vbar = sqrt( 2.0 * kebar * I[n][n] ); |
312 |
– |
aJ[n] = vbar * gaussStream->getGaussian(); |
313 |
– |
|
314 |
– |
} else { |
315 |
– |
for (j = 0 ; j < 3; j++) { |
316 |
– |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
317 |
– |
aJ[j] = vbar * gaussStream->getGaussian(); |
318 |
– |
} |
319 |
– |
} // else isLinear |
320 |
– |
|
321 |
– |
info->integrableObjects[vr]->setJ( aJ ); |
322 |
– |
|
323 |
– |
}//isDirectional |
324 |
– |
|
239 |
|
} |
240 |
|
|
241 |
< |
// Get the Center of Mass drift velocity. |
328 |
< |
|
329 |
< |
getCOMVel(vdrift); |
330 |
< |
|
331 |
< |
// Corrects for the center of mass drift. |
332 |
< |
// sums all the momentum and divides by total mass. |
333 |
< |
|
334 |
< |
for(vd = 0; vd < nobj; vd++){ |
335 |
< |
|
336 |
< |
info->integrableObjects[vd]->getVel(aVel); |
337 |
< |
|
338 |
< |
for (j=0; j < 3; j++) |
339 |
< |
aVel[j] -= vdrift[j]; |
340 |
< |
|
341 |
< |
info->integrableObjects[vd]->setVel( aVel ); |
342 |
< |
} |
343 |
< |
|
344 |
< |
} |
345 |
< |
|
346 |
< |
void Thermo::getCOMVel(double vdrift[3]){ |
347 |
< |
|
348 |
< |
double mtot, mtot_local; |
349 |
< |
double aVel[3], amass; |
350 |
< |
double vdrift_local[3]; |
351 |
< |
int vd, j; |
352 |
< |
int nobj; |
353 |
< |
|
354 |
< |
nobj = info->integrableObjects.size(); |
355 |
< |
|
356 |
< |
mtot_local = 0.0; |
357 |
< |
vdrift_local[0] = 0.0; |
358 |
< |
vdrift_local[1] = 0.0; |
359 |
< |
vdrift_local[2] = 0.0; |
360 |
< |
|
361 |
< |
for(vd = 0; vd < nobj; vd++){ |
362 |
< |
|
363 |
< |
amass = info->integrableObjects[vd]->getMass(); |
364 |
< |
info->integrableObjects[vd]->getVel( aVel ); |
365 |
< |
|
366 |
< |
for(j = 0; j < 3; j++) |
367 |
< |
vdrift_local[j] += aVel[j] * amass; |
368 |
< |
|
369 |
< |
mtot_local += amass; |
370 |
< |
} |
371 |
< |
|
372 |
< |
#ifdef IS_MPI |
373 |
< |
MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
374 |
< |
MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
375 |
< |
#else |
376 |
< |
mtot = mtot_local; |
377 |
< |
for(vd = 0; vd < 3; vd++) { |
378 |
< |
vdrift[vd] = vdrift_local[vd]; |
379 |
< |
} |
380 |
< |
#endif |
381 |
< |
|
382 |
< |
for (vd = 0; vd < 3; vd++) { |
383 |
< |
vdrift[vd] = vdrift[vd] / mtot; |
384 |
< |
} |
385 |
< |
|
386 |
< |
} |
387 |
< |
|
388 |
< |
void Thermo::getCOM(double COM[3]){ |
389 |
< |
|
390 |
< |
double mtot, mtot_local; |
391 |
< |
double aPos[3], amass; |
392 |
< |
double COM_local[3]; |
393 |
< |
int i, j; |
394 |
< |
int nobj; |
395 |
< |
|
396 |
< |
mtot_local = 0.0; |
397 |
< |
COM_local[0] = 0.0; |
398 |
< |
COM_local[1] = 0.0; |
399 |
< |
COM_local[2] = 0.0; |
400 |
< |
|
401 |
< |
nobj = info->integrableObjects.size(); |
402 |
< |
for(i = 0; i < nobj; i++){ |
403 |
< |
|
404 |
< |
amass = info->integrableObjects[i]->getMass(); |
405 |
< |
info->integrableObjects[i]->getPos( aPos ); |
406 |
< |
|
407 |
< |
for(j = 0; j < 3; j++) |
408 |
< |
COM_local[j] += aPos[j] * amass; |
409 |
< |
|
410 |
< |
mtot_local += amass; |
411 |
< |
} |
412 |
< |
|
413 |
< |
#ifdef IS_MPI |
414 |
< |
MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
415 |
< |
MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
416 |
< |
#else |
417 |
< |
mtot = mtot_local; |
418 |
< |
for(i = 0; i < 3; i++) { |
419 |
< |
COM[i] = COM_local[i]; |
420 |
< |
} |
421 |
< |
#endif |
422 |
< |
|
423 |
< |
for (i = 0; i < 3; i++) { |
424 |
< |
COM[i] = COM[i] / mtot; |
425 |
< |
} |
426 |
< |
} |
427 |
< |
|
428 |
< |
void Thermo::removeCOMdrift() { |
429 |
< |
double vdrift[3], aVel[3]; |
430 |
< |
int vd, j, nobj; |
431 |
< |
|
432 |
< |
nobj = info->integrableObjects.size(); |
433 |
< |
|
434 |
< |
// Get the Center of Mass drift velocity. |
435 |
< |
|
436 |
< |
getCOMVel(vdrift); |
437 |
< |
|
438 |
< |
// Corrects for the center of mass drift. |
439 |
< |
// sums all the momentum and divides by total mass. |
440 |
< |
|
441 |
< |
for(vd = 0; vd < nobj; vd++){ |
442 |
< |
|
443 |
< |
info->integrableObjects[vd]->getVel(aVel); |
444 |
< |
|
445 |
< |
for (j=0; j < 3; j++) |
446 |
< |
aVel[j] -= vdrift[j]; |
447 |
< |
|
448 |
< |
info->integrableObjects[vd]->setVel( aVel ); |
449 |
< |
} |
450 |
< |
} |
241 |
> |
} //end namespace oopse |