ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
(Generate patch)

Comparing:
trunk/src/brains/Thermo.cpp (file contents), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/Thermo.cpp (file contents), Revision 1825 by gezelter, Wed Jan 9 19:27:52 2013 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 + */
42 +
43   #include <math.h>
44   #include <iostream>
3 using namespace std;
45  
46   #ifdef IS_MPI
47   #include <mpi.h>
48   #endif //is_mpi
49  
50 < #include "Thermo.hpp"
51 < #include "SRI.hpp"
52 < #include "Integrator.hpp"
53 < #include "simError.h"
54 < #include "MatVec3.h"
50 > #include "brains/Thermo.hpp"
51 > #include "primitives/Molecule.hpp"
52 > #include "utils/simError.h"
53 > #include "utils/PhysicalConstants.hpp"
54 > #include "types/FixedChargeAdapter.hpp"
55 > #include "types/FluctuatingChargeAdapter.hpp"
56 > #include "types/MultipoleAdapter.hpp"
57 > #ifdef HAVE_QHULL
58 > #include "math/ConvexHull.hpp"
59 > #include "math/AlphaHull.hpp"
60 > #endif
61  
62 < #ifdef IS_MPI
63 < #define __C
17 < #include "mpiSimulation.hpp"
18 < #endif // is_mpi
62 > using namespace std;
63 > namespace OpenMD {
64  
65 < inline double roundMe( double x ){
66 <          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
22 < }
65 >  RealType Thermo::getTranslationalKinetic() {
66 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
67  
68 < Thermo::Thermo( SimInfo* the_info ) {
69 <  info = the_info;
70 <  int baseSeed = the_info->getSeed();
71 <  
72 <  gaussStream = new gaussianSPRNG( baseSeed );
73 < }
68 >    if (!snap->hasTranslationalKineticEnergy) {
69 >      SimInfo::MoleculeIterator miter;
70 >      vector<StuntDouble*>::iterator iiter;
71 >      Molecule* mol;
72 >      StuntDouble* sd;    
73 >      Vector3d vel;
74 >      RealType mass;
75 >      RealType kinetic(0.0);
76 >      
77 >      for (mol = info_->beginMolecule(miter); mol != NULL;
78 >           mol = info_->nextMolecule(miter)) {
79 >        
80 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
81 >             sd = mol->nextIntegrableObject(iiter)) {
82 >          
83 >          mass = sd->getMass();
84 >          vel = sd->getVel();
85 >          
86 >          kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
87 >          
88 >        }
89 >      }
90 >      
91 > #ifdef IS_MPI
92 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
93 >                                MPI::SUM);
94 > #endif
95 >      
96 >      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
97 >      
98 >      
99 >      snap->setTranslationalKineticEnergy(kinetic);
100 >    }
101 >    return snap->getTranslationalKineticEnergy();
102 >  }
103  
104 < Thermo::~Thermo(){
105 <  delete gaussStream;
33 < }
104 >  RealType Thermo::getRotationalKinetic() {
105 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
106  
107 < double Thermo::getKinetic(){
107 >    if (!snap->hasRotationalKineticEnergy) {
108 >      SimInfo::MoleculeIterator miter;
109 >      vector<StuntDouble*>::iterator iiter;
110 >      Molecule* mol;
111 >      StuntDouble* sd;    
112 >      Vector3d angMom;
113 >      Mat3x3d I;
114 >      int i, j, k;
115 >      RealType kinetic(0.0);
116 >      
117 >      for (mol = info_->beginMolecule(miter); mol != NULL;
118 >           mol = info_->nextMolecule(miter)) {
119 >        
120 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
121 >             sd = mol->nextIntegrableObject(iiter)) {
122 >          
123 >          if (sd->isDirectional()) {
124 >            angMom = sd->getJ();
125 >            I = sd->getI();
126 >            
127 >            if (sd->isLinear()) {
128 >              i = sd->linearAxis();
129 >              j = (i + 1) % 3;
130 >              k = (i + 2) % 3;
131 >              kinetic += angMom[j] * angMom[j] / I(j, j)
132 >                + angMom[k] * angMom[k] / I(k, k);
133 >            } else {                        
134 >              kinetic += angMom[0]*angMom[0]/I(0, 0)
135 >                + angMom[1]*angMom[1]/I(1, 1)
136 >                + angMom[2]*angMom[2]/I(2, 2);
137 >            }
138 >          }          
139 >        }
140 >      }
141 >      
142 > #ifdef IS_MPI
143 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
144 >                                MPI::SUM);
145 > #endif
146 >      
147 >      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
148 >          
149 >      snap->setRotationalKineticEnergy(kinetic);
150 >    }
151 >    return snap->getRotationalKineticEnergy();
152 >  }
153  
154 <  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
38 <  double kinetic;
39 <  double amass;
40 <  double aVel[3], aJ[3], I[3][3];
41 <  int i, j, k, kl;
154 >      
155  
156 <  double kinetic_global;
157 <  vector<StuntDouble *> integrableObjects = info->integrableObjects;
45 <  
46 <  kinetic = 0.0;
47 <  kinetic_global = 0.0;
156 >  RealType Thermo::getKinetic() {
157 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
158  
159 <  for (kl=0; kl<integrableObjects.size(); kl++) {
160 <    integrableObjects[kl]->getVel(aVel);
161 <    amass = integrableObjects[kl]->getMass();
159 >    if (!snap->hasKineticEnergy) {
160 >      RealType ke = getTranslationalKinetic() + getRotationalKinetic();
161 >      snap->setKineticEnergy(ke);
162 >    }
163 >    return snap->getKineticEnergy();
164 >  }
165  
166 <   for(j=0; j<3; j++)
54 <      kinetic += amass*aVel[j]*aVel[j];
166 >  RealType Thermo::getPotential() {
167  
168 <   if (integrableObjects[kl]->isDirectional()){
169 <
58 <      integrableObjects[kl]->getJ( aJ );
59 <      integrableObjects[kl]->getI( I );
168 >    // ForceManager computes the potential and stores it in the
169 >    // Snapshot.  All we have to do is report it.
170  
171 <      if (integrableObjects[kl]->isLinear()) {
172 <        i = integrableObjects[kl]->linearAxis();
63 <        j = (i+1)%3;
64 <        k = (i+2)%3;
65 <        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
66 <      } else {
67 <        for (j=0; j<3; j++)
68 <          kinetic += aJ[j]*aJ[j] / I[j][j];
69 <      }
70 <   }
171 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
172 >    return snap->getPotentialEnergy();
173    }
72 #ifdef IS_MPI
73  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
74                MPI_SUM, MPI_COMM_WORLD);
75  kinetic = kinetic_global;
76 #endif //is_mpi
77  
78  kinetic = kinetic * 0.5 / e_convert;
174  
175 <  return kinetic;
81 < }
175 >  RealType Thermo::getTotalEnergy() {
176  
177 < double Thermo::getPotential(){
84 <  
85 <  double potential_local;
86 <  double potential;
87 <  int el, nSRI;
88 <  Molecule* molecules;
177 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
178  
179 <  molecules = info->molecules;
180 <  nSRI = info->n_SRI;
179 >    if (!snap->hasTotalEnergy) {
180 >      snap->setTotalEnergy(this->getKinetic() + this->getPotential());
181 >    }
182  
183 <  potential_local = 0.0;
94 <  potential = 0.0;
95 <  potential_local += info->lrPot;
96 <
97 <  for( el=0; el<info->n_mol; el++ ){    
98 <    potential_local += molecules[el].getPotential();
183 >    return snap->getTotalEnergy();
184    }
185  
186 <  // Get total potential for entire system from MPI.
102 < #ifdef IS_MPI
103 <  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
104 <                MPI_SUM, MPI_COMM_WORLD);
105 < #else
106 <  potential = potential_local;
107 < #endif // is_mpi
186 >  RealType Thermo::getTemperature() {
187  
188 <  return potential;
110 < }
188 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
189  
190 < double Thermo::getTotalE(){
190 >    if (!snap->hasTemperature) {
191  
192 <  double total;
192 >      RealType temperature = ( 2.0 * this->getKinetic() )
193 >        / (info_->getNdf()* PhysicalConstants::kb );
194  
195 <  total = this->getKinetic() + this->getPotential();
196 <  return total;
197 < }
195 >      snap->setTemperature(temperature);
196 >    }
197 >    
198 >    return snap->getTemperature();
199 >  }
200  
201 < double Thermo::getTemperature(){
201 >  RealType Thermo::getElectronicTemperature() {
202 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
203  
204 <  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
205 <  double temperature;
204 >    if (!snap->hasElectronicTemperature) {
205 >      
206 >      SimInfo::MoleculeIterator miter;
207 >      vector<Atom*>::iterator iiter;
208 >      Molecule* mol;
209 >      Atom* atom;    
210 >      RealType cvel;
211 >      RealType cmass;
212 >      RealType kinetic(0.0);
213 >      RealType eTemp;
214 >      
215 >      for (mol = info_->beginMolecule(miter); mol != NULL;
216 >           mol = info_->nextMolecule(miter)) {
217 >        
218 >        for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
219 >             atom = mol->nextFluctuatingCharge(iiter)) {
220 >          
221 >          cmass = atom->getChargeMass();
222 >          cvel = atom->getFlucQVel();
223 >          
224 >          kinetic += cmass * cvel * cvel;
225 >          
226 >        }
227 >      }
228 >    
229 > #ifdef IS_MPI
230 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
231 >                                MPI::SUM);
232 > #endif
233  
234 <  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
235 <  return temperature;
236 < }
234 >      kinetic *= 0.5;
235 >      eTemp =  (2.0 * kinetic) /
236 >        (info_->getNFluctuatingCharges() * PhysicalConstants::kb );
237 >    
238 >      snap->setElectronicTemperature(eTemp);
239 >    }
240  
241 < double Thermo::getVolume() {
241 >    return snap->getElectronicTemperature();
242 >  }
243  
131  return info->boxVol;
132 }
244  
245 < double Thermo::getPressure() {
245 >  RealType Thermo::getVolume() {
246 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
247 >    return snap->getVolume();
248 >  }
249  
250 <  // Relies on the calculation of the full molecular pressure tensor
251 <  
138 <  const double p_convert = 1.63882576e8;
139 <  double press[3][3];
140 <  double pressure;
250 >  RealType Thermo::getPressure() {
251 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
252  
253 <  this->getPressureTensor(press);
254 <
255 <  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
256 <
257 <  return pressure;
258 < }
259 <
260 < double Thermo::getPressureX() {
253 >    if (!snap->hasPressure) {
254 >      // Relies on the calculation of the full molecular pressure tensor
255 >      
256 >      Mat3x3d tensor;
257 >      RealType pressure;
258 >      
259 >      tensor = getPressureTensor();
260 >      
261 >      pressure = PhysicalConstants::pressureConvert *
262 >        (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
263 >      
264 >      snap->setPressure(pressure);
265 >    }
266 >    
267 >    return snap->getPressure();    
268 >  }
269  
270 <  // Relies on the calculation of the full molecular pressure tensor
271 <  
272 <  const double p_convert = 1.63882576e8;
273 <  double press[3][3];
274 <  double pressureX;
270 >  Mat3x3d Thermo::getPressureTensor() {
271 >    // returns pressure tensor in units amu*fs^-2*Ang^-1
272 >    // routine derived via viral theorem description in:
273 >    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
274 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
275  
276 <  this->getPressureTensor(press);
276 >    if (!snap->hasPressureTensor) {
277  
278 <  pressureX = p_convert * press[0][0];
278 >      Mat3x3d pressureTensor;
279 >      Mat3x3d p_tens(0.0);
280 >      RealType mass;
281 >      Vector3d vcom;
282 >      
283 >      SimInfo::MoleculeIterator i;
284 >      vector<StuntDouble*>::iterator j;
285 >      Molecule* mol;
286 >      StuntDouble* sd;    
287 >      for (mol = info_->beginMolecule(i); mol != NULL;
288 >           mol = info_->nextMolecule(i)) {
289 >        
290 >        for (sd = mol->beginIntegrableObject(j); sd != NULL;
291 >             sd = mol->nextIntegrableObject(j)) {
292 >          
293 >          mass = sd->getMass();
294 >          vcom = sd->getVel();
295 >          p_tens += mass * outProduct(vcom, vcom);        
296 >        }
297 >      }
298 >      
299 > #ifdef IS_MPI
300 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9,
301 >                                MPI::REALTYPE, MPI::SUM);
302 > #endif
303 >      
304 >      RealType volume = this->getVolume();
305 >      Mat3x3d stressTensor = snap->getStressTensor();
306 >      
307 >      pressureTensor =  (p_tens +
308 >                         PhysicalConstants::energyConvert * stressTensor)/volume;
309 >      
310 >      snap->setPressureTensor(pressureTensor);
311 >    }
312 >    return snap->getPressureTensor();
313 >  }
314  
161  return pressureX;
162 }
315  
164 double Thermo::getPressureY() {
316  
166  // Relies on the calculation of the full molecular pressure tensor
167  
168  const double p_convert = 1.63882576e8;
169  double press[3][3];
170  double pressureY;
317  
318 <  this->getPressureTensor(press);
318 >  Vector3d Thermo::getSystemDipole() {
319 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
320  
321 <  pressureY = p_convert * press[1][1];
321 >    if (!snap->hasSystemDipole) {
322 >      SimInfo::MoleculeIterator miter;
323 >      vector<Atom*>::iterator aiter;
324 >      Molecule* mol;
325 >      Atom* atom;
326 >      RealType charge;
327 >      Vector3d ri(0.0);
328 >      Vector3d dipoleVector(0.0);
329 >      Vector3d nPos(0.0);
330 >      Vector3d pPos(0.0);
331 >      RealType nChg(0.0);
332 >      RealType pChg(0.0);
333 >      int nCount = 0;
334 >      int pCount = 0;
335 >      
336 >      RealType chargeToC = 1.60217733e-19;
337 >      RealType angstromToM = 1.0e-10;
338 >      RealType debyeToCm = 3.33564095198e-30;
339 >      
340 >      for (mol = info_->beginMolecule(miter); mol != NULL;
341 >           mol = info_->nextMolecule(miter)) {
342 >        
343 >        for (atom = mol->beginAtom(aiter); atom != NULL;
344 >             atom = mol->nextAtom(aiter)) {
345 >          
346 >          charge = 0.0;
347 >          
348 >          FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
349 >          if ( fca.isFixedCharge() ) {
350 >            charge = fca.getCharge();
351 >          }
352 >          
353 >          FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
354 >          if ( fqa.isFluctuatingCharge() ) {
355 >            charge += atom->getFlucQPos();
356 >          }
357 >          
358 >          charge *= chargeToC;
359 >          
360 >          ri = atom->getPos();
361 >          snap->wrapVector(ri);
362 >          ri *= angstromToM;
363 >          
364 >          if (charge < 0.0) {
365 >            nPos += ri;
366 >            nChg -= charge;
367 >            nCount++;
368 >          } else if (charge > 0.0) {
369 >            pPos += ri;
370 >            pChg += charge;
371 >            pCount++;
372 >          }
373 >          
374 >          if (atom->isDipole()) {
375 >            dipoleVector += atom->getDipole() * debyeToCm;
376 >          }
377 >        }
378 >      }
379 >      
380 >      
381 > #ifdef IS_MPI
382 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE,
383 >                                MPI::SUM);
384 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE,
385 >                                MPI::SUM);
386  
387 <  return pressureY;
388 < }
387 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER,
388 >                                MPI::SUM);
389 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER,
390 >                                MPI::SUM);
391  
392 < double Thermo::getPressureZ() {
392 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3,
393 >                                MPI::REALTYPE, MPI::SUM);
394 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3,
395 >                                MPI::REALTYPE, MPI::SUM);
396  
397 <  // Relies on the calculation of the full molecular pressure tensor
398 <  
399 <  const double p_convert = 1.63882576e8;
400 <  double press[3][3];
401 <  double pressureZ;
397 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(),
398 >                                3, MPI::REALTYPE, MPI::SUM);
399 > #endif
400 >      
401 >      // first load the accumulated dipole moment (if dipoles were present)
402 >      Vector3d boxDipole = dipoleVector;
403 >      // now include the dipole moment due to charges
404 >      // use the lesser of the positive and negative charge totals
405 >      RealType chg_value = nChg <= pChg ? nChg : pChg;
406 >      
407 >      // find the average positions
408 >      if (pCount > 0 && nCount > 0 ) {
409 >        pPos /= pCount;
410 >        nPos /= nCount;
411 >      }
412 >      
413 >      // dipole is from the negative to the positive (physics notation)
414 >      boxDipole += (pPos - nPos) * chg_value;
415 >      snap->setSystemDipole(boxDipole);
416 >    }
417  
418 <  this->getPressureTensor(press);
418 >    return snap->getSystemDipole();
419 >  }
420  
421 <  pressureZ = p_convert * press[2][2];
421 >  // Returns the Heat Flux Vector for the system
422 >  Vector3d Thermo::getHeatFlux(){
423 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
424 >    SimInfo::MoleculeIterator miter;
425 >    vector<StuntDouble*>::iterator iiter;
426 >    Molecule* mol;
427 >    StuntDouble* sd;    
428 >    RigidBody::AtomIterator ai;
429 >    Atom* atom;      
430 >    Vector3d vel;
431 >    Vector3d angMom;
432 >    Mat3x3d I;
433 >    int i;
434 >    int j;
435 >    int k;
436 >    RealType mass;
437  
438 <  return pressureZ;
439 < }
438 >    Vector3d x_a;
439 >    RealType kinetic;
440 >    RealType potential;
441 >    RealType eatom;
442 >    // Convective portion of the heat flux
443 >    Vector3d heatFluxJc = V3Zero;
444  
445 +    /* Calculate convective portion of the heat flux */
446 +    for (mol = info_->beginMolecule(miter); mol != NULL;
447 +         mol = info_->nextMolecule(miter)) {
448 +      
449 +      for (sd = mol->beginIntegrableObject(iiter);
450 +           sd != NULL;
451 +           sd = mol->nextIntegrableObject(iiter)) {
452 +        
453 +        mass = sd->getMass();
454 +        vel = sd->getVel();
455  
456 < void Thermo::getPressureTensor(double press[3][3]){
457 <  // returns pressure tensor in units amu*fs^-2*Ang^-1
458 <  // routine derived via viral theorem description in:
459 <  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
456 >        kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
457 >        
458 >        if (sd->isDirectional()) {
459 >          angMom = sd->getJ();
460 >          I = sd->getI();
461  
462 <  const double e_convert = 4.184e-4;
462 >          if (sd->isLinear()) {
463 >            i = sd->linearAxis();
464 >            j = (i + 1) % 3;
465 >            k = (i + 2) % 3;
466 >            kinetic += angMom[j] * angMom[j] / I(j, j)
467 >              + angMom[k] * angMom[k] / I(k, k);
468 >          } else {                        
469 >            kinetic += angMom[0]*angMom[0]/I(0, 0)
470 >              + angMom[1]*angMom[1]/I(1, 1)
471 >              + angMom[2]*angMom[2]/I(2, 2);
472 >          }
473 >        }
474  
475 <  double molmass, volume;
203 <  double vcom[3];
204 <  double p_local[9], p_global[9];
205 <  int i, j, k;
475 >        potential = 0.0;
476  
477 <  for (i=0; i < 9; i++) {    
478 <    p_local[i] = 0.0;
479 <    p_global[i] = 0.0;
477 >        if (sd->isRigidBody()) {
478 >          RigidBody* rb = dynamic_cast<RigidBody*>(sd);
479 >          for (atom = rb->beginAtom(ai); atom != NULL;
480 >               atom = rb->nextAtom(ai)) {
481 >            potential +=  atom->getParticlePot();
482 >          }          
483 >        } else {
484 >          potential = sd->getParticlePot();
485 >        }
486 >
487 >        potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
488 >        // The potential may not be a 1/2 factor
489 >        eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2
490 >        heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
491 >        heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
492 >        heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
493 >      }
494 >    }
495 >
496 >    /* The J_v vector is reduced in the forceManager so everyone has
497 >     *  the global Jv. Jc is computed over the local atoms and must be
498 >     *  reduced among all processors.
499 >     */
500 > #ifdef IS_MPI
501 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,
502 >                              MPI::SUM);
503 > #endif
504 >    
505 >    // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
506 >
507 >    Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
508 >      PhysicalConstants::energyConvert;
509 >        
510 >    // Correct for the fact the flux is 1/V (Jc + Jv)
511 >    return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
512    }
513  
212  // use velocities of integrableObjects and their masses:  
514  
515 <  for (i=0; i < info->integrableObjects.size(); i++) {
515 >  Vector3d Thermo::getComVel(){
516 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
517  
518 <    molmass = info->integrableObjects[i]->getMass();
519 <    
520 <    info->integrableObjects[i]->getVel(vcom);
521 <    
522 <    p_local[0] += molmass * (vcom[0] * vcom[0]);
523 <    p_local[1] += molmass * (vcom[0] * vcom[1]);
524 <    p_local[2] += molmass * (vcom[0] * vcom[2]);
525 <    p_local[3] += molmass * (vcom[1] * vcom[0]);
526 <    p_local[4] += molmass * (vcom[1] * vcom[1]);
527 <    p_local[5] += molmass * (vcom[1] * vcom[2]);
528 <    p_local[6] += molmass * (vcom[2] * vcom[0]);
529 <    p_local[7] += molmass * (vcom[2] * vcom[1]);
530 <    p_local[8] += molmass * (vcom[2] * vcom[2]);
531 <
532 <  }
231 <
232 <  // Get total for entire system from MPI.
233 <  
518 >    if (!snap->hasCOMvel) {
519 >
520 >      SimInfo::MoleculeIterator i;
521 >      Molecule* mol;
522 >      
523 >      Vector3d comVel(0.0);
524 >      RealType totalMass(0.0);
525 >      
526 >      for (mol = info_->beginMolecule(i); mol != NULL;
527 >           mol = info_->nextMolecule(i)) {
528 >        RealType mass = mol->getMass();
529 >        totalMass += mass;
530 >        comVel += mass * mol->getComVel();
531 >      }  
532 >      
533   #ifdef IS_MPI
534 <  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
535 < #else
536 <  for (i=0; i<9; i++) {
537 <    p_global[i] = p_local[i];
534 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
535 >                                MPI::SUM);
536 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
537 >                                MPI::REALTYPE, MPI::SUM);
538 > #endif
539 >      
540 >      comVel /= totalMass;
541 >      snap->setCOMvel(comVel);
542 >    }
543 >    return snap->getCOMvel();
544    }
240 #endif // is_mpi
545  
546 <  volume = this->getVolume();
546 >  Vector3d Thermo::getCom(){
547 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
548  
549 <
550 <
551 <  for(i = 0; i < 3; i++) {
552 <    for (j = 0; j < 3; j++) {
553 <      k = 3*i + j;
554 <      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
549 >    if (!snap->hasCOM) {
550 >      
551 >      SimInfo::MoleculeIterator i;
552 >      Molecule* mol;
553 >      
554 >      Vector3d com(0.0);
555 >      RealType totalMass(0.0);
556 >      
557 >      for (mol = info_->beginMolecule(i); mol != NULL;
558 >           mol = info_->nextMolecule(i)) {
559 >        RealType mass = mol->getMass();
560 >        totalMass += mass;
561 >        com += mass * mol->getCom();
562 >      }  
563 >      
564 > #ifdef IS_MPI
565 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
566 >                                MPI::SUM);
567 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
568 >                                MPI::REALTYPE, MPI::SUM);
569 > #endif
570 >      
571 >      com /= totalMass;
572 >      snap->setCOM(com);
573      }
574 <  }
575 < }
574 >    return snap->getCOM();
575 >  }        
576  
577 < void Thermo::velocitize() {
578 <  
579 <  double aVel[3], aJ[3], I[3][3];
580 <  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
581 <  double vdrift[3];
582 <  double vbar;
260 <  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
261 <  double av2;
262 <  double kebar;
263 <  double temperature;
264 <  int nobj;
577 >  /**
578 >   * Returns center of mass and center of mass velocity in one
579 >   * function call.
580 >   */  
581 >  void Thermo::getComAll(Vector3d &com, Vector3d &comVel){
582 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
583  
584 <  if (!info->have_target_temp) {
585 <    sprintf( painCave.errMsg,
586 <             "You can't resample the velocities without a targetTemp!\n"
587 <             );
588 <    painCave.isFatal = 1;
589 <    painCave.severity = OOPSE_ERROR;
590 <    simError();
584 >    if (!(snap->hasCOM && snap->hasCOMvel)) {
585 >
586 >      SimInfo::MoleculeIterator i;
587 >      Molecule* mol;
588 >      
589 >      RealType totalMass(0.0);
590 >      
591 >      com = 0.0;
592 >      comVel = 0.0;
593 >      
594 >      for (mol = info_->beginMolecule(i); mol != NULL;
595 >           mol = info_->nextMolecule(i)) {
596 >        RealType mass = mol->getMass();
597 >        totalMass += mass;
598 >        com += mass * mol->getCom();
599 >        comVel += mass * mol->getComVel();          
600 >      }  
601 >      
602 > #ifdef IS_MPI
603 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
604 >                                MPI::SUM);
605 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
606 >                                MPI::REALTYPE, MPI::SUM);
607 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
608 >                                MPI::REALTYPE, MPI::SUM);
609 > #endif
610 >      
611 >      com /= totalMass;
612 >      comVel /= totalMass;
613 >      snap->setCOM(com);
614 >      snap->setCOMvel(comVel);
615 >    }    
616 >    com = snap->getCOM();
617 >    comVel = snap->getCOMvel();
618      return;
619 <  }
619 >  }        
620 >  
621 >  /**
622 >   * Return intertia tensor for entire system and angular momentum
623 >   * Vector.
624 >   *
625 >   *
626 >   *
627 >   *    [  Ixx -Ixy  -Ixz ]
628 >   * I =| -Iyx  Iyy  -Iyz |
629 >   *    [ -Izx -Iyz   Izz ]
630 >   */
631 >  void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,
632 >                                Vector3d &angularMomentum){
633  
634 <  nobj = info->integrableObjects.size();
277 <  
278 <  temperature   = info->target_temp;
279 <  
280 <  kebar = kb * temperature * (double)info->ndfRaw /
281 <    ( 2.0 * (double)info->ndf );
282 <  
283 <  for(vr = 0; vr < nobj; vr++){
634 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
635      
636 <    // uses equipartition theory to solve for vbar in angstrom/fs
637 <
638 <    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
639 <    vbar = sqrt( av2 );
640 <
641 <    // picks random velocities from a gaussian distribution
642 <    // centered on vbar
643 <
644 <    for (j=0; j<3; j++)
645 <      aVel[j] = vbar * gaussStream->getGaussian();
646 <    
647 <    info->integrableObjects[vr]->setVel( aVel );
648 <    
649 <    if(info->integrableObjects[vr]->isDirectional()){
650 <
651 <      info->integrableObjects[vr]->getI( I );
652 <
653 <      if (info->integrableObjects[vr]->isLinear()) {
654 <
655 <        l= info->integrableObjects[vr]->linearAxis();
656 <        m = (l+1)%3;
657 <        n = (l+2)%3;
658 <
308 <        aJ[l] = 0.0;
309 <        vbar = sqrt( 2.0 * kebar * I[m][m] );
310 <        aJ[m] = vbar * gaussStream->getGaussian();
311 <        vbar = sqrt( 2.0 * kebar * I[n][n] );
312 <        aJ[n] = vbar * gaussStream->getGaussian();
636 >    if (!(snap->hasInertiaTensor && snap->hasCOMw)) {
637 >      
638 >      RealType xx = 0.0;
639 >      RealType yy = 0.0;
640 >      RealType zz = 0.0;
641 >      RealType xy = 0.0;
642 >      RealType xz = 0.0;
643 >      RealType yz = 0.0;
644 >      Vector3d com(0.0);
645 >      Vector3d comVel(0.0);
646 >      
647 >      getComAll(com, comVel);
648 >      
649 >      SimInfo::MoleculeIterator i;
650 >      Molecule* mol;
651 >      
652 >      Vector3d thisq(0.0);
653 >      Vector3d thisv(0.0);
654 >      
655 >      RealType thisMass = 0.0;
656 >      
657 >      for (mol = info_->beginMolecule(i); mol != NULL;
658 >           mol = info_->nextMolecule(i)) {
659          
660 <      } else {
661 <        for (j = 0 ; j < 3; j++) {
662 <          vbar = sqrt( 2.0 * kebar * I[j][j] );
663 <          aJ[j] = vbar * gaussStream->getGaussian();
664 <        }      
665 <      } // else isLinear
666 <
667 <      info->integrableObjects[vr]->setJ( aJ );
660 >        thisq = mol->getCom()-com;
661 >        thisv = mol->getComVel()-comVel;
662 >        thisMass = mol->getMass();
663 >        // Compute moment of intertia coefficients.
664 >        xx += thisq[0]*thisq[0]*thisMass;
665 >        yy += thisq[1]*thisq[1]*thisMass;
666 >        zz += thisq[2]*thisq[2]*thisMass;
667 >        
668 >        // compute products of intertia
669 >        xy += thisq[0]*thisq[1]*thisMass;
670 >        xz += thisq[0]*thisq[2]*thisMass;
671 >        yz += thisq[1]*thisq[2]*thisMass;
672 >        
673 >        angularMomentum += cross( thisq, thisv ) * thisMass;            
674 >      }
675        
676 <    }//isDirectional
677 <
676 >      inertiaTensor(0,0) = yy + zz;
677 >      inertiaTensor(0,1) = -xy;
678 >      inertiaTensor(0,2) = -xz;
679 >      inertiaTensor(1,0) = -xy;
680 >      inertiaTensor(1,1) = xx + zz;
681 >      inertiaTensor(1,2) = -yz;
682 >      inertiaTensor(2,0) = -xz;
683 >      inertiaTensor(2,1) = -yz;
684 >      inertiaTensor(2,2) = xx + yy;
685 >      
686 > #ifdef IS_MPI
687 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(),
688 >                                9, MPI::REALTYPE, MPI::SUM);
689 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
690 >                                angularMomentum.getArrayPointer(), 3,
691 >                                MPI::REALTYPE, MPI::SUM);
692 > #endif
693 >      
694 >      snap->setCOMw(angularMomentum);
695 >      snap->setInertiaTensor(inertiaTensor);
696 >    }
697 >    
698 >    angularMomentum = snap->getCOMw();
699 >    inertiaTensor = snap->getInertiaTensor();
700 >    
701 >    return;
702    }
703  
704 <  // Get the Center of Mass drift velocity.
705 <
706 <  getCOMVel(vdrift);
330 <  
331 <  //  Corrects for the center of mass drift.
332 <  // sums all the momentum and divides by total mass.
333 <
334 <  for(vd = 0; vd < nobj; vd++){
704 >  // Returns the angular momentum of the system
705 >  Vector3d Thermo::getAngularMomentum(){
706 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
707      
708 <    info->integrableObjects[vd]->getVel(aVel);
709 <    
710 <    for (j=0; j < 3; j++)
711 <      aVel[j] -= vdrift[j];
708 >    if (!snap->hasCOMw) {
709 >      
710 >      Vector3d com(0.0);
711 >      Vector3d comVel(0.0);
712 >      Vector3d angularMomentum(0.0);
713 >      
714 >      getComAll(com, comVel);
715 >      
716 >      SimInfo::MoleculeIterator i;
717 >      Molecule* mol;
718 >      
719 >      Vector3d thisr(0.0);
720 >      Vector3d thisp(0.0);
721 >      
722 >      RealType thisMass;
723 >      
724 >      for (mol = info_->beginMolecule(i); mol != NULL;
725 >           mol = info_->nextMolecule(i)) {
726 >        thisMass = mol->getMass();
727 >        thisr = mol->getCom() - com;
728 >        thisp = (mol->getComVel() - comVel) * thisMass;
729          
730 <    info->integrableObjects[vd]->setVel( aVel );
730 >        angularMomentum += cross( thisr, thisp );      
731 >      }  
732 >      
733 > #ifdef IS_MPI
734 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
735 >                                angularMomentum.getArrayPointer(), 3,
736 >                                MPI::REALTYPE, MPI::SUM);
737 > #endif
738 >      
739 >      snap->setCOMw(angularMomentum);
740 >    }
741 >    
742 >    return snap->getCOMw();
743    }
343
344 }
345
346 void Thermo::getCOMVel(double vdrift[3]){
347
348  double mtot, mtot_local;
349  double aVel[3], amass;
350  double vdrift_local[3];
351  int vd, j;
352  int nobj;
353
354  nobj   = info->integrableObjects.size();
355
356  mtot_local = 0.0;
357  vdrift_local[0] = 0.0;
358  vdrift_local[1] = 0.0;
359  vdrift_local[2] = 0.0;
744    
745 <  for(vd = 0; vd < nobj; vd++){
745 >  
746 >  /**
747 >   * Returns the Volume of the system based on a ellipsoid with
748 >   * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
749 >   * where R_i are related to the principle inertia moments
750 >   *  R_i = sqrt(C*I_i/N), this reduces to
751 >   *  V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).
752 >   * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
753 >   */
754 >  RealType Thermo::getGyrationalVolume(){
755 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
756      
757 <    amass = info->integrableObjects[vd]->getMass();
758 <    info->integrableObjects[vd]->getVel( aVel );
757 >    if (!snap->hasGyrationalVolume) {
758 >      
759 >      Mat3x3d intTensor;
760 >      RealType det;
761 >      Vector3d dummyAngMom;
762 >      RealType sysconstants;
763 >      RealType geomCnst;
764 >      RealType volume;
765 >      
766 >      geomCnst = 3.0/2.0;
767 >      /* Get the inertial tensor and angular momentum for free*/
768 >      getInertiaTensor(intTensor, dummyAngMom);
769 >      
770 >      det = intTensor.determinant();
771 >      sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects());
772 >      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
773  
774 <    for(j = 0; j < 3; j++)
775 <      vdrift_local[j] += aVel[j] * amass;
776 <    
369 <    mtot_local += amass;
774 >      snap->setGyrationalVolume(volume);
775 >    }
776 >    return snap->getGyrationalVolume();
777    }
778 +  
779 +  void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){
780 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
781  
782 < #ifdef IS_MPI
373 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
374 <  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
375 < #else
376 <  mtot = mtot_local;
377 <  for(vd = 0; vd < 3; vd++) {
378 <    vdrift[vd] = vdrift_local[vd];
379 <  }
380 < #endif
782 >    if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) {
783      
784 <  for (vd = 0; vd < 3; vd++) {
785 <    vdrift[vd] = vdrift[vd] / mtot;
784 >      Mat3x3d intTensor;
785 >      Vector3d dummyAngMom;
786 >      RealType sysconstants;
787 >      RealType geomCnst;
788 >      
789 >      geomCnst = 3.0/2.0;
790 >      /* Get the inertia tensor and angular momentum for free*/
791 >      this->getInertiaTensor(intTensor, dummyAngMom);
792 >      
793 >      detI = intTensor.determinant();
794 >      sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects());
795 >      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
796 >      snap->setGyrationalVolume(volume);
797 >    } else {
798 >      volume = snap->getGyrationalVolume();
799 >      detI = snap->getInertiaTensor().determinant();
800 >    }
801 >    return;
802    }
803    
804 < }
804 >  RealType Thermo::getTaggedAtomPairDistance(){
805 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
806 >    Globals* simParams = info_->getSimParams();
807 >    
808 >    if (simParams->haveTaggedAtomPair() &&
809 >        simParams->havePrintTaggedPairDistance()) {
810 >      if ( simParams->getPrintTaggedPairDistance()) {
811 >        
812 >        pair<int, int> tap = simParams->getTaggedAtomPair();
813 >        Vector3d pos1, pos2, rab;
814 >        
815 > #ifdef IS_MPI        
816 >        int mol1 = info_->getGlobalMolMembership(tap.first);
817 >        int mol2 = info_->getGlobalMolMembership(tap.second);
818  
819 < void Thermo::getCOM(double COM[3]){
819 >        int proc1 = info_->getMolToProc(mol1);
820 >        int proc2 = info_->getMolToProc(mol2);
821  
822 <  double mtot, mtot_local;
823 <  double aPos[3], amass;
824 <  double COM_local[3];
825 <  int i, j;
826 <  int nobj;
822 >        RealType data[3];
823 >        if (proc1 == worldRank) {
824 >          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
825 >          pos1 = sd1->getPos();
826 >          data[0] = pos1.x();
827 >          data[1] = pos1.y();
828 >          data[2] = pos1.z();          
829 >          MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1);
830 >        } else {
831 >          MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1);
832 >          pos1 = Vector3d(data);
833 >        }
834  
835 <  mtot_local = 0.0;
836 <  COM_local[0] = 0.0;
837 <  COM_local[1] = 0.0;
838 <  COM_local[2] = 0.0;
835 >        if (proc2 == worldRank) {
836 >          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
837 >          pos2 = sd2->getPos();
838 >          data[0] = pos2.x();
839 >          data[1] = pos2.y();
840 >          data[2] = pos2.z();  
841 >          MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2);
842 >        } else {
843 >          MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2);
844 >          pos2 = Vector3d(data);
845 >        }
846 > #else
847 >        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
848 >        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
849 >        pos1 = at1->getPos();
850 >        pos2 = at2->getPos();
851 > #endif        
852 >        rab = pos2 - pos1;
853 >        currSnapshot->wrapVector(rab);
854 >        return rab.length();
855 >      }
856 >      return 0.0;    
857 >    }
858 >    return 0.0;
859 >  }
860  
861 <  nobj = info->integrableObjects.size();
862 <  for(i = 0; i < nobj; i++){
403 <    
404 <    amass = info->integrableObjects[i]->getMass();
405 <    info->integrableObjects[i]->getPos( aPos );
861 >  RealType Thermo::getHullVolume(){
862 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
863  
864 <    for(j = 0; j < 3; j++)
865 <      COM_local[j] += aPos[j] * amass;
866 <    
410 <    mtot_local += amass;
411 <  }
864 > #ifdef HAVE_QHULL    
865 >    if (!snap->hasHullVolume) {
866 >      Hull* surfaceMesh_;
867  
868 < #ifdef IS_MPI
869 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
870 <  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
868 >      Globals* simParams = info_->getSimParams();
869 >      const std::string ht = simParams->getHULL_Method();
870 >      
871 >      if (ht == "Convex") {
872 >        surfaceMesh_ = new ConvexHull();
873 >      } else if (ht == "AlphaShape") {
874 >        surfaceMesh_ = new AlphaHull(simParams->getAlpha());
875 >      } else {
876 >        return 0.0;
877 >      }
878 >      
879 >      // Build a vector of stunt doubles to determine if they are
880 >      // surface atoms
881 >      std::vector<StuntDouble*> localSites_;
882 >      Molecule* mol;
883 >      StuntDouble* sd;
884 >      SimInfo::MoleculeIterator i;
885 >      Molecule::IntegrableObjectIterator  j;
886 >      
887 >      for (mol = info_->beginMolecule(i); mol != NULL;
888 >           mol = info_->nextMolecule(i)) {          
889 >        for (sd = mol->beginIntegrableObject(j);
890 >             sd != NULL;
891 >             sd = mol->nextIntegrableObject(j)) {  
892 >          localSites_.push_back(sd);
893 >        }
894 >      }  
895 >      
896 >      // Compute surface Mesh
897 >      surfaceMesh_->computeHull(localSites_);
898 >      snap->setHullVolume(surfaceMesh_->getVolume());
899 >    }
900 >    return snap->getHullVolume();
901   #else
902 <  mtot = mtot_local;
418 <  for(i = 0; i < 3; i++) {
419 <    COM[i] = COM_local[i];
420 <  }
902 >    return 0.0;
903   #endif
422    
423  for (i = 0; i < 3; i++) {
424    COM[i] = COM[i] / mtot;
904    }
905   }
427
428 void Thermo::removeCOMdrift() {
429  double vdrift[3], aVel[3];
430  int vd, j, nobj;
431
432  nobj = info->integrableObjects.size();
433
434  // Get the Center of Mass drift velocity.
435
436  getCOMVel(vdrift);
437  
438  //  Corrects for the center of mass drift.
439  // sums all the momentum and divides by total mass.
440
441  for(vd = 0; vd < nobj; vd++){
442    
443    info->integrableObjects[vd]->getVel(aVel);
444    
445    for (j=0; j < 3; j++)
446      aVel[j] -= vdrift[j];
447        
448    info->integrableObjects[vd]->setVel( aVel );
449  }
450 }

Comparing:
trunk/src/brains/Thermo.cpp (property svn:keywords), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/Thermo.cpp (property svn:keywords), Revision 1825 by gezelter, Wed Jan 9 19:27:52 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines