ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
(Generate patch)

Comparing:
trunk/src/brains/Thermo.cpp (file contents), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/Thermo.cpp (file contents), Revision 1760 by gezelter, Thu Jun 21 19:26:46 2012 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 + */
42 +
43   #include <math.h>
44   #include <iostream>
3 using namespace std;
45  
46   #ifdef IS_MPI
47   #include <mpi.h>
48   #endif //is_mpi
49  
50 < #include "Thermo.hpp"
51 < #include "SRI.hpp"
52 < #include "Integrator.hpp"
53 < #include "simError.h"
54 < #include "MatVec3.h"
50 > #include "brains/Thermo.hpp"
51 > #include "primitives/Molecule.hpp"
52 > #include "utils/simError.h"
53 > #include "utils/PhysicalConstants.hpp"
54 > #include "types/MultipoleAdapter.hpp"
55  
56 + namespace OpenMD {
57 +
58 +  RealType Thermo::getKinetic() {
59 +    SimInfo::MoleculeIterator miter;
60 +    std::vector<StuntDouble*>::iterator iiter;
61 +    Molecule* mol;
62 +    StuntDouble* integrableObject;    
63 +    Vector3d vel;
64 +    Vector3d angMom;
65 +    Mat3x3d I;
66 +    int i;
67 +    int j;
68 +    int k;
69 +    RealType mass;
70 +    RealType kinetic = 0.0;
71 +    RealType kinetic_global = 0.0;
72 +    
73 +    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
74 +      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
75 +           integrableObject = mol->nextIntegrableObject(iiter)) {
76 +        
77 +        mass = integrableObject->getMass();
78 +        vel = integrableObject->getVel();
79 +        
80 +        kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
81 +        
82 +        if (integrableObject->isDirectional()) {
83 +          angMom = integrableObject->getJ();
84 +          I = integrableObject->getI();
85 +
86 +          if (integrableObject->isLinear()) {
87 +            i = integrableObject->linearAxis();
88 +            j = (i + 1) % 3;
89 +            k = (i + 2) % 3;
90 +            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
91 +          } else {                        
92 +            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
93 +              + angMom[2]*angMom[2]/I(2, 2);
94 +          }
95 +        }
96 +            
97 +      }
98 +    }
99 +    
100   #ifdef IS_MPI
16 #define __C
17 #include "mpiSimulation.hpp"
18 #endif // is_mpi
101  
102 < inline double roundMe( double x ){
103 <          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
104 < }
102 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
103 >                  MPI_COMM_WORLD);
104 >    kinetic = kinetic_global;
105  
106 < Thermo::Thermo( SimInfo* the_info ) {
25 <  info = the_info;
26 <  int baseSeed = the_info->getSeed();
27 <  
28 <  gaussStream = new gaussianSPRNG( baseSeed );
29 < }
106 > #endif //is_mpi
107  
108 < Thermo::~Thermo(){
32 <  delete gaussStream;
33 < }
108 >    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
109  
110 < double Thermo::getKinetic(){
110 >    return kinetic;
111 >  }
112  
113 <  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
114 <  double kinetic;
39 <  double amass;
40 <  double aVel[3], aJ[3], I[3][3];
41 <  int i, j, k, kl;
113 >  RealType Thermo::getPotential() {
114 >    RealType potential = 0.0;
115  
116 <  double kinetic_global;
117 <  vector<StuntDouble *> integrableObjects = info->integrableObjects;
118 <  
119 <  kinetic = 0.0;
47 <  kinetic_global = 0.0;
116 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
117 >    potential = curSnapshot->getShortRangePotential() + curSnapshot->getLongRangePotential();
118 >    return potential;
119 >  }
120  
121 <  for (kl=0; kl<integrableObjects.size(); kl++) {
122 <    integrableObjects[kl]->getVel(aVel);
51 <    amass = integrableObjects[kl]->getMass();
121 >  RealType Thermo::getTotalE() {
122 >    RealType total;
123  
124 <   for(j=0; j<3; j++)
125 <      kinetic += amass*aVel[j]*aVel[j];
124 >    total = this->getKinetic() + this->getPotential();
125 >    return total;
126 >  }
127  
128 <   if (integrableObjects[kl]->isDirectional()){
129 <
130 <      integrableObjects[kl]->getJ( aJ );
131 <      integrableObjects[kl]->getI( I );
128 >  RealType Thermo::getTemperature() {
129 >    
130 >    RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
131 >    return temperature;
132 >  }
133  
134 <      if (integrableObjects[kl]->isLinear()) {
135 <        i = integrableObjects[kl]->linearAxis();
136 <        j = (i+1)%3;
137 <        k = (i+2)%3;
138 <        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
139 <      } else {
140 <        for (j=0; j<3; j++)
141 <          kinetic += aJ[j]*aJ[j] / I[j][j];
134 >  RealType Thermo::getElectronicTemperature() {
135 >    SimInfo::MoleculeIterator miter;
136 >    std::vector<Atom*>::iterator iiter;
137 >    Molecule* mol;
138 >    Atom* atom;    
139 >    RealType cvel;
140 >    RealType cmass;
141 >    RealType kinetic = 0.0;
142 >    RealType kinetic_global = 0.0;
143 >    
144 >    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
145 >      for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
146 >           atom = mol->nextFluctuatingCharge(iiter)) {
147 >        cmass = atom->getChargeMass();
148 >        cvel = atom->getFlucQVel();
149 >        
150 >        kinetic += cmass * cvel * cvel;
151 >        
152        }
153 <   }
154 <  }
153 >    }
154 >    
155   #ifdef IS_MPI
156 <  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
157 <                MPI_SUM, MPI_COMM_WORLD);
158 <  kinetic = kinetic_global;
156 >
157 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
158 >                  MPI_COMM_WORLD);
159 >    kinetic = kinetic_global;
160 >
161   #endif //is_mpi
77  
78  kinetic = kinetic * 0.5 / e_convert;
162  
163 <  return kinetic;
164 < }
163 >    kinetic = kinetic * 0.5;
164 >    return ( 2.0 * kinetic) / (info_->getNFluctuatingCharges()* PhysicalConstants::kb );    
165 >  }
166  
83 double Thermo::getPotential(){
84  
85  double potential_local;
86  double potential;
87  int el, nSRI;
88  Molecule* molecules;
167  
90  molecules = info->molecules;
91  nSRI = info->n_SRI;
168  
93  potential_local = 0.0;
94  potential = 0.0;
95  potential_local += info->lrPot;
169  
170 <  for( el=0; el<info->n_mol; el++ ){    
171 <    potential_local += molecules[el].getPotential();
170 >  RealType Thermo::getVolume() {
171 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
172 >    return curSnapshot->getVolume();
173    }
174  
175 <  // Get total potential for entire system from MPI.
102 < #ifdef IS_MPI
103 <  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
104 <                MPI_SUM, MPI_COMM_WORLD);
105 < #else
106 <  potential = potential_local;
107 < #endif // is_mpi
175 >  RealType Thermo::getPressure() {
176  
177 <  return potential;
110 < }
177 >    // Relies on the calculation of the full molecular pressure tensor
178  
112 double Thermo::getTotalE(){
179  
180 <  double total;
180 >    Mat3x3d tensor;
181 >    RealType pressure;
182  
183 <  total = this->getKinetic() + this->getPotential();
117 <  return total;
118 < }
183 >    tensor = getPressureTensor();
184  
185 < double Thermo::getTemperature(){
185 >    pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
186  
187 <  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
188 <  double temperature;
187 >    return pressure;
188 >  }
189  
190 <  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
126 <  return temperature;
127 < }
190 >  RealType Thermo::getPressure(int direction) {
191  
192 < double Thermo::getVolume() {
192 >    // Relies on the calculation of the full molecular pressure tensor
193  
194 <  return info->boxVol;
195 < }
194 >          
195 >    Mat3x3d tensor;
196 >    RealType pressure;
197  
198 < double Thermo::getPressure() {
198 >    tensor = getPressureTensor();
199  
200 <  // Relies on the calculation of the full molecular pressure tensor
137 <  
138 <  const double p_convert = 1.63882576e8;
139 <  double press[3][3];
140 <  double pressure;
200 >    pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
201  
202 <  this->getPressureTensor(press);
202 >    return pressure;
203 >  }
204  
205 <  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
205 >  Mat3x3d Thermo::getPressureTensor() {
206 >    // returns pressure tensor in units amu*fs^-2*Ang^-1
207 >    // routine derived via viral theorem description in:
208 >    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
209 >    Mat3x3d pressureTensor;
210 >    Mat3x3d p_local(0.0);
211 >    Mat3x3d p_global(0.0);
212  
213 <  return pressure;
214 < }
213 >    SimInfo::MoleculeIterator i;
214 >    std::vector<StuntDouble*>::iterator j;
215 >    Molecule* mol;
216 >    StuntDouble* integrableObject;    
217 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
218 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
219 >           integrableObject = mol->nextIntegrableObject(j)) {
220  
221 < double Thermo::getPressureX() {
221 >        RealType mass = integrableObject->getMass();
222 >        Vector3d vcom = integrableObject->getVel();
223 >        p_local += mass * outProduct(vcom, vcom);        
224 >      }
225 >    }
226 >    
227 > #ifdef IS_MPI
228 >    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
229 > #else
230 >    p_global = p_local;
231 > #endif // is_mpi
232  
233 <  // Relies on the calculation of the full molecular pressure tensor
234 <  
235 <  const double p_convert = 1.63882576e8;
154 <  double press[3][3];
155 <  double pressureX;
233 >    RealType volume = this->getVolume();
234 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
235 >    Mat3x3d stressTensor = curSnapshot->getStressTensor();
236  
237 <  this->getPressureTensor(press);
237 >    pressureTensor =  (p_global +
238 >                       PhysicalConstants::energyConvert * stressTensor)/volume;
239 >    
240 >    return pressureTensor;
241 >  }
242  
159  pressureX = p_convert * press[0][0];
243  
244 <  return pressureX;
245 < }
244 >  void Thermo::saveStat(){
245 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
246 >    Stats& stat = currSnapshot->statData;
247 >    
248 >    stat[Stats::KINETIC_ENERGY] = getKinetic();
249 >    stat[Stats::POTENTIAL_ENERGY] = getPotential();
250 >    stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ;
251 >    stat[Stats::TEMPERATURE] = getTemperature();
252 >    stat[Stats::PRESSURE] = getPressure();
253 >    stat[Stats::VOLUME] = getVolume();      
254  
255 < double Thermo::getPressureY() {
255 >    Mat3x3d tensor =getPressureTensor();
256 >    stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);      
257 >    stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);      
258 >    stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);      
259 >    stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);      
260 >    stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);      
261 >    stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);      
262 >    stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);      
263 >    stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);      
264 >    stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);      
265  
266 <  // Relies on the calculation of the full molecular pressure tensor
267 <  
268 <  const double p_convert = 1.63882576e8;
269 <  double press[3][3];
270 <  double pressureY;
266 >    // grab the simulation box dipole moment if specified
267 >    if (info_->getCalcBoxDipole()){
268 >      Vector3d totalDipole = getBoxDipole();
269 >      stat[Stats::BOX_DIPOLE_X] = totalDipole(0);
270 >      stat[Stats::BOX_DIPOLE_Y] = totalDipole(1);
271 >      stat[Stats::BOX_DIPOLE_Z] = totalDipole(2);
272 >    }
273  
274 <  this->getPressureTensor(press);
274 >    Globals* simParams = info_->getSimParams();
275 >    // grab the heat flux if desired
276 >    if (simParams->havePrintHeatFlux()) {
277 >      if (simParams->getPrintHeatFlux()){
278 >        Vector3d heatFlux = getHeatFlux();
279 >        stat[Stats::HEATFLUX_X] = heatFlux(0);
280 >        stat[Stats::HEATFLUX_Y] = heatFlux(1);
281 >        stat[Stats::HEATFLUX_Z] = heatFlux(2);
282 >      }
283 >    }
284  
285 <  pressureY = p_convert * press[1][1];
285 >    if (simParams->haveTaggedAtomPair() &&
286 >        simParams->havePrintTaggedPairDistance()) {
287 >      if ( simParams->getPrintTaggedPairDistance()) {
288 >        
289 >        std::pair<int, int> tap = simParams->getTaggedAtomPair();
290 >        Vector3d pos1, pos2, rab;
291  
292 <  return pressureY;
293 < }
292 > #ifdef IS_MPI        
293 >        std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl;
294  
295 < double Thermo::getPressureZ() {
295 >        int mol1 = info_->getGlobalMolMembership(tap.first);
296 >        int mol2 = info_->getGlobalMolMembership(tap.second);
297 >        std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
298  
299 <  // Relies on the calculation of the full molecular pressure tensor
300 <  
183 <  const double p_convert = 1.63882576e8;
184 <  double press[3][3];
185 <  double pressureZ;
299 >        int proc1 = info_->getMolToProc(mol1);
300 >        int proc2 = info_->getMolToProc(mol2);
301  
302 <  this->getPressureTensor(press);
302 >        std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
303  
304 <  pressureZ = p_convert * press[2][2];
304 >        RealType data[3];
305 >        if (proc1 == worldRank) {
306 >          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
307 >          std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
308 >          pos1 = sd1->getPos();
309 >          data[0] = pos1.x();
310 >          data[1] = pos1.y();
311 >          data[2] = pos1.z();          
312 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
313 >        } else {
314 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
315 >          pos1 = Vector3d(data);
316 >        }
317  
191  return pressureZ;
192 }
318  
319 <
320 < void Thermo::getPressureTensor(double press[3][3]){
321 <  // returns pressure tensor in units amu*fs^-2*Ang^-1
322 <  // routine derived via viral theorem description in:
323 <  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
324 <
325 <  const double e_convert = 4.184e-4;
326 <
327 <  double molmass, volume;
328 <  double vcom[3];
329 <  double p_local[9], p_global[9];
330 <  int i, j, k;
331 <
332 <  for (i=0; i < 9; i++) {    
333 <    p_local[i] = 0.0;
334 <    p_global[i] = 0.0;
335 <  }
336 <
337 <  // use velocities of integrableObjects and their masses:  
338 <
339 <  for (i=0; i < info->integrableObjects.size(); i++) {
340 <
216 <    molmass = info->integrableObjects[i]->getMass();
217 <    
218 <    info->integrableObjects[i]->getVel(vcom);
219 <    
220 <    p_local[0] += molmass * (vcom[0] * vcom[0]);
221 <    p_local[1] += molmass * (vcom[0] * vcom[1]);
222 <    p_local[2] += molmass * (vcom[0] * vcom[2]);
223 <    p_local[3] += molmass * (vcom[1] * vcom[0]);
224 <    p_local[4] += molmass * (vcom[1] * vcom[1]);
225 <    p_local[5] += molmass * (vcom[1] * vcom[2]);
226 <    p_local[6] += molmass * (vcom[2] * vcom[0]);
227 <    p_local[7] += molmass * (vcom[2] * vcom[1]);
228 <    p_local[8] += molmass * (vcom[2] * vcom[2]);
229 <
230 <  }
231 <
232 <  // Get total for entire system from MPI.
233 <  
234 < #ifdef IS_MPI
235 <  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
236 < #else
237 <  for (i=0; i<9; i++) {
238 <    p_global[i] = p_local[i];
239 <  }
240 < #endif // is_mpi
241 <
242 <  volume = this->getVolume();
243 <
244 <
245 <
246 <  for(i = 0; i < 3; i++) {
247 <    for (j = 0; j < 3; j++) {
248 <      k = 3*i + j;
249 <      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
319 >        if (proc2 == worldRank) {
320 >          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
321 >          std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
322 >          pos2 = sd2->getPos();
323 >          data[0] = pos2.x();
324 >          data[1] = pos2.y();
325 >          data[2] = pos2.z();          
326 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
327 >        } else {
328 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
329 >          pos2 = Vector3d(data);
330 >        }
331 > #else
332 >        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
333 >        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
334 >        pos1 = at1->getPos();
335 >        pos2 = at2->getPos();
336 > #endif        
337 >        rab = pos2 - pos1;
338 >        currSnapshot->wrapVector(rab);
339 >        stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length();
340 >      }
341      }
342 +      
343 +    /**@todo need refactorying*/
344 +    //Conserved Quantity is set by integrator and time is set by setTime
345 +    
346    }
252 }
347  
254 void Thermo::velocitize() {
255  
256  double aVel[3], aJ[3], I[3][3];
257  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
258  double vdrift[3];
259  double vbar;
260  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
261  double av2;
262  double kebar;
263  double temperature;
264  int nobj;
348  
349 <  if (!info->have_target_temp) {
350 <    sprintf( painCave.errMsg,
351 <             "You can't resample the velocities without a targetTemp!\n"
352 <             );
353 <    painCave.isFatal = 1;
354 <    painCave.severity = OOPSE_ERROR;
355 <    simError();
356 <    return;
357 <  }
349 >  Vector3d Thermo::getBoxDipole() {
350 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
351 >    SimInfo::MoleculeIterator miter;
352 >    std::vector<Atom*>::iterator aiter;
353 >    Molecule* mol;
354 >    Atom* atom;
355 >    RealType charge;
356 >    RealType moment(0.0);
357 >    Vector3d ri(0.0);
358 >    Vector3d dipoleVector(0.0);
359 >    Vector3d nPos(0.0);
360 >    Vector3d pPos(0.0);
361 >    RealType nChg(0.0);
362 >    RealType pChg(0.0);
363 >    int nCount = 0;
364 >    int pCount = 0;
365  
366 <  nobj = info->integrableObjects.size();
367 <  
368 <  temperature   = info->target_temp;
279 <  
280 <  kebar = kb * temperature * (double)info->ndfRaw /
281 <    ( 2.0 * (double)info->ndf );
282 <  
283 <  for(vr = 0; vr < nobj; vr++){
366 >    RealType chargeToC = 1.60217733e-19;
367 >    RealType angstromToM = 1.0e-10;
368 >    RealType debyeToCm = 3.33564095198e-30;
369      
370 <    // uses equipartition theory to solve for vbar in angstrom/fs
370 >    for (mol = info_->beginMolecule(miter); mol != NULL;
371 >         mol = info_->nextMolecule(miter)) {
372  
373 <    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
374 <    vbar = sqrt( av2 );
373 >      for (atom = mol->beginAtom(aiter); atom != NULL;
374 >           atom = mol->nextAtom(aiter)) {
375 >        
376 >        if (atom->isCharge() ) {
377 >          charge = 0.0;
378 >          GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
379 >          if (data != NULL) {
380  
381 <    // picks random velocities from a gaussian distribution
382 <    // centered on vbar
381 >            charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
382 >            charge *= chargeToC;
383  
384 <    for (j=0; j<3; j++)
385 <      aVel[j] = vbar * gaussStream->getGaussian();
384 >            ri = atom->getPos();
385 >            currSnapshot->wrapVector(ri);
386 >            ri *= angstromToM;
387 >
388 >            if (charge < 0.0) {
389 >              nPos += ri;
390 >              nChg -= charge;
391 >              nCount++;
392 >            } else if (charge > 0.0) {
393 >              pPos += ri;
394 >              pChg += charge;
395 >              pCount++;
396 >            }                      
397 >          }
398 >        }
399 >        
400 >        MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
401 >        if (ma.isDipole() ) {
402 >          Vector3d u_i = atom->getElectroFrame().getColumn(2);
403 >          moment = ma.getDipoleMoment();
404 >          moment *= debyeToCm;
405 >          dipoleVector += u_i * moment;
406 >        }
407 >      }
408 >    }
409      
410 <    info->integrableObjects[vr]->setVel( aVel );
411 <    
412 <    if(info->integrableObjects[vr]->isDirectional()){
410 >                      
411 > #ifdef IS_MPI
412 >    RealType pChg_global, nChg_global;
413 >    int pCount_global, nCount_global;
414 >    Vector3d pPos_global, nPos_global, dipVec_global;
415  
416 <      info->integrableObjects[vr]->getI( I );
416 >    MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
417 >                  MPI_COMM_WORLD);
418 >    pChg = pChg_global;
419 >    MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
420 >                  MPI_COMM_WORLD);
421 >    nChg = nChg_global;
422 >    MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
423 >                  MPI_COMM_WORLD);
424 >    pCount = pCount_global;
425 >    MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
426 >                  MPI_COMM_WORLD);
427 >    nCount = nCount_global;
428 >    MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
429 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
430 >    pPos = pPos_global;
431 >    MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
432 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
433 >    nPos = nPos_global;
434 >    MPI_Allreduce(dipoleVector.getArrayPointer(),
435 >                  dipVec_global.getArrayPointer(), 3,
436 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
437 >    dipoleVector = dipVec_global;
438 > #endif //is_mpi
439  
440 <      if (info->integrableObjects[vr]->isLinear()) {
440 >    // first load the accumulated dipole moment (if dipoles were present)
441 >    Vector3d boxDipole = dipoleVector;
442 >    // now include the dipole moment due to charges
443 >    // use the lesser of the positive and negative charge totals
444 >    RealType chg_value = nChg <= pChg ? nChg : pChg;
445 >      
446 >    // find the average positions
447 >    if (pCount > 0 && nCount > 0 ) {
448 >      pPos /= pCount;
449 >      nPos /= nCount;
450 >    }
451  
452 <        l= info->integrableObjects[vr]->linearAxis();
453 <        m = (l+1)%3;
306 <        n = (l+2)%3;
452 >    // dipole is from the negative to the positive (physics notation)
453 >    boxDipole += (pPos - nPos) * chg_value;
454  
455 <        aJ[l] = 0.0;
309 <        vbar = sqrt( 2.0 * kebar * I[m][m] );
310 <        aJ[m] = vbar * gaussStream->getGaussian();
311 <        vbar = sqrt( 2.0 * kebar * I[n][n] );
312 <        aJ[n] = vbar * gaussStream->getGaussian();
313 <        
314 <      } else {
315 <        for (j = 0 ; j < 3; j++) {
316 <          vbar = sqrt( 2.0 * kebar * I[j][j] );
317 <          aJ[j] = vbar * gaussStream->getGaussian();
318 <        }      
319 <      } // else isLinear
320 <
321 <      info->integrableObjects[vr]->setJ( aJ );
322 <      
323 <    }//isDirectional
324 <
455 >    return boxDipole;
456    }
457  
458 <  // Get the Center of Mass drift velocity.
458 >  // Returns the Heat Flux Vector for the system
459 >  Vector3d Thermo::getHeatFlux(){
460 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
461 >    SimInfo::MoleculeIterator miter;
462 >    std::vector<StuntDouble*>::iterator iiter;
463 >    Molecule* mol;
464 >    StuntDouble* integrableObject;    
465 >    RigidBody::AtomIterator ai;
466 >    Atom* atom;      
467 >    Vector3d vel;
468 >    Vector3d angMom;
469 >    Mat3x3d I;
470 >    int i;
471 >    int j;
472 >    int k;
473 >    RealType mass;
474  
475 <  getCOMVel(vdrift);
476 <  
477 <  //  Corrects for the center of mass drift.
478 <  // sums all the momentum and divides by total mass.
475 >    Vector3d x_a;
476 >    RealType kinetic;
477 >    RealType potential;
478 >    RealType eatom;
479 >    RealType AvgE_a_ = 0;
480 >    // Convective portion of the heat flux
481 >    Vector3d heatFluxJc = V3Zero;
482  
483 <  for(vd = 0; vd < nobj; vd++){
484 <    
485 <    info->integrableObjects[vd]->getVel(aVel);
486 <    
487 <    for (j=0; j < 3; j++)
488 <      aVel[j] -= vdrift[j];
483 >    /* Calculate convective portion of the heat flux */
484 >    for (mol = info_->beginMolecule(miter); mol != NULL;
485 >         mol = info_->nextMolecule(miter)) {
486 >      
487 >      for (integrableObject = mol->beginIntegrableObject(iiter);
488 >           integrableObject != NULL;
489 >           integrableObject = mol->nextIntegrableObject(iiter)) {
490          
491 <    info->integrableObjects[vd]->setVel( aVel );
492 <  }
491 >        mass = integrableObject->getMass();
492 >        vel = integrableObject->getVel();
493  
494 < }
494 >        kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
495 >        
496 >        if (integrableObject->isDirectional()) {
497 >          angMom = integrableObject->getJ();
498 >          I = integrableObject->getI();
499  
500 < void Thermo::getCOMVel(double vdrift[3]){
500 >          if (integrableObject->isLinear()) {
501 >            i = integrableObject->linearAxis();
502 >            j = (i + 1) % 3;
503 >            k = (i + 2) % 3;
504 >            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
505 >          } else {                        
506 >            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
507 >              + angMom[2]*angMom[2]/I(2, 2);
508 >          }
509 >        }
510  
511 <  double mtot, mtot_local;
349 <  double aVel[3], amass;
350 <  double vdrift_local[3];
351 <  int vd, j;
352 <  int nobj;
511 >        potential = 0.0;
512  
513 <  nobj   = info->integrableObjects.size();
513 >        if (integrableObject->isRigidBody()) {
514 >          RigidBody* rb = dynamic_cast<RigidBody*>(integrableObject);
515 >          for (atom = rb->beginAtom(ai); atom != NULL;
516 >               atom = rb->nextAtom(ai)) {
517 >            potential +=  atom->getParticlePot();
518 >          }          
519 >        } else {
520 >          potential = integrableObject->getParticlePot();
521 >          cerr << "ppot = "  << potential << "\n";
522 >        }
523  
524 <  mtot_local = 0.0;
525 <  vdrift_local[0] = 0.0;
526 <  vdrift_local[1] = 0.0;
527 <  vdrift_local[2] = 0.0;
528 <  
529 <  for(vd = 0; vd < nobj; vd++){
530 <    
531 <    amass = info->integrableObjects[vd]->getMass();
364 <    info->integrableObjects[vd]->getVel( aVel );
524 >        potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
525 >        // The potential may not be a 1/2 factor
526 >        eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2
527 >        heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
528 >        heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
529 >        heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
530 >      }
531 >    }
532  
533 <    for(j = 0; j < 3; j++)
367 <      vdrift_local[j] += aVel[j] * amass;
368 <    
369 <    mtot_local += amass;
370 <  }
533 >    std::cerr << "Heat flux heatFluxJc is: " << heatFluxJc << std::endl;
534  
535 +    /* The J_v vector is reduced in fortan so everyone has the global
536 +     *  Jv. Jc is computed over the local atoms and must be reduced
537 +     *  among all processors.
538 +     */
539   #ifdef IS_MPI
540 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
541 <  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
375 < #else
376 <  mtot = mtot_local;
377 <  for(vd = 0; vd < 3; vd++) {
378 <    vdrift[vd] = vdrift_local[vd];
379 <  }
540 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,
541 >                              MPI::SUM);
542   #endif
543      
544 <  for (vd = 0; vd < 3; vd++) {
383 <    vdrift[vd] = vdrift[vd] / mtot;
384 <  }
385 <  
386 < }
544 >    // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
545  
546 < void Thermo::getCOM(double COM[3]){
547 <
390 <  double mtot, mtot_local;
391 <  double aPos[3], amass;
392 <  double COM_local[3];
393 <  int i, j;
394 <  int nobj;
395 <
396 <  mtot_local = 0.0;
397 <  COM_local[0] = 0.0;
398 <  COM_local[1] = 0.0;
399 <  COM_local[2] = 0.0;
400 <
401 <  nobj = info->integrableObjects.size();
402 <  for(i = 0; i < nobj; i++){
546 >    Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
547 >      PhysicalConstants::energyConvert;
548      
549 <    amass = info->integrableObjects[i]->getMass();
550 <    info->integrableObjects[i]->getPos( aPos );
406 <
407 <    for(j = 0; j < 3; j++)
408 <      COM_local[j] += aPos[j] * amass;
549 >    std::cerr << "Heat flux Jc is: " << heatFluxJc << std::endl;
550 >    std::cerr << "Heat flux Jv is: " << heatFluxJv << std::endl;
551      
552 <    mtot_local += amass;
552 >    // Correct for the fact the flux is 1/V (Jc + Jv)
553 >    return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
554    }
555 <
413 < #ifdef IS_MPI
414 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
415 <  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
416 < #else
417 <  mtot = mtot_local;
418 <  for(i = 0; i < 3; i++) {
419 <    COM[i] = COM_local[i];
420 <  }
421 < #endif
422 <    
423 <  for (i = 0; i < 3; i++) {
424 <    COM[i] = COM[i] / mtot;
425 <  }
426 < }
427 <
428 < void Thermo::removeCOMdrift() {
429 <  double vdrift[3], aVel[3];
430 <  int vd, j, nobj;
431 <
432 <  nobj = info->integrableObjects.size();
433 <
434 <  // Get the Center of Mass drift velocity.
435 <
436 <  getCOMVel(vdrift);
437 <  
438 <  //  Corrects for the center of mass drift.
439 <  // sums all the momentum and divides by total mass.
440 <
441 <  for(vd = 0; vd < nobj; vd++){
442 <    
443 <    info->integrableObjects[vd]->getVel(aVel);
444 <    
445 <    for (j=0; j < 3; j++)
446 <      aVel[j] -= vdrift[j];
447 <        
448 <    info->integrableObjects[vd]->setVel( aVel );
449 <  }
450 < }
555 > } //end namespace OpenMD

Comparing:
trunk/src/brains/Thermo.cpp (property svn:keywords), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/Thermo.cpp (property svn:keywords), Revision 1760 by gezelter, Thu Jun 21 19:26:46 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines