ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
(Generate patch)

Comparing:
trunk/src/brains/Thermo.cpp (file contents), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/Thermo.cpp (file contents), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 + */
42 +
43   #include <math.h>
44   #include <iostream>
3 using namespace std;
45  
46   #ifdef IS_MPI
47   #include <mpi.h>
48   #endif //is_mpi
49  
50 < #include "Thermo.hpp"
51 < #include "SRI.hpp"
52 < #include "Integrator.hpp"
53 < #include "simError.h"
13 < #include "MatVec3.h"
50 > #include "brains/Thermo.hpp"
51 > #include "primitives/Molecule.hpp"
52 > #include "utils/simError.h"
53 > #include "utils/PhysicalConstants.hpp"
54  
55 < #ifdef IS_MPI
16 < #define __C
17 < #include "mpiSimulation.hpp"
18 < #endif // is_mpi
55 > namespace OpenMD {
56  
57 < inline double roundMe( double x ){
58 <          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
59 < }
57 >  RealType Thermo::getKinetic() {
58 >    SimInfo::MoleculeIterator miter;
59 >    std::vector<StuntDouble*>::iterator iiter;
60 >    Molecule* mol;
61 >    StuntDouble* integrableObject;    
62 >    Vector3d vel;
63 >    Vector3d angMom;
64 >    Mat3x3d I;
65 >    int i;
66 >    int j;
67 >    int k;
68 >    RealType mass;
69 >    RealType kinetic = 0.0;
70 >    RealType kinetic_global = 0.0;
71 >    
72 >    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
73 >      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
74 >           integrableObject = mol->nextIntegrableObject(iiter)) {
75 >        
76 >        mass = integrableObject->getMass();
77 >        vel = integrableObject->getVel();
78 >        
79 >        kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
80 >        
81 >        if (integrableObject->isDirectional()) {
82 >          angMom = integrableObject->getJ();
83 >          I = integrableObject->getI();
84  
85 < Thermo::Thermo( SimInfo* the_info ) {
86 <  info = the_info;
87 <  int baseSeed = the_info->getSeed();
88 <  
89 <  gaussStream = new gaussianSPRNG( baseSeed );
90 < }
85 >          if (integrableObject->isLinear()) {
86 >            i = integrableObject->linearAxis();
87 >            j = (i + 1) % 3;
88 >            k = (i + 2) % 3;
89 >            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
90 >          } else {                        
91 >            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
92 >              + angMom[2]*angMom[2]/I(2, 2);
93 >          }
94 >        }
95 >            
96 >      }
97 >    }
98 >    
99 > #ifdef IS_MPI
100  
101 < Thermo::~Thermo(){
102 <  delete gaussStream;
103 < }
101 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
102 >                  MPI_COMM_WORLD);
103 >    kinetic = kinetic_global;
104  
105 < double Thermo::getKinetic(){
105 > #endif //is_mpi
106  
107 <  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
38 <  double kinetic;
39 <  double amass;
40 <  double aVel[3], aJ[3], I[3][3];
41 <  int i, j, k, kl;
107 >    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
108  
109 <  double kinetic_global;
110 <  vector<StuntDouble *> integrableObjects = info->integrableObjects;
45 <  
46 <  kinetic = 0.0;
47 <  kinetic_global = 0.0;
109 >    return kinetic;
110 >  }
111  
112 <  for (kl=0; kl<integrableObjects.size(); kl++) {
113 <    integrableObjects[kl]->getVel(aVel);
114 <    amass = integrableObjects[kl]->getMass();
112 >  RealType Thermo::getPotential() {
113 >    RealType potential = 0.0;
114 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
115 >    RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
116  
117 <   for(j=0; j<3; j++)
54 <      kinetic += amass*aVel[j]*aVel[j];
117 >    // Get total potential for entire system from MPI.
118  
56   if (integrableObjects[kl]->isDirectional()){
57
58      integrableObjects[kl]->getJ( aJ );
59      integrableObjects[kl]->getI( I );
60
61      if (integrableObjects[kl]->isLinear()) {
62        i = integrableObjects[kl]->linearAxis();
63        j = (i+1)%3;
64        k = (i+2)%3;
65        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
66      } else {
67        for (j=0; j<3; j++)
68          kinetic += aJ[j]*aJ[j] / I[j][j];
69      }
70   }
71  }
119   #ifdef IS_MPI
73  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
74                MPI_SUM, MPI_COMM_WORLD);
75  kinetic = kinetic_global;
76 #endif //is_mpi
77  
78  kinetic = kinetic * 0.5 / e_convert;
120  
121 <  return kinetic;
122 < }
121 >    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
122 >                  MPI_COMM_WORLD);
123 >    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
124  
125 < double Thermo::getPotential(){
84 <  
85 <  double potential_local;
86 <  double potential;
87 <  int el, nSRI;
88 <  Molecule* molecules;
125 > #else
126  
127 <  molecules = info->molecules;
91 <  nSRI = info->n_SRI;
127 >    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
128  
129 <  potential_local = 0.0;
94 <  potential = 0.0;
95 <  potential_local += info->lrPot;
129 > #endif // is_mpi
130  
131 <  for( el=0; el<info->n_mol; el++ ){    
98 <    potential_local += molecules[el].getPotential();
131 >    return potential;
132    }
133  
134 <  // Get total potential for entire system from MPI.
135 < #ifdef IS_MPI
103 <  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
104 <                MPI_SUM, MPI_COMM_WORLD);
105 < #else
106 <  potential = potential_local;
107 < #endif // is_mpi
134 >  RealType Thermo::getTotalE() {
135 >    RealType total;
136  
137 <  return potential;
138 < }
137 >    total = this->getKinetic() + this->getPotential();
138 >    return total;
139 >  }
140  
141 < double Thermo::getTotalE(){
141 >  RealType Thermo::getTemperature() {
142 >    
143 >    RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
144 >    return temperature;
145 >  }
146  
147 <  double total;
147 >  RealType Thermo::getVolume() {
148 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
149 >    return curSnapshot->getVolume();
150 >  }
151  
152 <  total = this->getKinetic() + this->getPotential();
117 <  return total;
118 < }
152 >  RealType Thermo::getPressure() {
153  
154 < double Thermo::getTemperature(){
154 >    // Relies on the calculation of the full molecular pressure tensor
155  
122  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
123  double temperature;
156  
157 <  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
158 <  return temperature;
127 < }
157 >    Mat3x3d tensor;
158 >    RealType pressure;
159  
160 < double Thermo::getVolume() {
160 >    tensor = getPressureTensor();
161  
162 <  return info->boxVol;
132 < }
162 >    pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
163  
164 < double Thermo::getPressure() {
164 >    return pressure;
165 >  }
166  
167 <  // Relies on the calculation of the full molecular pressure tensor
137 <  
138 <  const double p_convert = 1.63882576e8;
139 <  double press[3][3];
140 <  double pressure;
167 >  RealType Thermo::getPressure(int direction) {
168  
169 <  this->getPressureTensor(press);
169 >    // Relies on the calculation of the full molecular pressure tensor
170  
171 <  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
171 >          
172 >    Mat3x3d tensor;
173 >    RealType pressure;
174  
175 <  return pressure;
147 < }
175 >    tensor = getPressureTensor();
176  
177 < double Thermo::getPressureX() {
177 >    pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
178  
179 <  // Relies on the calculation of the full molecular pressure tensor
180 <  
153 <  const double p_convert = 1.63882576e8;
154 <  double press[3][3];
155 <  double pressureX;
179 >    return pressure;
180 >  }
181  
182 <  this->getPressureTensor(press);
182 >  Mat3x3d Thermo::getPressureTensor() {
183 >    // returns pressure tensor in units amu*fs^-2*Ang^-1
184 >    // routine derived via viral theorem description in:
185 >    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
186 >    Mat3x3d pressureTensor;
187 >    Mat3x3d p_local(0.0);
188 >    Mat3x3d p_global(0.0);
189  
190 <  pressureX = p_convert * press[0][0];
190 >    SimInfo::MoleculeIterator i;
191 >    std::vector<StuntDouble*>::iterator j;
192 >    Molecule* mol;
193 >    StuntDouble* integrableObject;    
194 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
195 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
196 >           integrableObject = mol->nextIntegrableObject(j)) {
197  
198 <  return pressureX;
199 < }
198 >        RealType mass = integrableObject->getMass();
199 >        Vector3d vcom = integrableObject->getVel();
200 >        p_local += mass * outProduct(vcom, vcom);        
201 >      }
202 >    }
203 >    
204 > #ifdef IS_MPI
205 >    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
206 > #else
207 >    p_global = p_local;
208 > #endif // is_mpi
209  
210 < double Thermo::getPressureY() {
210 >    RealType volume = this->getVolume();
211 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
212 >    Mat3x3d tau = curSnapshot->statData.getTau();
213  
214 <  // Relies on the calculation of the full molecular pressure tensor
215 <  
216 <  const double p_convert = 1.63882576e8;
217 <  double press[3][3];
170 <  double pressureY;
214 >    pressureTensor =  (p_global + PhysicalConstants::energyConvert* tau)/volume;
215 >    
216 >    return pressureTensor;
217 >  }
218  
172  this->getPressureTensor(press);
219  
220 <  pressureY = p_convert * press[1][1];
220 >  void Thermo::saveStat(){
221 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
222 >    Stats& stat = currSnapshot->statData;
223 >    
224 >    stat[Stats::KINETIC_ENERGY] = getKinetic();
225 >    stat[Stats::POTENTIAL_ENERGY] = getPotential();
226 >    stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ;
227 >    stat[Stats::TEMPERATURE] = getTemperature();
228 >    stat[Stats::PRESSURE] = getPressure();
229 >    stat[Stats::VOLUME] = getVolume();      
230  
231 <  return pressureY;
232 < }
231 >    Mat3x3d tensor =getPressureTensor();
232 >    stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);      
233 >    stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);      
234 >    stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);      
235 >    stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);      
236 >    stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);      
237 >    stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);      
238 >    stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);      
239 >    stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);      
240 >    stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);      
241  
242 < double Thermo::getPressureZ() {
242 >    // grab the simulation box dipole moment if specified
243 >    if (info_->getCalcBoxDipole()){
244 >      Vector3d totalDipole = getBoxDipole();
245 >      stat[Stats::BOX_DIPOLE_X] = totalDipole(0);
246 >      stat[Stats::BOX_DIPOLE_Y] = totalDipole(1);
247 >      stat[Stats::BOX_DIPOLE_Z] = totalDipole(2);
248 >    }
249  
250 <  // Relies on the calculation of the full molecular pressure tensor
182 <  
183 <  const double p_convert = 1.63882576e8;
184 <  double press[3][3];
185 <  double pressureZ;
250 >    Globals* simParams = info_->getSimParams();
251  
252 <  this->getPressureTensor(press);
252 >    if (simParams->haveTaggedAtomPair() &&
253 >        simParams->havePrintTaggedPairDistance()) {
254 >      if ( simParams->getPrintTaggedPairDistance()) {
255 >        
256 >        std::pair<int, int> tap = simParams->getTaggedAtomPair();
257 >        Vector3d pos1, pos2, rab;
258  
259 <  pressureZ = p_convert * press[2][2];
259 > #ifdef IS_MPI        
260 >        std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl;
261  
262 <  return pressureZ;
263 < }
262 >        int mol1 = info_->getGlobalMolMembership(tap.first);
263 >        int mol2 = info_->getGlobalMolMembership(tap.second);
264 >        std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
265  
266 +        int proc1 = info_->getMolToProc(mol1);
267 +        int proc2 = info_->getMolToProc(mol2);
268  
269 < void Thermo::getPressureTensor(double press[3][3]){
196 <  // returns pressure tensor in units amu*fs^-2*Ang^-1
197 <  // routine derived via viral theorem description in:
198 <  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
269 >        std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
270  
271 <  const double e_convert = 4.184e-4;
271 >        RealType data[3];
272 >        if (proc1 == worldRank) {
273 >          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
274 >          std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
275 >          pos1 = sd1->getPos();
276 >          data[0] = pos1.x();
277 >          data[1] = pos1.y();
278 >          data[2] = pos1.z();          
279 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
280 >        } else {
281 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
282 >          pos1 = Vector3d(data);
283 >        }
284  
202  double molmass, volume;
203  double vcom[3];
204  double p_local[9], p_global[9];
205  int i, j, k;
285  
286 <  for (i=0; i < 9; i++) {    
287 <    p_local[i] = 0.0;
288 <    p_global[i] = 0.0;
289 <  }
290 <
291 <  // use velocities of integrableObjects and their masses:  
292 <
293 <  for (i=0; i < info->integrableObjects.size(); i++) {
294 <
295 <    molmass = info->integrableObjects[i]->getMass();
296 <    
297 <    info->integrableObjects[i]->getVel(vcom);
219 <    
220 <    p_local[0] += molmass * (vcom[0] * vcom[0]);
221 <    p_local[1] += molmass * (vcom[0] * vcom[1]);
222 <    p_local[2] += molmass * (vcom[0] * vcom[2]);
223 <    p_local[3] += molmass * (vcom[1] * vcom[0]);
224 <    p_local[4] += molmass * (vcom[1] * vcom[1]);
225 <    p_local[5] += molmass * (vcom[1] * vcom[2]);
226 <    p_local[6] += molmass * (vcom[2] * vcom[0]);
227 <    p_local[7] += molmass * (vcom[2] * vcom[1]);
228 <    p_local[8] += molmass * (vcom[2] * vcom[2]);
229 <
230 <  }
231 <
232 <  // Get total for entire system from MPI.
233 <  
234 < #ifdef IS_MPI
235 <  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
286 >        if (proc2 == worldRank) {
287 >          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
288 >          std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
289 >          pos2 = sd2->getPos();
290 >          data[0] = pos2.x();
291 >          data[1] = pos2.y();
292 >          data[2] = pos2.z();          
293 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
294 >        } else {
295 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
296 >          pos2 = Vector3d(data);
297 >        }
298   #else
299 <  for (i=0; i<9; i++) {
300 <    p_global[i] = p_local[i];
301 <  }
302 < #endif // is_mpi
303 <
304 <  volume = this->getVolume();
305 <
306 <
307 <
246 <  for(i = 0; i < 3; i++) {
247 <    for (j = 0; j < 3; j++) {
248 <      k = 3*i + j;
249 <      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
299 >        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
300 >        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
301 >        pos1 = at1->getPos();
302 >        pos2 = at2->getPos();
303 > #endif        
304 >        rab = pos2 - pos1;
305 >        currSnapshot->wrapVector(rab);
306 >        stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length();
307 >      }
308      }
309 +      
310 +    /**@todo need refactorying*/
311 +    //Conserved Quantity is set by integrator and time is set by setTime
312 +    
313    }
252 }
314  
254 void Thermo::velocitize() {
255  
256  double aVel[3], aJ[3], I[3][3];
257  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
258  double vdrift[3];
259  double vbar;
260  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
261  double av2;
262  double kebar;
263  double temperature;
264  int nobj;
315  
316 <  if (!info->have_target_temp) {
317 <    sprintf( painCave.errMsg,
318 <             "You can't resample the velocities without a targetTemp!\n"
319 <             );
320 <    painCave.isFatal = 1;
321 <    painCave.severity = OOPSE_ERROR;
322 <    simError();
323 <    return;
324 <  }
316 >  Vector3d Thermo::getBoxDipole() {
317 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
318 >    SimInfo::MoleculeIterator miter;
319 >    std::vector<Atom*>::iterator aiter;
320 >    Molecule* mol;
321 >    Atom* atom;
322 >    RealType charge;
323 >    RealType moment(0.0);
324 >    Vector3d ri(0.0);
325 >    Vector3d dipoleVector(0.0);
326 >    Vector3d nPos(0.0);
327 >    Vector3d pPos(0.0);
328 >    RealType nChg(0.0);
329 >    RealType pChg(0.0);
330 >    int nCount = 0;
331 >    int pCount = 0;
332  
333 <  nobj = info->integrableObjects.size();
334 <  
335 <  temperature   = info->target_temp;
279 <  
280 <  kebar = kb * temperature * (double)info->ndfRaw /
281 <    ( 2.0 * (double)info->ndf );
282 <  
283 <  for(vr = 0; vr < nobj; vr++){
333 >    RealType chargeToC = 1.60217733e-19;
334 >    RealType angstromToM = 1.0e-10;
335 >    RealType debyeToCm = 3.33564095198e-30;
336      
337 <    // uses equipartition theory to solve for vbar in angstrom/fs
337 >    for (mol = info_->beginMolecule(miter); mol != NULL;
338 >         mol = info_->nextMolecule(miter)) {
339  
340 <    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
341 <    vbar = sqrt( av2 );
289 <
290 <    // picks random velocities from a gaussian distribution
291 <    // centered on vbar
292 <
293 <    for (j=0; j<3; j++)
294 <      aVel[j] = vbar * gaussStream->getGaussian();
295 <    
296 <    info->integrableObjects[vr]->setVel( aVel );
297 <    
298 <    if(info->integrableObjects[vr]->isDirectional()){
299 <
300 <      info->integrableObjects[vr]->getI( I );
301 <
302 <      if (info->integrableObjects[vr]->isLinear()) {
303 <
304 <        l= info->integrableObjects[vr]->linearAxis();
305 <        m = (l+1)%3;
306 <        n = (l+2)%3;
307 <
308 <        aJ[l] = 0.0;
309 <        vbar = sqrt( 2.0 * kebar * I[m][m] );
310 <        aJ[m] = vbar * gaussStream->getGaussian();
311 <        vbar = sqrt( 2.0 * kebar * I[n][n] );
312 <        aJ[n] = vbar * gaussStream->getGaussian();
340 >      for (atom = mol->beginAtom(aiter); atom != NULL;
341 >           atom = mol->nextAtom(aiter)) {
342          
343 <      } else {
344 <        for (j = 0 ; j < 3; j++) {
345 <          vbar = sqrt( 2.0 * kebar * I[j][j] );
346 <          aJ[j] = vbar * gaussStream->getGaussian();
318 <        }      
319 <      } // else isLinear
343 >        if (atom->isCharge() ) {
344 >          charge = 0.0;
345 >          GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
346 >          if (data != NULL) {
347  
348 <      info->integrableObjects[vr]->setJ( aJ );
349 <      
323 <    }//isDirectional
348 >            charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
349 >            charge *= chargeToC;
350  
351 <  }
351 >            ri = atom->getPos();
352 >            currSnapshot->wrapVector(ri);
353 >            ri *= angstromToM;
354  
355 <  // Get the Center of Mass drift velocity.
356 <
357 <  getCOMVel(vdrift);
358 <  
359 <  //  Corrects for the center of mass drift.
360 <  // sums all the momentum and divides by total mass.
361 <
362 <  for(vd = 0; vd < nobj; vd++){
363 <    
364 <    info->integrableObjects[vd]->getVel(aVel);
365 <    
338 <    for (j=0; j < 3; j++)
339 <      aVel[j] -= vdrift[j];
355 >            if (charge < 0.0) {
356 >              nPos += ri;
357 >              nChg -= charge;
358 >              nCount++;
359 >            } else if (charge > 0.0) {
360 >              pPos += ri;
361 >              pChg += charge;
362 >              pCount++;
363 >            }                      
364 >          }
365 >        }
366          
367 <    info->integrableObjects[vd]->setVel( aVel );
368 <  }
369 <
370 < }
371 <
372 < void Thermo::getCOMVel(double vdrift[3]){
373 <
374 <  double mtot, mtot_local;
375 <  double aVel[3], amass;
376 <  double vdrift_local[3];
377 <  int vd, j;
378 <  int nobj;
353 <
354 <  nobj   = info->integrableObjects.size();
355 <
356 <  mtot_local = 0.0;
357 <  vdrift_local[0] = 0.0;
358 <  vdrift_local[1] = 0.0;
359 <  vdrift_local[2] = 0.0;
360 <  
361 <  for(vd = 0; vd < nobj; vd++){
367 >        if (atom->isDipole() ) {
368 >          Vector3d u_i = atom->getElectroFrame().getColumn(2);
369 >          GenericData* data = dynamic_cast<DirectionalAtomType*>(atom->getAtomType())->getPropertyByName("Dipole");
370 >          if (data != NULL) {
371 >            moment = (dynamic_cast<DoubleGenericData*>(data))->getData();
372 >            
373 >            moment *= debyeToCm;
374 >            dipoleVector += u_i * moment;
375 >          }
376 >        }
377 >      }
378 >    }
379      
380 <    amass = info->integrableObjects[vd]->getMass();
364 <    info->integrableObjects[vd]->getVel( aVel );
365 <
366 <    for(j = 0; j < 3; j++)
367 <      vdrift_local[j] += aVel[j] * amass;
368 <    
369 <    mtot_local += amass;
370 <  }
371 <
380 >                      
381   #ifdef IS_MPI
382 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
383 <  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
384 < #else
376 <  mtot = mtot_local;
377 <  for(vd = 0; vd < 3; vd++) {
378 <    vdrift[vd] = vdrift_local[vd];
379 <  }
380 < #endif
381 <    
382 <  for (vd = 0; vd < 3; vd++) {
383 <    vdrift[vd] = vdrift[vd] / mtot;
384 <  }
385 <  
386 < }
382 >    RealType pChg_global, nChg_global;
383 >    int pCount_global, nCount_global;
384 >    Vector3d pPos_global, nPos_global, dipVec_global;
385  
386 < void Thermo::getCOM(double COM[3]){
386 >    MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
387 >                  MPI_COMM_WORLD);
388 >    pChg = pChg_global;
389 >    MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
390 >                  MPI_COMM_WORLD);
391 >    nChg = nChg_global;
392 >    MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
393 >                  MPI_COMM_WORLD);
394 >    pCount = pCount_global;
395 >    MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
396 >                  MPI_COMM_WORLD);
397 >    nCount = nCount_global;
398 >    MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
399 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
400 >    pPos = pPos_global;
401 >    MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
402 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
403 >    nPos = nPos_global;
404 >    MPI_Allreduce(dipoleVector.getArrayPointer(),
405 >                  dipVec_global.getArrayPointer(), 3,
406 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
407 >    dipoleVector = dipVec_global;
408 > #endif //is_mpi
409  
410 <  double mtot, mtot_local;
411 <  double aPos[3], amass;
412 <  double COM_local[3];
413 <  int i, j;
414 <  int nobj;
410 >    // first load the accumulated dipole moment (if dipoles were present)
411 >    Vector3d boxDipole = dipoleVector;
412 >    // now include the dipole moment due to charges
413 >    // use the lesser of the positive and negative charge totals
414 >    RealType chg_value = nChg <= pChg ? nChg : pChg;
415 >      
416 >    // find the average positions
417 >    if (pCount > 0 && nCount > 0 ) {
418 >      pPos /= pCount;
419 >      nPos /= nCount;
420 >    }
421  
422 <  mtot_local = 0.0;
423 <  COM_local[0] = 0.0;
398 <  COM_local[1] = 0.0;
399 <  COM_local[2] = 0.0;
422 >    // dipole is from the negative to the positive (physics notation)
423 >    boxDipole += (pPos - nPos) * chg_value;
424  
425 <  nobj = info->integrableObjects.size();
402 <  for(i = 0; i < nobj; i++){
403 <    
404 <    amass = info->integrableObjects[i]->getMass();
405 <    info->integrableObjects[i]->getPos( aPos );
406 <
407 <    for(j = 0; j < 3; j++)
408 <      COM_local[j] += aPos[j] * amass;
409 <    
410 <    mtot_local += amass;
425 >    return boxDipole;
426    }
427 <
413 < #ifdef IS_MPI
414 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
415 <  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
416 < #else
417 <  mtot = mtot_local;
418 <  for(i = 0; i < 3; i++) {
419 <    COM[i] = COM_local[i];
420 <  }
421 < #endif
422 <    
423 <  for (i = 0; i < 3; i++) {
424 <    COM[i] = COM[i] / mtot;
425 <  }
426 < }
427 <
428 < void Thermo::removeCOMdrift() {
429 <  double vdrift[3], aVel[3];
430 <  int vd, j, nobj;
431 <
432 <  nobj = info->integrableObjects.size();
433 <
434 <  // Get the Center of Mass drift velocity.
435 <
436 <  getCOMVel(vdrift);
437 <  
438 <  //  Corrects for the center of mass drift.
439 <  // sums all the momentum and divides by total mass.
440 <
441 <  for(vd = 0; vd < nobj; vd++){
442 <    
443 <    info->integrableObjects[vd]->getVel(aVel);
444 <    
445 <    for (j=0; j < 3; j++)
446 <      aVel[j] -= vdrift[j];
447 <        
448 <    info->integrableObjects[vd]->setVel( aVel );
449 <  }
450 < }
427 > } //end namespace OpenMD

Comparing:
trunk/src/brains/Thermo.cpp (property svn:keywords), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/Thermo.cpp (property svn:keywords), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines