ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
(Generate patch)

Comparing:
trunk/src/brains/Thermo.cpp (file contents), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/Thermo.cpp (file contents), Revision 1710 by gezelter, Fri May 18 21:44:02 2012 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 + */
42 +
43   #include <math.h>
44   #include <iostream>
3 using namespace std;
45  
46   #ifdef IS_MPI
47   #include <mpi.h>
48   #endif //is_mpi
49  
50 < #include "Thermo.hpp"
51 < #include "SRI.hpp"
52 < #include "Integrator.hpp"
53 < #include "simError.h"
54 < #include "MatVec3.h"
50 > #include "brains/Thermo.hpp"
51 > #include "primitives/Molecule.hpp"
52 > #include "utils/simError.h"
53 > #include "utils/PhysicalConstants.hpp"
54 > #include "types/MultipoleAdapter.hpp"
55  
56 < #ifdef IS_MPI
16 < #define __C
17 < #include "mpiSimulation.hpp"
18 < #endif // is_mpi
56 > namespace OpenMD {
57  
58 < inline double roundMe( double x ){
59 <          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
60 < }
58 >  RealType Thermo::getKinetic() {
59 >    SimInfo::MoleculeIterator miter;
60 >    std::vector<StuntDouble*>::iterator iiter;
61 >    Molecule* mol;
62 >    StuntDouble* integrableObject;    
63 >    Vector3d vel;
64 >    Vector3d angMom;
65 >    Mat3x3d I;
66 >    int i;
67 >    int j;
68 >    int k;
69 >    RealType mass;
70 >    RealType kinetic = 0.0;
71 >    RealType kinetic_global = 0.0;
72 >    
73 >    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
74 >      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
75 >           integrableObject = mol->nextIntegrableObject(iiter)) {
76 >        
77 >        mass = integrableObject->getMass();
78 >        vel = integrableObject->getVel();
79 >        
80 >        kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
81 >        
82 >        if (integrableObject->isDirectional()) {
83 >          angMom = integrableObject->getJ();
84 >          I = integrableObject->getI();
85  
86 < Thermo::Thermo( SimInfo* the_info ) {
87 <  info = the_info;
88 <  int baseSeed = the_info->getSeed();
89 <  
90 <  gaussStream = new gaussianSPRNG( baseSeed );
91 < }
86 >          if (integrableObject->isLinear()) {
87 >            i = integrableObject->linearAxis();
88 >            j = (i + 1) % 3;
89 >            k = (i + 2) % 3;
90 >            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
91 >          } else {                        
92 >            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
93 >              + angMom[2]*angMom[2]/I(2, 2);
94 >          }
95 >        }
96 >            
97 >      }
98 >    }
99 >    
100 > #ifdef IS_MPI
101  
102 < Thermo::~Thermo(){
103 <  delete gaussStream;
104 < }
102 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
103 >                  MPI_COMM_WORLD);
104 >    kinetic = kinetic_global;
105  
106 < double Thermo::getKinetic(){
106 > #endif //is_mpi
107  
108 <  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
38 <  double kinetic;
39 <  double amass;
40 <  double aVel[3], aJ[3], I[3][3];
41 <  int i, j, k, kl;
108 >    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
109  
110 <  double kinetic_global;
111 <  vector<StuntDouble *> integrableObjects = info->integrableObjects;
45 <  
46 <  kinetic = 0.0;
47 <  kinetic_global = 0.0;
110 >    return kinetic;
111 >  }
112  
113 <  for (kl=0; kl<integrableObjects.size(); kl++) {
114 <    integrableObjects[kl]->getVel(aVel);
115 <    amass = integrableObjects[kl]->getMass();
113 >  RealType Thermo::getPotential() {
114 >    RealType potential = 0.0;
115 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
116 >    RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
117  
118 <   for(j=0; j<3; j++)
54 <      kinetic += amass*aVel[j]*aVel[j];
118 >    // Get total potential for entire system from MPI.
119  
56   if (integrableObjects[kl]->isDirectional()){
57
58      integrableObjects[kl]->getJ( aJ );
59      integrableObjects[kl]->getI( I );
60
61      if (integrableObjects[kl]->isLinear()) {
62        i = integrableObjects[kl]->linearAxis();
63        j = (i+1)%3;
64        k = (i+2)%3;
65        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
66      } else {
67        for (j=0; j<3; j++)
68          kinetic += aJ[j]*aJ[j] / I[j][j];
69      }
70   }
71  }
120   #ifdef IS_MPI
73  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
74                MPI_SUM, MPI_COMM_WORLD);
75  kinetic = kinetic_global;
76 #endif //is_mpi
77  
78  kinetic = kinetic * 0.5 / e_convert;
121  
122 <  return kinetic;
123 < }
122 >    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
123 >                  MPI_COMM_WORLD);
124 >    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
125  
126 < double Thermo::getPotential(){
84 <  
85 <  double potential_local;
86 <  double potential;
87 <  int el, nSRI;
88 <  Molecule* molecules;
126 > #else
127  
128 <  molecules = info->molecules;
91 <  nSRI = info->n_SRI;
128 >    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
129  
130 <  potential_local = 0.0;
94 <  potential = 0.0;
95 <  potential_local += info->lrPot;
130 > #endif // is_mpi
131  
132 <  for( el=0; el<info->n_mol; el++ ){    
98 <    potential_local += molecules[el].getPotential();
132 >    return potential;
133    }
134  
135 <  // Get total potential for entire system from MPI.
136 < #ifdef IS_MPI
103 <  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
104 <                MPI_SUM, MPI_COMM_WORLD);
105 < #else
106 <  potential = potential_local;
107 < #endif // is_mpi
135 >  RealType Thermo::getTotalE() {
136 >    RealType total;
137  
138 <  return potential;
139 < }
138 >    total = this->getKinetic() + this->getPotential();
139 >    return total;
140 >  }
141  
142 < double Thermo::getTotalE(){
142 >  RealType Thermo::getTemperature() {
143 >    
144 >    RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
145 >    return temperature;
146 >  }
147  
148 <  double total;
148 >  RealType Thermo::getVolume() {
149 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
150 >    return curSnapshot->getVolume();
151 >  }
152  
153 <  total = this->getKinetic() + this->getPotential();
117 <  return total;
118 < }
153 >  RealType Thermo::getPressure() {
154  
155 < double Thermo::getTemperature(){
155 >    // Relies on the calculation of the full molecular pressure tensor
156  
122  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
123  double temperature;
157  
158 <  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
159 <  return temperature;
127 < }
158 >    Mat3x3d tensor;
159 >    RealType pressure;
160  
161 < double Thermo::getVolume() {
161 >    tensor = getPressureTensor();
162  
163 <  return info->boxVol;
132 < }
163 >    pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
164  
165 < double Thermo::getPressure() {
165 >    return pressure;
166 >  }
167  
168 <  // Relies on the calculation of the full molecular pressure tensor
137 <  
138 <  const double p_convert = 1.63882576e8;
139 <  double press[3][3];
140 <  double pressure;
168 >  RealType Thermo::getPressure(int direction) {
169  
170 <  this->getPressureTensor(press);
170 >    // Relies on the calculation of the full molecular pressure tensor
171  
172 <  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
172 >          
173 >    Mat3x3d tensor;
174 >    RealType pressure;
175  
176 <  return pressure;
147 < }
176 >    tensor = getPressureTensor();
177  
178 < double Thermo::getPressureX() {
178 >    pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
179  
180 <  // Relies on the calculation of the full molecular pressure tensor
181 <  
153 <  const double p_convert = 1.63882576e8;
154 <  double press[3][3];
155 <  double pressureX;
180 >    return pressure;
181 >  }
182  
183 <  this->getPressureTensor(press);
183 >  Mat3x3d Thermo::getPressureTensor() {
184 >    // returns pressure tensor in units amu*fs^-2*Ang^-1
185 >    // routine derived via viral theorem description in:
186 >    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
187 >    Mat3x3d pressureTensor;
188 >    Mat3x3d p_local(0.0);
189 >    Mat3x3d p_global(0.0);
190  
191 <  pressureX = p_convert * press[0][0];
191 >    SimInfo::MoleculeIterator i;
192 >    std::vector<StuntDouble*>::iterator j;
193 >    Molecule* mol;
194 >    StuntDouble* integrableObject;    
195 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
196 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
197 >           integrableObject = mol->nextIntegrableObject(j)) {
198  
199 <  return pressureX;
200 < }
199 >        RealType mass = integrableObject->getMass();
200 >        Vector3d vcom = integrableObject->getVel();
201 >        p_local += mass * outProduct(vcom, vcom);        
202 >      }
203 >    }
204 >    
205 > #ifdef IS_MPI
206 >    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
207 > #else
208 >    p_global = p_local;
209 > #endif // is_mpi
210  
211 < double Thermo::getPressureY() {
211 >    RealType volume = this->getVolume();
212 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
213 >    Mat3x3d tau = curSnapshot->getTau();
214  
215 <  // Relies on the calculation of the full molecular pressure tensor
216 <  
217 <  const double p_convert = 1.63882576e8;
218 <  double press[3][3];
170 <  double pressureY;
215 >    pressureTensor =  (p_global + PhysicalConstants::energyConvert* tau)/volume;
216 >    
217 >    return pressureTensor;
218 >  }
219  
172  this->getPressureTensor(press);
220  
221 <  pressureY = p_convert * press[1][1];
221 >  void Thermo::saveStat(){
222 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
223 >    Stats& stat = currSnapshot->statData;
224 >    
225 >    stat[Stats::KINETIC_ENERGY] = getKinetic();
226 >    stat[Stats::POTENTIAL_ENERGY] = getPotential();
227 >    stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ;
228 >    stat[Stats::TEMPERATURE] = getTemperature();
229 >    stat[Stats::PRESSURE] = getPressure();
230 >    stat[Stats::VOLUME] = getVolume();      
231  
232 <  return pressureY;
233 < }
232 >    Mat3x3d tensor =getPressureTensor();
233 >    stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);      
234 >    stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);      
235 >    stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);      
236 >    stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);      
237 >    stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);      
238 >    stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);      
239 >    stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);      
240 >    stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);      
241 >    stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);      
242  
243 < double Thermo::getPressureZ() {
243 >    // grab the simulation box dipole moment if specified
244 >    if (info_->getCalcBoxDipole()){
245 >      Vector3d totalDipole = getBoxDipole();
246 >      stat[Stats::BOX_DIPOLE_X] = totalDipole(0);
247 >      stat[Stats::BOX_DIPOLE_Y] = totalDipole(1);
248 >      stat[Stats::BOX_DIPOLE_Z] = totalDipole(2);
249 >    }
250  
251 <  // Relies on the calculation of the full molecular pressure tensor
182 <  
183 <  const double p_convert = 1.63882576e8;
184 <  double press[3][3];
185 <  double pressureZ;
251 >    Globals* simParams = info_->getSimParams();
252  
253 <  this->getPressureTensor(press);
253 >    if (simParams->haveTaggedAtomPair() &&
254 >        simParams->havePrintTaggedPairDistance()) {
255 >      if ( simParams->getPrintTaggedPairDistance()) {
256 >        
257 >        std::pair<int, int> tap = simParams->getTaggedAtomPair();
258 >        Vector3d pos1, pos2, rab;
259  
260 <  pressureZ = p_convert * press[2][2];
260 > #ifdef IS_MPI        
261 >        std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl;
262  
263 <  return pressureZ;
264 < }
263 >        int mol1 = info_->getGlobalMolMembership(tap.first);
264 >        int mol2 = info_->getGlobalMolMembership(tap.second);
265 >        std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
266  
267 +        int proc1 = info_->getMolToProc(mol1);
268 +        int proc2 = info_->getMolToProc(mol2);
269  
270 < void Thermo::getPressureTensor(double press[3][3]){
196 <  // returns pressure tensor in units amu*fs^-2*Ang^-1
197 <  // routine derived via viral theorem description in:
198 <  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
270 >        std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
271  
272 <  const double e_convert = 4.184e-4;
272 >        RealType data[3];
273 >        if (proc1 == worldRank) {
274 >          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
275 >          std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
276 >          pos1 = sd1->getPos();
277 >          data[0] = pos1.x();
278 >          data[1] = pos1.y();
279 >          data[2] = pos1.z();          
280 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
281 >        } else {
282 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
283 >          pos1 = Vector3d(data);
284 >        }
285  
202  double molmass, volume;
203  double vcom[3];
204  double p_local[9], p_global[9];
205  int i, j, k;
286  
287 <  for (i=0; i < 9; i++) {    
288 <    p_local[i] = 0.0;
289 <    p_global[i] = 0.0;
290 <  }
291 <
292 <  // use velocities of integrableObjects and their masses:  
293 <
294 <  for (i=0; i < info->integrableObjects.size(); i++) {
295 <
296 <    molmass = info->integrableObjects[i]->getMass();
297 <    
298 <    info->integrableObjects[i]->getVel(vcom);
219 <    
220 <    p_local[0] += molmass * (vcom[0] * vcom[0]);
221 <    p_local[1] += molmass * (vcom[0] * vcom[1]);
222 <    p_local[2] += molmass * (vcom[0] * vcom[2]);
223 <    p_local[3] += molmass * (vcom[1] * vcom[0]);
224 <    p_local[4] += molmass * (vcom[1] * vcom[1]);
225 <    p_local[5] += molmass * (vcom[1] * vcom[2]);
226 <    p_local[6] += molmass * (vcom[2] * vcom[0]);
227 <    p_local[7] += molmass * (vcom[2] * vcom[1]);
228 <    p_local[8] += molmass * (vcom[2] * vcom[2]);
229 <
230 <  }
231 <
232 <  // Get total for entire system from MPI.
233 <  
234 < #ifdef IS_MPI
235 <  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
287 >        if (proc2 == worldRank) {
288 >          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
289 >          std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
290 >          pos2 = sd2->getPos();
291 >          data[0] = pos2.x();
292 >          data[1] = pos2.y();
293 >          data[2] = pos2.z();          
294 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
295 >        } else {
296 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
297 >          pos2 = Vector3d(data);
298 >        }
299   #else
300 <  for (i=0; i<9; i++) {
301 <    p_global[i] = p_local[i];
302 <  }
303 < #endif // is_mpi
304 <
305 <  volume = this->getVolume();
306 <
307 <
308 <
246 <  for(i = 0; i < 3; i++) {
247 <    for (j = 0; j < 3; j++) {
248 <      k = 3*i + j;
249 <      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
300 >        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
301 >        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
302 >        pos1 = at1->getPos();
303 >        pos2 = at2->getPos();
304 > #endif        
305 >        rab = pos2 - pos1;
306 >        currSnapshot->wrapVector(rab);
307 >        stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length();
308 >      }
309      }
310 +      
311 +    /**@todo need refactorying*/
312 +    //Conserved Quantity is set by integrator and time is set by setTime
313 +    
314    }
252 }
315  
254 void Thermo::velocitize() {
255  
256  double aVel[3], aJ[3], I[3][3];
257  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
258  double vdrift[3];
259  double vbar;
260  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
261  double av2;
262  double kebar;
263  double temperature;
264  int nobj;
316  
317 <  if (!info->have_target_temp) {
318 <    sprintf( painCave.errMsg,
319 <             "You can't resample the velocities without a targetTemp!\n"
320 <             );
321 <    painCave.isFatal = 1;
322 <    painCave.severity = OOPSE_ERROR;
323 <    simError();
324 <    return;
325 <  }
317 >  Vector3d Thermo::getBoxDipole() {
318 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
319 >    SimInfo::MoleculeIterator miter;
320 >    std::vector<Atom*>::iterator aiter;
321 >    Molecule* mol;
322 >    Atom* atom;
323 >    RealType charge;
324 >    RealType moment(0.0);
325 >    Vector3d ri(0.0);
326 >    Vector3d dipoleVector(0.0);
327 >    Vector3d nPos(0.0);
328 >    Vector3d pPos(0.0);
329 >    RealType nChg(0.0);
330 >    RealType pChg(0.0);
331 >    int nCount = 0;
332 >    int pCount = 0;
333  
334 <  nobj = info->integrableObjects.size();
335 <  
336 <  temperature   = info->target_temp;
279 <  
280 <  kebar = kb * temperature * (double)info->ndfRaw /
281 <    ( 2.0 * (double)info->ndf );
282 <  
283 <  for(vr = 0; vr < nobj; vr++){
334 >    RealType chargeToC = 1.60217733e-19;
335 >    RealType angstromToM = 1.0e-10;
336 >    RealType debyeToCm = 3.33564095198e-30;
337      
338 <    // uses equipartition theory to solve for vbar in angstrom/fs
338 >    for (mol = info_->beginMolecule(miter); mol != NULL;
339 >         mol = info_->nextMolecule(miter)) {
340  
341 <    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
342 <    vbar = sqrt( av2 );
289 <
290 <    // picks random velocities from a gaussian distribution
291 <    // centered on vbar
292 <
293 <    for (j=0; j<3; j++)
294 <      aVel[j] = vbar * gaussStream->getGaussian();
295 <    
296 <    info->integrableObjects[vr]->setVel( aVel );
297 <    
298 <    if(info->integrableObjects[vr]->isDirectional()){
299 <
300 <      info->integrableObjects[vr]->getI( I );
301 <
302 <      if (info->integrableObjects[vr]->isLinear()) {
303 <
304 <        l= info->integrableObjects[vr]->linearAxis();
305 <        m = (l+1)%3;
306 <        n = (l+2)%3;
307 <
308 <        aJ[l] = 0.0;
309 <        vbar = sqrt( 2.0 * kebar * I[m][m] );
310 <        aJ[m] = vbar * gaussStream->getGaussian();
311 <        vbar = sqrt( 2.0 * kebar * I[n][n] );
312 <        aJ[n] = vbar * gaussStream->getGaussian();
341 >      for (atom = mol->beginAtom(aiter); atom != NULL;
342 >           atom = mol->nextAtom(aiter)) {
343          
344 <      } else {
345 <        for (j = 0 ; j < 3; j++) {
346 <          vbar = sqrt( 2.0 * kebar * I[j][j] );
347 <          aJ[j] = vbar * gaussStream->getGaussian();
318 <        }      
319 <      } // else isLinear
344 >        if (atom->isCharge() ) {
345 >          charge = 0.0;
346 >          GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
347 >          if (data != NULL) {
348  
349 <      info->integrableObjects[vr]->setJ( aJ );
350 <      
323 <    }//isDirectional
349 >            charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
350 >            charge *= chargeToC;
351  
352 <  }
352 >            ri = atom->getPos();
353 >            currSnapshot->wrapVector(ri);
354 >            ri *= angstromToM;
355  
356 <  // Get the Center of Mass drift velocity.
357 <
358 <  getCOMVel(vdrift);
359 <  
360 <  //  Corrects for the center of mass drift.
361 <  // sums all the momentum and divides by total mass.
362 <
363 <  for(vd = 0; vd < nobj; vd++){
364 <    
365 <    info->integrableObjects[vd]->getVel(aVel);
366 <    
338 <    for (j=0; j < 3; j++)
339 <      aVel[j] -= vdrift[j];
356 >            if (charge < 0.0) {
357 >              nPos += ri;
358 >              nChg -= charge;
359 >              nCount++;
360 >            } else if (charge > 0.0) {
361 >              pPos += ri;
362 >              pChg += charge;
363 >              pCount++;
364 >            }                      
365 >          }
366 >        }
367          
368 <    info->integrableObjects[vd]->setVel( aVel );
369 <  }
370 <
371 < }
372 <
373 < void Thermo::getCOMVel(double vdrift[3]){
374 <
375 <  double mtot, mtot_local;
376 <  double aVel[3], amass;
350 <  double vdrift_local[3];
351 <  int vd, j;
352 <  int nobj;
353 <
354 <  nobj   = info->integrableObjects.size();
355 <
356 <  mtot_local = 0.0;
357 <  vdrift_local[0] = 0.0;
358 <  vdrift_local[1] = 0.0;
359 <  vdrift_local[2] = 0.0;
360 <  
361 <  for(vd = 0; vd < nobj; vd++){
368 >        MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
369 >        if (ma.isDipole() ) {
370 >          Vector3d u_i = atom->getElectroFrame().getColumn(2);
371 >          moment = ma.getDipoleMoment();
372 >          moment *= debyeToCm;
373 >          dipoleVector += u_i * moment;
374 >        }
375 >      }
376 >    }
377      
378 <    amass = info->integrableObjects[vd]->getMass();
364 <    info->integrableObjects[vd]->getVel( aVel );
365 <
366 <    for(j = 0; j < 3; j++)
367 <      vdrift_local[j] += aVel[j] * amass;
368 <    
369 <    mtot_local += amass;
370 <  }
371 <
378 >                      
379   #ifdef IS_MPI
380 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
381 <  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
382 < #else
376 <  mtot = mtot_local;
377 <  for(vd = 0; vd < 3; vd++) {
378 <    vdrift[vd] = vdrift_local[vd];
379 <  }
380 < #endif
381 <    
382 <  for (vd = 0; vd < 3; vd++) {
383 <    vdrift[vd] = vdrift[vd] / mtot;
384 <  }
385 <  
386 < }
380 >    RealType pChg_global, nChg_global;
381 >    int pCount_global, nCount_global;
382 >    Vector3d pPos_global, nPos_global, dipVec_global;
383  
384 < void Thermo::getCOM(double COM[3]){
384 >    MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
385 >                  MPI_COMM_WORLD);
386 >    pChg = pChg_global;
387 >    MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
388 >                  MPI_COMM_WORLD);
389 >    nChg = nChg_global;
390 >    MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
391 >                  MPI_COMM_WORLD);
392 >    pCount = pCount_global;
393 >    MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
394 >                  MPI_COMM_WORLD);
395 >    nCount = nCount_global;
396 >    MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
397 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
398 >    pPos = pPos_global;
399 >    MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
400 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
401 >    nPos = nPos_global;
402 >    MPI_Allreduce(dipoleVector.getArrayPointer(),
403 >                  dipVec_global.getArrayPointer(), 3,
404 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
405 >    dipoleVector = dipVec_global;
406 > #endif //is_mpi
407  
408 <  double mtot, mtot_local;
409 <  double aPos[3], amass;
410 <  double COM_local[3];
411 <  int i, j;
412 <  int nobj;
408 >    // first load the accumulated dipole moment (if dipoles were present)
409 >    Vector3d boxDipole = dipoleVector;
410 >    // now include the dipole moment due to charges
411 >    // use the lesser of the positive and negative charge totals
412 >    RealType chg_value = nChg <= pChg ? nChg : pChg;
413 >      
414 >    // find the average positions
415 >    if (pCount > 0 && nCount > 0 ) {
416 >      pPos /= pCount;
417 >      nPos /= nCount;
418 >    }
419  
420 <  mtot_local = 0.0;
421 <  COM_local[0] = 0.0;
398 <  COM_local[1] = 0.0;
399 <  COM_local[2] = 0.0;
420 >    // dipole is from the negative to the positive (physics notation)
421 >    boxDipole += (pPos - nPos) * chg_value;
422  
423 <  nobj = info->integrableObjects.size();
402 <  for(i = 0; i < nobj; i++){
403 <    
404 <    amass = info->integrableObjects[i]->getMass();
405 <    info->integrableObjects[i]->getPos( aPos );
406 <
407 <    for(j = 0; j < 3; j++)
408 <      COM_local[j] += aPos[j] * amass;
409 <    
410 <    mtot_local += amass;
423 >    return boxDipole;
424    }
425 <
413 < #ifdef IS_MPI
414 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
415 <  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
416 < #else
417 <  mtot = mtot_local;
418 <  for(i = 0; i < 3; i++) {
419 <    COM[i] = COM_local[i];
420 <  }
421 < #endif
422 <    
423 <  for (i = 0; i < 3; i++) {
424 <    COM[i] = COM[i] / mtot;
425 <  }
426 < }
427 <
428 < void Thermo::removeCOMdrift() {
429 <  double vdrift[3], aVel[3];
430 <  int vd, j, nobj;
431 <
432 <  nobj = info->integrableObjects.size();
433 <
434 <  // Get the Center of Mass drift velocity.
435 <
436 <  getCOMVel(vdrift);
437 <  
438 <  //  Corrects for the center of mass drift.
439 <  // sums all the momentum and divides by total mass.
440 <
441 <  for(vd = 0; vd < nobj; vd++){
442 <    
443 <    info->integrableObjects[vd]->getVel(aVel);
444 <    
445 <    for (j=0; j < 3; j++)
446 <      aVel[j] -= vdrift[j];
447 <        
448 <    info->integrableObjects[vd]->setVel( aVel );
449 <  }
450 < }
425 > } //end namespace OpenMD

Comparing:
trunk/src/brains/Thermo.cpp (property svn:keywords), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/Thermo.cpp (property svn:keywords), Revision 1710 by gezelter, Fri May 18 21:44:02 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines