ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
(Generate patch)

Comparing:
trunk/src/brains/Thermo.cpp (file contents), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/Thermo.cpp (file contents), Revision 1715 by gezelter, Tue May 22 21:55:31 2012 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 + */
42 +
43   #include <math.h>
44   #include <iostream>
3 using namespace std;
45  
46   #ifdef IS_MPI
47   #include <mpi.h>
48   #endif //is_mpi
49  
50 < #include "Thermo.hpp"
51 < #include "SRI.hpp"
52 < #include "Integrator.hpp"
53 < #include "simError.h"
54 < #include "MatVec3.h"
50 > #include "brains/Thermo.hpp"
51 > #include "primitives/Molecule.hpp"
52 > #include "utils/simError.h"
53 > #include "utils/PhysicalConstants.hpp"
54 > #include "types/MultipoleAdapter.hpp"
55  
56 < #ifdef IS_MPI
16 < #define __C
17 < #include "mpiSimulation.hpp"
18 < #endif // is_mpi
56 > namespace OpenMD {
57  
58 < inline double roundMe( double x ){
59 <          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
60 < }
58 >  RealType Thermo::getKinetic() {
59 >    SimInfo::MoleculeIterator miter;
60 >    std::vector<StuntDouble*>::iterator iiter;
61 >    Molecule* mol;
62 >    StuntDouble* integrableObject;    
63 >    Vector3d vel;
64 >    Vector3d angMom;
65 >    Mat3x3d I;
66 >    int i;
67 >    int j;
68 >    int k;
69 >    RealType mass;
70 >    RealType kinetic = 0.0;
71 >    RealType kinetic_global = 0.0;
72 >    
73 >    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
74 >      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
75 >           integrableObject = mol->nextIntegrableObject(iiter)) {
76 >        
77 >        mass = integrableObject->getMass();
78 >        vel = integrableObject->getVel();
79 >        
80 >        kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
81 >        
82 >        if (integrableObject->isDirectional()) {
83 >          angMom = integrableObject->getJ();
84 >          I = integrableObject->getI();
85  
86 < Thermo::Thermo( SimInfo* the_info ) {
87 <  info = the_info;
88 <  int baseSeed = the_info->getSeed();
89 <  
90 <  gaussStream = new gaussianSPRNG( baseSeed );
91 < }
92 <
93 < Thermo::~Thermo(){
94 <  delete gaussStream;
95 < }
96 <
35 < double Thermo::getKinetic(){
36 <
37 <  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
38 <  double kinetic;
39 <  double amass;
40 <  double aVel[3], aJ[3], I[3][3];
41 <  int i, j, k, kl;
42 <
43 <  double kinetic_global;
44 <  vector<StuntDouble *> integrableObjects = info->integrableObjects;
45 <  
46 <  kinetic = 0.0;
47 <  kinetic_global = 0.0;
48 <
49 <  for (kl=0; kl<integrableObjects.size(); kl++) {
50 <    integrableObjects[kl]->getVel(aVel);
51 <    amass = integrableObjects[kl]->getMass();
52 <
53 <   for(j=0; j<3; j++)
54 <      kinetic += amass*aVel[j]*aVel[j];
55 <
56 <   if (integrableObjects[kl]->isDirectional()){
57 <
58 <      integrableObjects[kl]->getJ( aJ );
59 <      integrableObjects[kl]->getI( I );
60 <
61 <      if (integrableObjects[kl]->isLinear()) {
62 <        i = integrableObjects[kl]->linearAxis();
63 <        j = (i+1)%3;
64 <        k = (i+2)%3;
65 <        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
66 <      } else {
67 <        for (j=0; j<3; j++)
68 <          kinetic += aJ[j]*aJ[j] / I[j][j];
86 >          if (integrableObject->isLinear()) {
87 >            i = integrableObject->linearAxis();
88 >            j = (i + 1) % 3;
89 >            k = (i + 2) % 3;
90 >            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
91 >          } else {                        
92 >            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
93 >              + angMom[2]*angMom[2]/I(2, 2);
94 >          }
95 >        }
96 >            
97        }
98 <   }
99 <  }
98 >    }
99 >    
100   #ifdef IS_MPI
73  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
74                MPI_SUM, MPI_COMM_WORLD);
75  kinetic = kinetic_global;
76 #endif //is_mpi
77  
78  kinetic = kinetic * 0.5 / e_convert;
101  
102 <  return kinetic;
103 < }
102 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
103 >                  MPI_COMM_WORLD);
104 >    kinetic = kinetic_global;
105  
106 < double Thermo::getPotential(){
84 <  
85 <  double potential_local;
86 <  double potential;
87 <  int el, nSRI;
88 <  Molecule* molecules;
106 > #endif //is_mpi
107  
108 <  molecules = info->molecules;
91 <  nSRI = info->n_SRI;
108 >    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
109  
110 <  potential_local = 0.0;
94 <  potential = 0.0;
95 <  potential_local += info->lrPot;
96 <
97 <  for( el=0; el<info->n_mol; el++ ){    
98 <    potential_local += molecules[el].getPotential();
110 >    return kinetic;
111    }
112  
113 <  // Get total potential for entire system from MPI.
114 < #ifdef IS_MPI
115 <  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
116 <                MPI_SUM, MPI_COMM_WORLD);
105 < #else
106 <  potential = potential_local;
107 < #endif // is_mpi
113 >  RealType Thermo::getPotential() {
114 >    RealType potential = 0.0;
115 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
116 >    RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
117  
118 <  return potential;
110 < }
118 >    // Get total potential for entire system from MPI.
119  
120 < double Thermo::getTotalE(){
120 > #ifdef IS_MPI
121  
122 <  double total;
122 >    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
123 >                  MPI_COMM_WORLD);
124 >    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
125  
126 <  total = this->getKinetic() + this->getPotential();
117 <  return total;
118 < }
126 > #else
127  
128 < double Thermo::getTemperature(){
128 >    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
129  
130 <  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
123 <  double temperature;
130 > #endif // is_mpi
131  
132 <  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
133 <  return temperature;
127 < }
132 >    return potential;
133 >  }
134  
135 < double Thermo::getVolume() {
135 >  RealType Thermo::getTotalE() {
136 >    RealType total;
137  
138 <  return info->boxVol;
139 < }
138 >    total = this->getKinetic() + this->getPotential();
139 >    return total;
140 >  }
141  
142 < double Thermo::getPressure() {
142 >  RealType Thermo::getTemperature() {
143 >    
144 >    RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
145 >    return temperature;
146 >  }
147  
148 <  // Relies on the calculation of the full molecular pressure tensor
149 <  
150 <  const double p_convert = 1.63882576e8;
151 <  double press[3][3];
152 <  double pressure;
148 >  RealType Thermo::getElectronicTemperature() {
149 >    SimInfo::MoleculeIterator miter;
150 >    std::vector<Atom*>::iterator iiter;
151 >    Molecule* mol;
152 >    Atom* atom;    
153 >    RealType cvel;
154 >    RealType cmass;
155 >    RealType kinetic = 0.0;
156 >    RealType kinetic_global = 0.0;
157 >    
158 >    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
159 >      for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
160 >           atom = mol->nextFluctuatingCharge(iiter)) {
161 >        cmass = atom->getChargeMass();
162 >        cvel = atom->getFlucQVel();
163 >        
164 >        kinetic += cmass * cvel * cvel;
165 >        
166 >      }
167 >    }
168 >    
169 > #ifdef IS_MPI
170  
171 <  this->getPressureTensor(press);
171 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
172 >                  MPI_COMM_WORLD);
173 >    kinetic = kinetic_global;
174  
175 <  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
175 > #endif //is_mpi
176  
177 <  return pressure;
178 < }
177 >    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
178 >    return ( 2.0 * kinetic) / (info_->getNFluctuatingCharges()* PhysicalConstants::kb );    
179 >  }
180  
149 double Thermo::getPressureX() {
181  
151  // Relies on the calculation of the full molecular pressure tensor
152  
153  const double p_convert = 1.63882576e8;
154  double press[3][3];
155  double pressureX;
182  
157  this->getPressureTensor(press);
183  
184 <  pressureX = p_convert * press[0][0];
184 >  RealType Thermo::getVolume() {
185 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
186 >    return curSnapshot->getVolume();
187 >  }
188  
189 <  return pressureX;
162 < }
189 >  RealType Thermo::getPressure() {
190  
191 < double Thermo::getPressureY() {
191 >    // Relies on the calculation of the full molecular pressure tensor
192  
166  // Relies on the calculation of the full molecular pressure tensor
167  
168  const double p_convert = 1.63882576e8;
169  double press[3][3];
170  double pressureY;
193  
194 <  this->getPressureTensor(press);
194 >    Mat3x3d tensor;
195 >    RealType pressure;
196  
197 <  pressureY = p_convert * press[1][1];
197 >    tensor = getPressureTensor();
198  
199 <  return pressureY;
177 < }
199 >    pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
200  
201 < double Thermo::getPressureZ() {
201 >    return pressure;
202 >  }
203  
204 <  // Relies on the calculation of the full molecular pressure tensor
182 <  
183 <  const double p_convert = 1.63882576e8;
184 <  double press[3][3];
185 <  double pressureZ;
204 >  RealType Thermo::getPressure(int direction) {
205  
206 <  this->getPressureTensor(press);
206 >    // Relies on the calculation of the full molecular pressure tensor
207  
208 <  pressureZ = p_convert * press[2][2];
208 >          
209 >    Mat3x3d tensor;
210 >    RealType pressure;
211  
212 <  return pressureZ;
192 < }
212 >    tensor = getPressureTensor();
213  
214 +    pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
215  
216 < void Thermo::getPressureTensor(double press[3][3]){
196 <  // returns pressure tensor in units amu*fs^-2*Ang^-1
197 <  // routine derived via viral theorem description in:
198 <  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
199 <
200 <  const double e_convert = 4.184e-4;
201 <
202 <  double molmass, volume;
203 <  double vcom[3];
204 <  double p_local[9], p_global[9];
205 <  int i, j, k;
206 <
207 <  for (i=0; i < 9; i++) {    
208 <    p_local[i] = 0.0;
209 <    p_global[i] = 0.0;
216 >    return pressure;
217    }
218  
219 <  // use velocities of integrableObjects and their masses:  
219 >  Mat3x3d Thermo::getPressureTensor() {
220 >    // returns pressure tensor in units amu*fs^-2*Ang^-1
221 >    // routine derived via viral theorem description in:
222 >    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
223 >    Mat3x3d pressureTensor;
224 >    Mat3x3d p_local(0.0);
225 >    Mat3x3d p_global(0.0);
226  
227 <  for (i=0; i < info->integrableObjects.size(); i++) {
227 >    SimInfo::MoleculeIterator i;
228 >    std::vector<StuntDouble*>::iterator j;
229 >    Molecule* mol;
230 >    StuntDouble* integrableObject;    
231 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
232 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
233 >           integrableObject = mol->nextIntegrableObject(j)) {
234  
235 <    molmass = info->integrableObjects[i]->getMass();
235 >        RealType mass = integrableObject->getMass();
236 >        Vector3d vcom = integrableObject->getVel();
237 >        p_local += mass * outProduct(vcom, vcom);        
238 >      }
239 >    }
240      
218    info->integrableObjects[i]->getVel(vcom);
219    
220    p_local[0] += molmass * (vcom[0] * vcom[0]);
221    p_local[1] += molmass * (vcom[0] * vcom[1]);
222    p_local[2] += molmass * (vcom[0] * vcom[2]);
223    p_local[3] += molmass * (vcom[1] * vcom[0]);
224    p_local[4] += molmass * (vcom[1] * vcom[1]);
225    p_local[5] += molmass * (vcom[1] * vcom[2]);
226    p_local[6] += molmass * (vcom[2] * vcom[0]);
227    p_local[7] += molmass * (vcom[2] * vcom[1]);
228    p_local[8] += molmass * (vcom[2] * vcom[2]);
229
230  }
231
232  // Get total for entire system from MPI.
233  
241   #ifdef IS_MPI
242 <  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
242 >    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
243   #else
244 <  for (i=0; i<9; i++) {
238 <    p_global[i] = p_local[i];
239 <  }
244 >    p_global = p_local;
245   #endif // is_mpi
246  
247 <  volume = this->getVolume();
247 >    RealType volume = this->getVolume();
248 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
249 >    Mat3x3d tau = curSnapshot->getTau();
250  
251 +    pressureTensor =  (p_global + PhysicalConstants::energyConvert* tau)/volume;
252 +    
253 +    return pressureTensor;
254 +  }
255  
256  
257 <  for(i = 0; i < 3; i++) {
258 <    for (j = 0; j < 3; j++) {
259 <      k = 3*i + j;
260 <      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
261 <    }
262 <  }
263 < }
257 >  void Thermo::saveStat(){
258 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
259 >    Stats& stat = currSnapshot->statData;
260 >    
261 >    stat[Stats::KINETIC_ENERGY] = getKinetic();
262 >    stat[Stats::POTENTIAL_ENERGY] = getPotential();
263 >    stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ;
264 >    stat[Stats::TEMPERATURE] = getTemperature();
265 >    stat[Stats::PRESSURE] = getPressure();
266 >    stat[Stats::VOLUME] = getVolume();      
267  
268 < void Thermo::velocitize() {
269 <  
270 <  double aVel[3], aJ[3], I[3][3];
271 <  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
272 <  double vdrift[3];
273 <  double vbar;
274 <  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
275 <  double av2;
276 <  double kebar;
277 <  double temperature;
264 <  int nobj;
268 >    Mat3x3d tensor =getPressureTensor();
269 >    stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);      
270 >    stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);      
271 >    stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);      
272 >    stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);      
273 >    stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);      
274 >    stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);      
275 >    stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);      
276 >    stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);      
277 >    stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);      
278  
279 <  if (!info->have_target_temp) {
280 <    sprintf( painCave.errMsg,
281 <             "You can't resample the velocities without a targetTemp!\n"
282 <             );
283 <    painCave.isFatal = 1;
284 <    painCave.severity = OOPSE_ERROR;
285 <    simError();
273 <    return;
274 <  }
279 >    // grab the simulation box dipole moment if specified
280 >    if (info_->getCalcBoxDipole()){
281 >      Vector3d totalDipole = getBoxDipole();
282 >      stat[Stats::BOX_DIPOLE_X] = totalDipole(0);
283 >      stat[Stats::BOX_DIPOLE_Y] = totalDipole(1);
284 >      stat[Stats::BOX_DIPOLE_Z] = totalDipole(2);
285 >    }
286  
287 <  nobj = info->integrableObjects.size();
277 <  
278 <  temperature   = info->target_temp;
279 <  
280 <  kebar = kb * temperature * (double)info->ndfRaw /
281 <    ( 2.0 * (double)info->ndf );
282 <  
283 <  for(vr = 0; vr < nobj; vr++){
284 <    
285 <    // uses equipartition theory to solve for vbar in angstrom/fs
287 >    Globals* simParams = info_->getSimParams();
288  
289 <    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
290 <    vbar = sqrt( av2 );
289 >    if (simParams->haveTaggedAtomPair() &&
290 >        simParams->havePrintTaggedPairDistance()) {
291 >      if ( simParams->getPrintTaggedPairDistance()) {
292 >        
293 >        std::pair<int, int> tap = simParams->getTaggedAtomPair();
294 >        Vector3d pos1, pos2, rab;
295  
296 <    // picks random velocities from a gaussian distribution
297 <    // centered on vbar
296 > #ifdef IS_MPI        
297 >        std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl;
298  
299 <    for (j=0; j<3; j++)
300 <      aVel[j] = vbar * gaussStream->getGaussian();
301 <    
296 <    info->integrableObjects[vr]->setVel( aVel );
297 <    
298 <    if(info->integrableObjects[vr]->isDirectional()){
299 >        int mol1 = info_->getGlobalMolMembership(tap.first);
300 >        int mol2 = info_->getGlobalMolMembership(tap.second);
301 >        std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
302  
303 <      info->integrableObjects[vr]->getI( I );
303 >        int proc1 = info_->getMolToProc(mol1);
304 >        int proc2 = info_->getMolToProc(mol2);
305  
306 <      if (info->integrableObjects[vr]->isLinear()) {
306 >        std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
307  
308 <        l= info->integrableObjects[vr]->linearAxis();
309 <        m = (l+1)%3;
310 <        n = (l+2)%3;
308 >        RealType data[3];
309 >        if (proc1 == worldRank) {
310 >          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
311 >          std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
312 >          pos1 = sd1->getPos();
313 >          data[0] = pos1.x();
314 >          data[1] = pos1.y();
315 >          data[2] = pos1.z();          
316 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
317 >        } else {
318 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
319 >          pos1 = Vector3d(data);
320 >        }
321  
308        aJ[l] = 0.0;
309        vbar = sqrt( 2.0 * kebar * I[m][m] );
310        aJ[m] = vbar * gaussStream->getGaussian();
311        vbar = sqrt( 2.0 * kebar * I[n][n] );
312        aJ[n] = vbar * gaussStream->getGaussian();
313        
314      } else {
315        for (j = 0 ; j < 3; j++) {
316          vbar = sqrt( 2.0 * kebar * I[j][j] );
317          aJ[j] = vbar * gaussStream->getGaussian();
318        }      
319      } // else isLinear
322  
323 <      info->integrableObjects[vr]->setJ( aJ );
323 >        if (proc2 == worldRank) {
324 >          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
325 >          std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
326 >          pos2 = sd2->getPos();
327 >          data[0] = pos2.x();
328 >          data[1] = pos2.y();
329 >          data[2] = pos2.z();          
330 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
331 >        } else {
332 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
333 >          pos2 = Vector3d(data);
334 >        }
335 > #else
336 >        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
337 >        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
338 >        pos1 = at1->getPos();
339 >        pos2 = at2->getPos();
340 > #endif        
341 >        rab = pos2 - pos1;
342 >        currSnapshot->wrapVector(rab);
343 >        stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length();
344 >      }
345 >    }
346        
347 <    }//isDirectional
348 <
325 <  }
326 <
327 <  // Get the Center of Mass drift velocity.
328 <
329 <  getCOMVel(vdrift);
330 <  
331 <  //  Corrects for the center of mass drift.
332 <  // sums all the momentum and divides by total mass.
333 <
334 <  for(vd = 0; vd < nobj; vd++){
347 >    /**@todo need refactorying*/
348 >    //Conserved Quantity is set by integrator and time is set by setTime
349      
336    info->integrableObjects[vd]->getVel(aVel);
337    
338    for (j=0; j < 3; j++)
339      aVel[j] -= vdrift[j];
340        
341    info->integrableObjects[vd]->setVel( aVel );
350    }
351  
344 }
352  
353 < void Thermo::getCOMVel(double vdrift[3]){
353 >  Vector3d Thermo::getBoxDipole() {
354 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
355 >    SimInfo::MoleculeIterator miter;
356 >    std::vector<Atom*>::iterator aiter;
357 >    Molecule* mol;
358 >    Atom* atom;
359 >    RealType charge;
360 >    RealType moment(0.0);
361 >    Vector3d ri(0.0);
362 >    Vector3d dipoleVector(0.0);
363 >    Vector3d nPos(0.0);
364 >    Vector3d pPos(0.0);
365 >    RealType nChg(0.0);
366 >    RealType pChg(0.0);
367 >    int nCount = 0;
368 >    int pCount = 0;
369  
370 <  double mtot, mtot_local;
371 <  double aVel[3], amass;
372 <  double vdrift_local[3];
351 <  int vd, j;
352 <  int nobj;
353 <
354 <  nobj   = info->integrableObjects.size();
355 <
356 <  mtot_local = 0.0;
357 <  vdrift_local[0] = 0.0;
358 <  vdrift_local[1] = 0.0;
359 <  vdrift_local[2] = 0.0;
360 <  
361 <  for(vd = 0; vd < nobj; vd++){
370 >    RealType chargeToC = 1.60217733e-19;
371 >    RealType angstromToM = 1.0e-10;
372 >    RealType debyeToCm = 3.33564095198e-30;
373      
374 <    amass = info->integrableObjects[vd]->getMass();
375 <    info->integrableObjects[vd]->getVel( aVel );
374 >    for (mol = info_->beginMolecule(miter); mol != NULL;
375 >         mol = info_->nextMolecule(miter)) {
376  
377 <    for(j = 0; j < 3; j++)
378 <      vdrift_local[j] += aVel[j] * amass;
379 <    
380 <    mtot_local += amass;
381 <  }
377 >      for (atom = mol->beginAtom(aiter); atom != NULL;
378 >           atom = mol->nextAtom(aiter)) {
379 >        
380 >        if (atom->isCharge() ) {
381 >          charge = 0.0;
382 >          GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
383 >          if (data != NULL) {
384  
385 < #ifdef IS_MPI
386 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
374 <  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
375 < #else
376 <  mtot = mtot_local;
377 <  for(vd = 0; vd < 3; vd++) {
378 <    vdrift[vd] = vdrift_local[vd];
379 <  }
380 < #endif
381 <    
382 <  for (vd = 0; vd < 3; vd++) {
383 <    vdrift[vd] = vdrift[vd] / mtot;
384 <  }
385 <  
386 < }
385 >            charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
386 >            charge *= chargeToC;
387  
388 < void Thermo::getCOM(double COM[3]){
388 >            ri = atom->getPos();
389 >            currSnapshot->wrapVector(ri);
390 >            ri *= angstromToM;
391  
392 <  double mtot, mtot_local;
393 <  double aPos[3], amass;
394 <  double COM_local[3];
395 <  int i, j;
396 <  int nobj;
397 <
398 <  mtot_local = 0.0;
399 <  COM_local[0] = 0.0;
400 <  COM_local[1] = 0.0;
401 <  COM_local[2] = 0.0;
402 <
403 <  nobj = info->integrableObjects.size();
404 <  for(i = 0; i < nobj; i++){
392 >            if (charge < 0.0) {
393 >              nPos += ri;
394 >              nChg -= charge;
395 >              nCount++;
396 >            } else if (charge > 0.0) {
397 >              pPos += ri;
398 >              pChg += charge;
399 >              pCount++;
400 >            }                      
401 >          }
402 >        }
403 >        
404 >        MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
405 >        if (ma.isDipole() ) {
406 >          Vector3d u_i = atom->getElectroFrame().getColumn(2);
407 >          moment = ma.getDipoleMoment();
408 >          moment *= debyeToCm;
409 >          dipoleVector += u_i * moment;
410 >        }
411 >      }
412 >    }
413      
414 <    amass = info->integrableObjects[i]->getMass();
405 <    info->integrableObjects[i]->getPos( aPos );
406 <
407 <    for(j = 0; j < 3; j++)
408 <      COM_local[j] += aPos[j] * amass;
409 <    
410 <    mtot_local += amass;
411 <  }
412 <
414 >                      
415   #ifdef IS_MPI
416 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
417 <  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
418 < #else
417 <  mtot = mtot_local;
418 <  for(i = 0; i < 3; i++) {
419 <    COM[i] = COM_local[i];
420 <  }
421 < #endif
422 <    
423 <  for (i = 0; i < 3; i++) {
424 <    COM[i] = COM[i] / mtot;
425 <  }
426 < }
416 >    RealType pChg_global, nChg_global;
417 >    int pCount_global, nCount_global;
418 >    Vector3d pPos_global, nPos_global, dipVec_global;
419  
420 < void Thermo::removeCOMdrift() {
421 <  double vdrift[3], aVel[3];
422 <  int vd, j, nobj;
420 >    MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
421 >                  MPI_COMM_WORLD);
422 >    pChg = pChg_global;
423 >    MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
424 >                  MPI_COMM_WORLD);
425 >    nChg = nChg_global;
426 >    MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
427 >                  MPI_COMM_WORLD);
428 >    pCount = pCount_global;
429 >    MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
430 >                  MPI_COMM_WORLD);
431 >    nCount = nCount_global;
432 >    MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
433 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
434 >    pPos = pPos_global;
435 >    MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
436 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
437 >    nPos = nPos_global;
438 >    MPI_Allreduce(dipoleVector.getArrayPointer(),
439 >                  dipVec_global.getArrayPointer(), 3,
440 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
441 >    dipoleVector = dipVec_global;
442 > #endif //is_mpi
443  
444 <  nobj = info->integrableObjects.size();
444 >    // first load the accumulated dipole moment (if dipoles were present)
445 >    Vector3d boxDipole = dipoleVector;
446 >    // now include the dipole moment due to charges
447 >    // use the lesser of the positive and negative charge totals
448 >    RealType chg_value = nChg <= pChg ? nChg : pChg;
449 >      
450 >    // find the average positions
451 >    if (pCount > 0 && nCount > 0 ) {
452 >      pPos /= pCount;
453 >      nPos /= nCount;
454 >    }
455  
456 <  // Get the Center of Mass drift velocity.
456 >    // dipole is from the negative to the positive (physics notation)
457 >    boxDipole += (pPos - nPos) * chg_value;
458  
459 <  getCOMVel(vdrift);
437 <  
438 <  //  Corrects for the center of mass drift.
439 <  // sums all the momentum and divides by total mass.
440 <
441 <  for(vd = 0; vd < nobj; vd++){
442 <    
443 <    info->integrableObjects[vd]->getVel(aVel);
444 <    
445 <    for (j=0; j < 3; j++)
446 <      aVel[j] -= vdrift[j];
447 <        
448 <    info->integrableObjects[vd]->setVel( aVel );
459 >    return boxDipole;
460    }
461 < }
461 > } //end namespace OpenMD

Comparing:
trunk/src/brains/Thermo.cpp (property svn:keywords), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/Thermo.cpp (property svn:keywords), Revision 1715 by gezelter, Tue May 22 21:55:31 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines