6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <math.h> |
50 |
|
#include "brains/Thermo.hpp" |
51 |
|
#include "primitives/Molecule.hpp" |
52 |
|
#include "utils/simError.h" |
53 |
< |
#include "utils/OOPSEConstant.hpp" |
53 |
> |
#include "utils/PhysicalConstants.hpp" |
54 |
> |
#include "types/MultipoleAdapter.hpp" |
55 |
|
|
56 |
< |
namespace oopse { |
56 |
> |
namespace OpenMD { |
57 |
|
|
58 |
|
RealType Thermo::getKinetic() { |
59 |
|
SimInfo::MoleculeIterator miter; |
66 |
|
int i; |
67 |
|
int j; |
68 |
|
int k; |
69 |
+ |
RealType mass; |
70 |
|
RealType kinetic = 0.0; |
71 |
|
RealType kinetic_global = 0.0; |
72 |
|
|
74 |
|
for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; |
75 |
|
integrableObject = mol->nextIntegrableObject(iiter)) { |
76 |
|
|
77 |
< |
RealType mass = integrableObject->getMass(); |
78 |
< |
Vector3d vel = integrableObject->getVel(); |
77 |
> |
mass = integrableObject->getMass(); |
78 |
> |
vel = integrableObject->getVel(); |
79 |
|
|
80 |
|
kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
81 |
|
|
105 |
|
|
106 |
|
#endif //is_mpi |
107 |
|
|
108 |
< |
kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert; |
108 |
> |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
109 |
|
|
110 |
|
return kinetic; |
111 |
|
} |
112 |
|
|
113 |
|
RealType Thermo::getPotential() { |
114 |
|
RealType potential = 0.0; |
112 |
– |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
113 |
– |
RealType shortRangePot_local = curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; |
115 |
|
|
116 |
< |
// Get total potential for entire system from MPI. |
117 |
< |
|
117 |
< |
#ifdef IS_MPI |
118 |
< |
|
119 |
< |
MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM, |
120 |
< |
MPI_COMM_WORLD); |
121 |
< |
potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
122 |
< |
|
123 |
< |
#else |
124 |
< |
|
125 |
< |
potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
126 |
< |
|
127 |
< |
#endif // is_mpi |
128 |
< |
|
116 |
> |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
117 |
> |
potential = curSnapshot->getShortRangePotential() + curSnapshot->getLongRangePotential(); |
118 |
|
return potential; |
119 |
|
} |
120 |
|
|
127 |
|
|
128 |
|
RealType Thermo::getTemperature() { |
129 |
|
|
130 |
< |
RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb ); |
130 |
> |
RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb ); |
131 |
|
return temperature; |
132 |
|
} |
133 |
|
|
134 |
+ |
RealType Thermo::getElectronicTemperature() { |
135 |
+ |
SimInfo::MoleculeIterator miter; |
136 |
+ |
std::vector<Atom*>::iterator iiter; |
137 |
+ |
Molecule* mol; |
138 |
+ |
Atom* atom; |
139 |
+ |
RealType cvel; |
140 |
+ |
RealType cmass; |
141 |
+ |
RealType kinetic = 0.0; |
142 |
+ |
RealType kinetic_global = 0.0; |
143 |
+ |
|
144 |
+ |
for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { |
145 |
+ |
for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL; |
146 |
+ |
atom = mol->nextFluctuatingCharge(iiter)) { |
147 |
+ |
cmass = atom->getChargeMass(); |
148 |
+ |
cvel = atom->getFlucQVel(); |
149 |
+ |
|
150 |
+ |
kinetic += cmass * cvel * cvel; |
151 |
+ |
|
152 |
+ |
} |
153 |
+ |
} |
154 |
+ |
|
155 |
+ |
#ifdef IS_MPI |
156 |
+ |
|
157 |
+ |
MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, |
158 |
+ |
MPI_COMM_WORLD); |
159 |
+ |
kinetic = kinetic_global; |
160 |
+ |
|
161 |
+ |
#endif //is_mpi |
162 |
+ |
|
163 |
+ |
kinetic = kinetic * 0.5; |
164 |
+ |
return ( 2.0 * kinetic) / (info_->getNFluctuatingCharges()* PhysicalConstants::kb ); |
165 |
+ |
} |
166 |
+ |
|
167 |
+ |
|
168 |
+ |
|
169 |
+ |
|
170 |
|
RealType Thermo::getVolume() { |
171 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
172 |
|
return curSnapshot->getVolume(); |
182 |
|
|
183 |
|
tensor = getPressureTensor(); |
184 |
|
|
185 |
< |
pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; |
185 |
> |
pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; |
186 |
|
|
187 |
|
return pressure; |
188 |
|
} |
197 |
|
|
198 |
|
tensor = getPressureTensor(); |
199 |
|
|
200 |
< |
pressure = OOPSEConstant::pressureConvert * tensor(direction, direction); |
200 |
> |
pressure = PhysicalConstants::pressureConvert * tensor(direction, direction); |
201 |
|
|
202 |
|
return pressure; |
203 |
|
} |
204 |
|
|
180 |
– |
|
181 |
– |
|
205 |
|
Mat3x3d Thermo::getPressureTensor() { |
206 |
|
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
207 |
|
// routine derived via viral theorem description in: |
232 |
|
|
233 |
|
RealType volume = this->getVolume(); |
234 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
235 |
< |
Mat3x3d tau = curSnapshot->statData.getTau(); |
235 |
> |
Mat3x3d stressTensor = curSnapshot->getStressTensor(); |
236 |
|
|
237 |
< |
pressureTensor = (p_global + OOPSEConstant::energyConvert* tau)/volume; |
238 |
< |
|
237 |
> |
pressureTensor = (p_global + |
238 |
> |
PhysicalConstants::energyConvert * stressTensor)/volume; |
239 |
> |
|
240 |
|
return pressureTensor; |
241 |
|
} |
242 |
|
|
243 |
+ |
|
244 |
|
void Thermo::saveStat(){ |
245 |
|
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
246 |
|
Stats& stat = currSnapshot->statData; |
253 |
|
stat[Stats::VOLUME] = getVolume(); |
254 |
|
|
255 |
|
Mat3x3d tensor =getPressureTensor(); |
256 |
< |
stat[Stats::PRESSURE_TENSOR_X] = tensor(0, 0); |
257 |
< |
stat[Stats::PRESSURE_TENSOR_Y] = tensor(1, 1); |
258 |
< |
stat[Stats::PRESSURE_TENSOR_Z] = tensor(2, 2); |
256 |
> |
stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0); |
257 |
> |
stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1); |
258 |
> |
stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2); |
259 |
> |
stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0); |
260 |
> |
stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1); |
261 |
> |
stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2); |
262 |
> |
stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0); |
263 |
> |
stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1); |
264 |
> |
stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2); |
265 |
|
|
266 |
+ |
// grab the simulation box dipole moment if specified |
267 |
+ |
if (info_->getCalcBoxDipole()){ |
268 |
+ |
Vector3d totalDipole = getBoxDipole(); |
269 |
+ |
stat[Stats::BOX_DIPOLE_X] = totalDipole(0); |
270 |
+ |
stat[Stats::BOX_DIPOLE_Y] = totalDipole(1); |
271 |
+ |
stat[Stats::BOX_DIPOLE_Z] = totalDipole(2); |
272 |
+ |
} |
273 |
|
|
274 |
+ |
Globals* simParams = info_->getSimParams(); |
275 |
+ |
// grab the heat flux if desired |
276 |
+ |
if (simParams->havePrintHeatFlux()) { |
277 |
+ |
if (simParams->getPrintHeatFlux()){ |
278 |
+ |
Vector3d heatFlux = getHeatFlux(); |
279 |
+ |
stat[Stats::HEATFLUX_X] = heatFlux(0); |
280 |
+ |
stat[Stats::HEATFLUX_Y] = heatFlux(1); |
281 |
+ |
stat[Stats::HEATFLUX_Z] = heatFlux(2); |
282 |
+ |
} |
283 |
+ |
} |
284 |
+ |
|
285 |
+ |
if (simParams->haveTaggedAtomPair() && |
286 |
+ |
simParams->havePrintTaggedPairDistance()) { |
287 |
+ |
if ( simParams->getPrintTaggedPairDistance()) { |
288 |
+ |
|
289 |
+ |
std::pair<int, int> tap = simParams->getTaggedAtomPair(); |
290 |
+ |
Vector3d pos1, pos2, rab; |
291 |
+ |
|
292 |
+ |
#ifdef IS_MPI |
293 |
+ |
std::cerr << "tap = " << tap.first << " " << tap.second << std::endl; |
294 |
+ |
|
295 |
+ |
int mol1 = info_->getGlobalMolMembership(tap.first); |
296 |
+ |
int mol2 = info_->getGlobalMolMembership(tap.second); |
297 |
+ |
std::cerr << "mols = " << mol1 << " " << mol2 << std::endl; |
298 |
+ |
|
299 |
+ |
int proc1 = info_->getMolToProc(mol1); |
300 |
+ |
int proc2 = info_->getMolToProc(mol2); |
301 |
+ |
|
302 |
+ |
std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl; |
303 |
+ |
|
304 |
+ |
RealType data[3]; |
305 |
+ |
if (proc1 == worldRank) { |
306 |
+ |
StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); |
307 |
+ |
std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl; |
308 |
+ |
pos1 = sd1->getPos(); |
309 |
+ |
data[0] = pos1.x(); |
310 |
+ |
data[1] = pos1.y(); |
311 |
+ |
data[2] = pos1.z(); |
312 |
+ |
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
313 |
+ |
} else { |
314 |
+ |
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
315 |
+ |
pos1 = Vector3d(data); |
316 |
+ |
} |
317 |
+ |
|
318 |
+ |
|
319 |
+ |
if (proc2 == worldRank) { |
320 |
+ |
StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); |
321 |
+ |
std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl; |
322 |
+ |
pos2 = sd2->getPos(); |
323 |
+ |
data[0] = pos2.x(); |
324 |
+ |
data[1] = pos2.y(); |
325 |
+ |
data[2] = pos2.z(); |
326 |
+ |
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
327 |
+ |
} else { |
328 |
+ |
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
329 |
+ |
pos2 = Vector3d(data); |
330 |
+ |
} |
331 |
+ |
#else |
332 |
+ |
StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first); |
333 |
+ |
StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); |
334 |
+ |
pos1 = at1->getPos(); |
335 |
+ |
pos2 = at2->getPos(); |
336 |
+ |
#endif |
337 |
+ |
rab = pos2 - pos1; |
338 |
+ |
currSnapshot->wrapVector(rab); |
339 |
+ |
stat[Stats::TAGGED_PAIR_DISTANCE] = rab.length(); |
340 |
+ |
} |
341 |
+ |
} |
342 |
+ |
|
343 |
|
/**@todo need refactorying*/ |
344 |
|
//Conserved Quantity is set by integrator and time is set by setTime |
345 |
|
|
346 |
|
} |
347 |
|
|
348 |
< |
} //end namespace oopse |
348 |
> |
|
349 |
> |
Vector3d Thermo::getBoxDipole() { |
350 |
> |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
351 |
> |
SimInfo::MoleculeIterator miter; |
352 |
> |
std::vector<Atom*>::iterator aiter; |
353 |
> |
Molecule* mol; |
354 |
> |
Atom* atom; |
355 |
> |
RealType charge; |
356 |
> |
RealType moment(0.0); |
357 |
> |
Vector3d ri(0.0); |
358 |
> |
Vector3d dipoleVector(0.0); |
359 |
> |
Vector3d nPos(0.0); |
360 |
> |
Vector3d pPos(0.0); |
361 |
> |
RealType nChg(0.0); |
362 |
> |
RealType pChg(0.0); |
363 |
> |
int nCount = 0; |
364 |
> |
int pCount = 0; |
365 |
> |
|
366 |
> |
RealType chargeToC = 1.60217733e-19; |
367 |
> |
RealType angstromToM = 1.0e-10; |
368 |
> |
RealType debyeToCm = 3.33564095198e-30; |
369 |
> |
|
370 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
371 |
> |
mol = info_->nextMolecule(miter)) { |
372 |
> |
|
373 |
> |
for (atom = mol->beginAtom(aiter); atom != NULL; |
374 |
> |
atom = mol->nextAtom(aiter)) { |
375 |
> |
|
376 |
> |
if (atom->isCharge() ) { |
377 |
> |
charge = 0.0; |
378 |
> |
GenericData* data = atom->getAtomType()->getPropertyByName("Charge"); |
379 |
> |
if (data != NULL) { |
380 |
> |
|
381 |
> |
charge = (dynamic_cast<DoubleGenericData*>(data))->getData(); |
382 |
> |
charge *= chargeToC; |
383 |
> |
|
384 |
> |
ri = atom->getPos(); |
385 |
> |
currSnapshot->wrapVector(ri); |
386 |
> |
ri *= angstromToM; |
387 |
> |
|
388 |
> |
if (charge < 0.0) { |
389 |
> |
nPos += ri; |
390 |
> |
nChg -= charge; |
391 |
> |
nCount++; |
392 |
> |
} else if (charge > 0.0) { |
393 |
> |
pPos += ri; |
394 |
> |
pChg += charge; |
395 |
> |
pCount++; |
396 |
> |
} |
397 |
> |
} |
398 |
> |
} |
399 |
> |
|
400 |
> |
MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType()); |
401 |
> |
if (ma.isDipole() ) { |
402 |
> |
Vector3d u_i = atom->getElectroFrame().getColumn(2); |
403 |
> |
moment = ma.getDipoleMoment(); |
404 |
> |
moment *= debyeToCm; |
405 |
> |
dipoleVector += u_i * moment; |
406 |
> |
} |
407 |
> |
} |
408 |
> |
} |
409 |
> |
|
410 |
> |
|
411 |
> |
#ifdef IS_MPI |
412 |
> |
RealType pChg_global, nChg_global; |
413 |
> |
int pCount_global, nCount_global; |
414 |
> |
Vector3d pPos_global, nPos_global, dipVec_global; |
415 |
> |
|
416 |
> |
MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM, |
417 |
> |
MPI_COMM_WORLD); |
418 |
> |
pChg = pChg_global; |
419 |
> |
MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM, |
420 |
> |
MPI_COMM_WORLD); |
421 |
> |
nChg = nChg_global; |
422 |
> |
MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM, |
423 |
> |
MPI_COMM_WORLD); |
424 |
> |
pCount = pCount_global; |
425 |
> |
MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM, |
426 |
> |
MPI_COMM_WORLD); |
427 |
> |
nCount = nCount_global; |
428 |
> |
MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3, |
429 |
> |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
430 |
> |
pPos = pPos_global; |
431 |
> |
MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3, |
432 |
> |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
433 |
> |
nPos = nPos_global; |
434 |
> |
MPI_Allreduce(dipoleVector.getArrayPointer(), |
435 |
> |
dipVec_global.getArrayPointer(), 3, |
436 |
> |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
437 |
> |
dipoleVector = dipVec_global; |
438 |
> |
#endif //is_mpi |
439 |
> |
|
440 |
> |
// first load the accumulated dipole moment (if dipoles were present) |
441 |
> |
Vector3d boxDipole = dipoleVector; |
442 |
> |
// now include the dipole moment due to charges |
443 |
> |
// use the lesser of the positive and negative charge totals |
444 |
> |
RealType chg_value = nChg <= pChg ? nChg : pChg; |
445 |
> |
|
446 |
> |
// find the average positions |
447 |
> |
if (pCount > 0 && nCount > 0 ) { |
448 |
> |
pPos /= pCount; |
449 |
> |
nPos /= nCount; |
450 |
> |
} |
451 |
> |
|
452 |
> |
// dipole is from the negative to the positive (physics notation) |
453 |
> |
boxDipole += (pPos - nPos) * chg_value; |
454 |
> |
|
455 |
> |
return boxDipole; |
456 |
> |
} |
457 |
> |
|
458 |
> |
// Returns the Heat Flux Vector for the system |
459 |
> |
Vector3d Thermo::getHeatFlux(){ |
460 |
> |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
461 |
> |
SimInfo::MoleculeIterator miter; |
462 |
> |
std::vector<StuntDouble*>::iterator iiter; |
463 |
> |
Molecule* mol; |
464 |
> |
StuntDouble* integrableObject; |
465 |
> |
RigidBody::AtomIterator ai; |
466 |
> |
Atom* atom; |
467 |
> |
Vector3d vel; |
468 |
> |
Vector3d angMom; |
469 |
> |
Mat3x3d I; |
470 |
> |
int i; |
471 |
> |
int j; |
472 |
> |
int k; |
473 |
> |
RealType mass; |
474 |
> |
|
475 |
> |
Vector3d x_a; |
476 |
> |
RealType kinetic; |
477 |
> |
RealType potential; |
478 |
> |
RealType eatom; |
479 |
> |
RealType AvgE_a_ = 0; |
480 |
> |
// Convective portion of the heat flux |
481 |
> |
Vector3d heatFluxJc = V3Zero; |
482 |
> |
|
483 |
> |
/* Calculate convective portion of the heat flux */ |
484 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
485 |
> |
mol = info_->nextMolecule(miter)) { |
486 |
> |
|
487 |
> |
for (integrableObject = mol->beginIntegrableObject(iiter); |
488 |
> |
integrableObject != NULL; |
489 |
> |
integrableObject = mol->nextIntegrableObject(iiter)) { |
490 |
> |
|
491 |
> |
mass = integrableObject->getMass(); |
492 |
> |
vel = integrableObject->getVel(); |
493 |
> |
|
494 |
> |
kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
495 |
> |
|
496 |
> |
if (integrableObject->isDirectional()) { |
497 |
> |
angMom = integrableObject->getJ(); |
498 |
> |
I = integrableObject->getI(); |
499 |
> |
|
500 |
> |
if (integrableObject->isLinear()) { |
501 |
> |
i = integrableObject->linearAxis(); |
502 |
> |
j = (i + 1) % 3; |
503 |
> |
k = (i + 2) % 3; |
504 |
> |
kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); |
505 |
> |
} else { |
506 |
> |
kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) |
507 |
> |
+ angMom[2]*angMom[2]/I(2, 2); |
508 |
> |
} |
509 |
> |
} |
510 |
> |
|
511 |
> |
potential = 0.0; |
512 |
> |
|
513 |
> |
if (integrableObject->isRigidBody()) { |
514 |
> |
RigidBody* rb = dynamic_cast<RigidBody*>(integrableObject); |
515 |
> |
for (atom = rb->beginAtom(ai); atom != NULL; |
516 |
> |
atom = rb->nextAtom(ai)) { |
517 |
> |
potential += atom->getParticlePot(); |
518 |
> |
} |
519 |
> |
} else { |
520 |
> |
potential = integrableObject->getParticlePot(); |
521 |
> |
cerr << "ppot = " << potential << "\n"; |
522 |
> |
} |
523 |
> |
|
524 |
> |
potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 |
525 |
> |
// The potential may not be a 1/2 factor |
526 |
> |
eatom = (kinetic + potential)/2.0; // amu A^2/fs^2 |
527 |
> |
heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 |
528 |
> |
heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 |
529 |
> |
heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 |
530 |
> |
} |
531 |
> |
} |
532 |
> |
|
533 |
> |
std::cerr << "Heat flux heatFluxJc is: " << heatFluxJc << std::endl; |
534 |
> |
|
535 |
> |
/* The J_v vector is reduced in fortan so everyone has the global |
536 |
> |
* Jv. Jc is computed over the local atoms and must be reduced |
537 |
> |
* among all processors. |
538 |
> |
*/ |
539 |
> |
#ifdef IS_MPI |
540 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE, |
541 |
> |
MPI::SUM); |
542 |
> |
#endif |
543 |
> |
|
544 |
> |
// (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 |
545 |
> |
|
546 |
> |
Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() * |
547 |
> |
PhysicalConstants::energyConvert; |
548 |
> |
|
549 |
> |
std::cerr << "Heat flux Jc is: " << heatFluxJc << std::endl; |
550 |
> |
std::cerr << "Heat flux Jv is: " << heatFluxJv << std::endl; |
551 |
> |
|
552 |
> |
// Correct for the fact the flux is 1/V (Jc + Jv) |
553 |
> |
return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3 |
554 |
> |
} |
555 |
> |
} //end namespace OpenMD |