112 |
|
|
113 |
|
RealType Thermo::getPotential() { |
114 |
|
RealType potential = 0.0; |
115 |
– |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
116 |
– |
RealType shortRangePot_local = curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; |
115 |
|
|
116 |
< |
// Get total potential for entire system from MPI. |
117 |
< |
|
120 |
< |
#ifdef IS_MPI |
121 |
< |
|
122 |
< |
MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM, |
123 |
< |
MPI_COMM_WORLD); |
124 |
< |
potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
125 |
< |
|
126 |
< |
#else |
127 |
< |
|
128 |
< |
potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
129 |
< |
|
130 |
< |
#endif // is_mpi |
131 |
< |
|
116 |
> |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
117 |
> |
potential = curSnapshot->getShortRangePotential() + curSnapshot->getLongRangePotential(); |
118 |
|
return potential; |
119 |
|
} |
120 |
|
|
131 |
|
return temperature; |
132 |
|
} |
133 |
|
|
134 |
+ |
RealType Thermo::getElectronicTemperature() { |
135 |
+ |
SimInfo::MoleculeIterator miter; |
136 |
+ |
std::vector<Atom*>::iterator iiter; |
137 |
+ |
Molecule* mol; |
138 |
+ |
Atom* atom; |
139 |
+ |
RealType cvel; |
140 |
+ |
RealType cmass; |
141 |
+ |
RealType kinetic = 0.0; |
142 |
+ |
RealType kinetic_global = 0.0; |
143 |
+ |
|
144 |
+ |
for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { |
145 |
+ |
for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL; |
146 |
+ |
atom = mol->nextFluctuatingCharge(iiter)) { |
147 |
+ |
cmass = atom->getChargeMass(); |
148 |
+ |
cvel = atom->getFlucQVel(); |
149 |
+ |
|
150 |
+ |
kinetic += cmass * cvel * cvel; |
151 |
+ |
|
152 |
+ |
} |
153 |
+ |
} |
154 |
+ |
|
155 |
+ |
#ifdef IS_MPI |
156 |
+ |
|
157 |
+ |
MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, |
158 |
+ |
MPI_COMM_WORLD); |
159 |
+ |
kinetic = kinetic_global; |
160 |
+ |
|
161 |
+ |
#endif //is_mpi |
162 |
+ |
|
163 |
+ |
kinetic = kinetic * 0.5; |
164 |
+ |
return ( 2.0 * kinetic) / (info_->getNFluctuatingCharges()* PhysicalConstants::kb ); |
165 |
+ |
} |
166 |
+ |
|
167 |
+ |
|
168 |
+ |
|
169 |
+ |
|
170 |
|
RealType Thermo::getVolume() { |
171 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
172 |
|
return curSnapshot->getVolume(); |
232 |
|
|
233 |
|
RealType volume = this->getVolume(); |
234 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
235 |
< |
Mat3x3d tau = curSnapshot->getTau(); |
235 |
> |
Mat3x3d stressTensor = curSnapshot->getStressTensor(); |
236 |
|
|
237 |
< |
pressureTensor = (p_global + PhysicalConstants::energyConvert* tau)/volume; |
237 |
> |
pressureTensor = (p_global + |
238 |
> |
PhysicalConstants::energyConvert * stressTensor)/volume; |
239 |
|
|
240 |
|
return pressureTensor; |
241 |
|
} |
272 |
|
} |
273 |
|
|
274 |
|
Globals* simParams = info_->getSimParams(); |
275 |
+ |
// grab the heat flux if desired |
276 |
+ |
if (simParams->havePrintHeatFlux()) { |
277 |
+ |
if (simParams->getPrintHeatFlux()){ |
278 |
+ |
Vector3d heatFlux = getHeatFlux(); |
279 |
+ |
stat[Stats::HEATFLUX_X] = heatFlux(0); |
280 |
+ |
stat[Stats::HEATFLUX_Y] = heatFlux(1); |
281 |
+ |
stat[Stats::HEATFLUX_Z] = heatFlux(2); |
282 |
+ |
} |
283 |
+ |
} |
284 |
|
|
285 |
|
if (simParams->haveTaggedAtomPair() && |
286 |
|
simParams->havePrintTaggedPairDistance()) { |
453 |
|
boxDipole += (pPos - nPos) * chg_value; |
454 |
|
|
455 |
|
return boxDipole; |
456 |
+ |
} |
457 |
+ |
|
458 |
+ |
// Returns the Heat Flux Vector for the system |
459 |
+ |
Vector3d Thermo::getHeatFlux(){ |
460 |
+ |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
461 |
+ |
SimInfo::MoleculeIterator miter; |
462 |
+ |
std::vector<StuntDouble*>::iterator iiter; |
463 |
+ |
Molecule* mol; |
464 |
+ |
StuntDouble* integrableObject; |
465 |
+ |
RigidBody::AtomIterator ai; |
466 |
+ |
Atom* atom; |
467 |
+ |
Vector3d vel; |
468 |
+ |
Vector3d angMom; |
469 |
+ |
Mat3x3d I; |
470 |
+ |
int i; |
471 |
+ |
int j; |
472 |
+ |
int k; |
473 |
+ |
RealType mass; |
474 |
+ |
|
475 |
+ |
Vector3d x_a; |
476 |
+ |
RealType kinetic; |
477 |
+ |
RealType potential; |
478 |
+ |
RealType eatom; |
479 |
+ |
RealType AvgE_a_ = 0; |
480 |
+ |
// Convective portion of the heat flux |
481 |
+ |
Vector3d heatFluxJc = V3Zero; |
482 |
+ |
|
483 |
+ |
/* Calculate convective portion of the heat flux */ |
484 |
+ |
for (mol = info_->beginMolecule(miter); mol != NULL; |
485 |
+ |
mol = info_->nextMolecule(miter)) { |
486 |
+ |
|
487 |
+ |
for (integrableObject = mol->beginIntegrableObject(iiter); |
488 |
+ |
integrableObject != NULL; |
489 |
+ |
integrableObject = mol->nextIntegrableObject(iiter)) { |
490 |
+ |
|
491 |
+ |
mass = integrableObject->getMass(); |
492 |
+ |
vel = integrableObject->getVel(); |
493 |
+ |
|
494 |
+ |
kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
495 |
+ |
|
496 |
+ |
if (integrableObject->isDirectional()) { |
497 |
+ |
angMom = integrableObject->getJ(); |
498 |
+ |
I = integrableObject->getI(); |
499 |
+ |
|
500 |
+ |
if (integrableObject->isLinear()) { |
501 |
+ |
i = integrableObject->linearAxis(); |
502 |
+ |
j = (i + 1) % 3; |
503 |
+ |
k = (i + 2) % 3; |
504 |
+ |
kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); |
505 |
+ |
} else { |
506 |
+ |
kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) |
507 |
+ |
+ angMom[2]*angMom[2]/I(2, 2); |
508 |
+ |
} |
509 |
+ |
} |
510 |
+ |
|
511 |
+ |
potential = 0.0; |
512 |
+ |
|
513 |
+ |
if (integrableObject->isRigidBody()) { |
514 |
+ |
RigidBody* rb = dynamic_cast<RigidBody*>(integrableObject); |
515 |
+ |
for (atom = rb->beginAtom(ai); atom != NULL; |
516 |
+ |
atom = rb->nextAtom(ai)) { |
517 |
+ |
potential += atom->getParticlePot(); |
518 |
+ |
} |
519 |
+ |
} else { |
520 |
+ |
potential = integrableObject->getParticlePot(); |
521 |
+ |
cerr << "ppot = " << potential << "\n"; |
522 |
+ |
} |
523 |
+ |
|
524 |
+ |
potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 |
525 |
+ |
// The potential may not be a 1/2 factor |
526 |
+ |
eatom = (kinetic + potential)/2.0; // amu A^2/fs^2 |
527 |
+ |
heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 |
528 |
+ |
heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 |
529 |
+ |
heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 |
530 |
+ |
} |
531 |
+ |
} |
532 |
+ |
|
533 |
+ |
std::cerr << "Heat flux heatFluxJc is: " << heatFluxJc << std::endl; |
534 |
+ |
|
535 |
+ |
/* The J_v vector is reduced in fortan so everyone has the global |
536 |
+ |
* Jv. Jc is computed over the local atoms and must be reduced |
537 |
+ |
* among all processors. |
538 |
+ |
*/ |
539 |
+ |
#ifdef IS_MPI |
540 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE, |
541 |
+ |
MPI::SUM); |
542 |
+ |
#endif |
543 |
+ |
|
544 |
+ |
// (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 |
545 |
+ |
|
546 |
+ |
Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() * |
547 |
+ |
PhysicalConstants::energyConvert; |
548 |
+ |
|
549 |
+ |
std::cerr << "Heat flux Jc is: " << heatFluxJc << std::endl; |
550 |
+ |
std::cerr << "Heat flux Jv is: " << heatFluxJv << std::endl; |
551 |
+ |
|
552 |
+ |
// Correct for the fact the flux is 1/V (Jc + Jv) |
553 |
+ |
return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3 |
554 |
|
} |
555 |
|
} //end namespace OpenMD |