36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <math.h> |
51 |
|
#include "primitives/Molecule.hpp" |
52 |
|
#include "utils/simError.h" |
53 |
|
#include "utils/PhysicalConstants.hpp" |
54 |
+ |
#include "types/MultipoleAdapter.hpp" |
55 |
|
|
56 |
|
namespace OpenMD { |
57 |
|
|
145 |
|
return temperature; |
146 |
|
} |
147 |
|
|
148 |
+ |
RealType Thermo::getElectronicTemperature() { |
149 |
+ |
SimInfo::MoleculeIterator miter; |
150 |
+ |
std::vector<Atom*>::iterator iiter; |
151 |
+ |
Molecule* mol; |
152 |
+ |
Atom* atom; |
153 |
+ |
RealType cvel; |
154 |
+ |
RealType cmass; |
155 |
+ |
RealType kinetic = 0.0; |
156 |
+ |
RealType kinetic_global = 0.0; |
157 |
+ |
|
158 |
+ |
for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { |
159 |
+ |
for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL; |
160 |
+ |
atom = mol->nextFluctuatingCharge(iiter)) { |
161 |
+ |
cmass = atom->getChargeMass(); |
162 |
+ |
cvel = atom->getFlucQVel(); |
163 |
+ |
|
164 |
+ |
kinetic += cmass * cvel * cvel; |
165 |
+ |
|
166 |
+ |
} |
167 |
+ |
} |
168 |
+ |
|
169 |
+ |
#ifdef IS_MPI |
170 |
+ |
|
171 |
+ |
MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, |
172 |
+ |
MPI_COMM_WORLD); |
173 |
+ |
kinetic = kinetic_global; |
174 |
+ |
|
175 |
+ |
#endif //is_mpi |
176 |
+ |
|
177 |
+ |
kinetic = kinetic * 0.5; |
178 |
+ |
return ( 2.0 * kinetic) / (info_->getNFluctuatingCharges()* PhysicalConstants::kb ); |
179 |
+ |
} |
180 |
+ |
|
181 |
+ |
|
182 |
+ |
|
183 |
+ |
|
184 |
|
RealType Thermo::getVolume() { |
185 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
186 |
|
return curSnapshot->getVolume(); |
246 |
|
|
247 |
|
RealType volume = this->getVolume(); |
248 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
249 |
< |
Mat3x3d tau = curSnapshot->statData.getTau(); |
249 |
> |
Mat3x3d stressTensor = curSnapshot->getStressTensor(); |
250 |
|
|
251 |
< |
pressureTensor = (p_global + PhysicalConstants::energyConvert* tau)/volume; |
251 |
> |
pressureTensor = (p_global + |
252 |
> |
PhysicalConstants::energyConvert * stressTensor)/volume; |
253 |
|
|
254 |
|
return pressureTensor; |
255 |
|
} |
277 |
|
stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1); |
278 |
|
stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2); |
279 |
|
|
280 |
+ |
// grab the simulation box dipole moment if specified |
281 |
+ |
if (info_->getCalcBoxDipole()){ |
282 |
+ |
Vector3d totalDipole = getBoxDipole(); |
283 |
+ |
stat[Stats::BOX_DIPOLE_X] = totalDipole(0); |
284 |
+ |
stat[Stats::BOX_DIPOLE_Y] = totalDipole(1); |
285 |
+ |
stat[Stats::BOX_DIPOLE_Z] = totalDipole(2); |
286 |
+ |
} |
287 |
|
|
288 |
|
Globals* simParams = info_->getSimParams(); |
289 |
+ |
// grab the heat flux if desired |
290 |
+ |
if (simParams->havePrintHeatFlux()) { |
291 |
+ |
if (simParams->getPrintHeatFlux()){ |
292 |
+ |
Vector3d heatFlux = getHeatFlux(); |
293 |
+ |
stat[Stats::HEATFLUX_X] = heatFlux(0); |
294 |
+ |
stat[Stats::HEATFLUX_Y] = heatFlux(1); |
295 |
+ |
stat[Stats::HEATFLUX_Z] = heatFlux(2); |
296 |
+ |
} |
297 |
+ |
} |
298 |
|
|
299 |
|
if (simParams->haveTaggedAtomPair() && |
300 |
|
simParams->havePrintTaggedPairDistance()) { |
356 |
|
|
357 |
|
/**@todo need refactorying*/ |
358 |
|
//Conserved Quantity is set by integrator and time is set by setTime |
359 |
+ |
|
360 |
+ |
} |
361 |
+ |
|
362 |
+ |
|
363 |
+ |
Vector3d Thermo::getBoxDipole() { |
364 |
+ |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
365 |
+ |
SimInfo::MoleculeIterator miter; |
366 |
+ |
std::vector<Atom*>::iterator aiter; |
367 |
+ |
Molecule* mol; |
368 |
+ |
Atom* atom; |
369 |
+ |
RealType charge; |
370 |
+ |
RealType moment(0.0); |
371 |
+ |
Vector3d ri(0.0); |
372 |
+ |
Vector3d dipoleVector(0.0); |
373 |
+ |
Vector3d nPos(0.0); |
374 |
+ |
Vector3d pPos(0.0); |
375 |
+ |
RealType nChg(0.0); |
376 |
+ |
RealType pChg(0.0); |
377 |
+ |
int nCount = 0; |
378 |
+ |
int pCount = 0; |
379 |
+ |
|
380 |
+ |
RealType chargeToC = 1.60217733e-19; |
381 |
+ |
RealType angstromToM = 1.0e-10; |
382 |
+ |
RealType debyeToCm = 3.33564095198e-30; |
383 |
|
|
384 |
+ |
for (mol = info_->beginMolecule(miter); mol != NULL; |
385 |
+ |
mol = info_->nextMolecule(miter)) { |
386 |
+ |
|
387 |
+ |
for (atom = mol->beginAtom(aiter); atom != NULL; |
388 |
+ |
atom = mol->nextAtom(aiter)) { |
389 |
+ |
|
390 |
+ |
if (atom->isCharge() ) { |
391 |
+ |
charge = 0.0; |
392 |
+ |
GenericData* data = atom->getAtomType()->getPropertyByName("Charge"); |
393 |
+ |
if (data != NULL) { |
394 |
+ |
|
395 |
+ |
charge = (dynamic_cast<DoubleGenericData*>(data))->getData(); |
396 |
+ |
charge *= chargeToC; |
397 |
+ |
|
398 |
+ |
ri = atom->getPos(); |
399 |
+ |
currSnapshot->wrapVector(ri); |
400 |
+ |
ri *= angstromToM; |
401 |
+ |
|
402 |
+ |
if (charge < 0.0) { |
403 |
+ |
nPos += ri; |
404 |
+ |
nChg -= charge; |
405 |
+ |
nCount++; |
406 |
+ |
} else if (charge > 0.0) { |
407 |
+ |
pPos += ri; |
408 |
+ |
pChg += charge; |
409 |
+ |
pCount++; |
410 |
+ |
} |
411 |
+ |
} |
412 |
+ |
} |
413 |
+ |
|
414 |
+ |
MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType()); |
415 |
+ |
if (ma.isDipole() ) { |
416 |
+ |
Vector3d u_i = atom->getElectroFrame().getColumn(2); |
417 |
+ |
moment = ma.getDipoleMoment(); |
418 |
+ |
moment *= debyeToCm; |
419 |
+ |
dipoleVector += u_i * moment; |
420 |
+ |
} |
421 |
+ |
} |
422 |
+ |
} |
423 |
+ |
|
424 |
+ |
|
425 |
+ |
#ifdef IS_MPI |
426 |
+ |
RealType pChg_global, nChg_global; |
427 |
+ |
int pCount_global, nCount_global; |
428 |
+ |
Vector3d pPos_global, nPos_global, dipVec_global; |
429 |
+ |
|
430 |
+ |
MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM, |
431 |
+ |
MPI_COMM_WORLD); |
432 |
+ |
pChg = pChg_global; |
433 |
+ |
MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM, |
434 |
+ |
MPI_COMM_WORLD); |
435 |
+ |
nChg = nChg_global; |
436 |
+ |
MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM, |
437 |
+ |
MPI_COMM_WORLD); |
438 |
+ |
pCount = pCount_global; |
439 |
+ |
MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM, |
440 |
+ |
MPI_COMM_WORLD); |
441 |
+ |
nCount = nCount_global; |
442 |
+ |
MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3, |
443 |
+ |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
444 |
+ |
pPos = pPos_global; |
445 |
+ |
MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3, |
446 |
+ |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
447 |
+ |
nPos = nPos_global; |
448 |
+ |
MPI_Allreduce(dipoleVector.getArrayPointer(), |
449 |
+ |
dipVec_global.getArrayPointer(), 3, |
450 |
+ |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
451 |
+ |
dipoleVector = dipVec_global; |
452 |
+ |
#endif //is_mpi |
453 |
+ |
|
454 |
+ |
// first load the accumulated dipole moment (if dipoles were present) |
455 |
+ |
Vector3d boxDipole = dipoleVector; |
456 |
+ |
// now include the dipole moment due to charges |
457 |
+ |
// use the lesser of the positive and negative charge totals |
458 |
+ |
RealType chg_value = nChg <= pChg ? nChg : pChg; |
459 |
+ |
|
460 |
+ |
// find the average positions |
461 |
+ |
if (pCount > 0 && nCount > 0 ) { |
462 |
+ |
pPos /= pCount; |
463 |
+ |
nPos /= nCount; |
464 |
+ |
} |
465 |
+ |
|
466 |
+ |
// dipole is from the negative to the positive (physics notation) |
467 |
+ |
boxDipole += (pPos - nPos) * chg_value; |
468 |
+ |
|
469 |
+ |
return boxDipole; |
470 |
|
} |
471 |
|
|
472 |
+ |
// Returns the Heat Flux Vector for the system |
473 |
+ |
Vector3d Thermo::getHeatFlux(){ |
474 |
+ |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
475 |
+ |
SimInfo::MoleculeIterator miter; |
476 |
+ |
std::vector<StuntDouble*>::iterator iiter; |
477 |
+ |
Molecule* mol; |
478 |
+ |
StuntDouble* integrableObject; |
479 |
+ |
RigidBody::AtomIterator ai; |
480 |
+ |
Atom* atom; |
481 |
+ |
Vector3d vel; |
482 |
+ |
Vector3d angMom; |
483 |
+ |
Mat3x3d I; |
484 |
+ |
int i; |
485 |
+ |
int j; |
486 |
+ |
int k; |
487 |
+ |
RealType mass; |
488 |
+ |
|
489 |
+ |
Vector3d x_a; |
490 |
+ |
RealType kinetic; |
491 |
+ |
RealType potential; |
492 |
+ |
RealType eatom; |
493 |
+ |
RealType AvgE_a_ = 0; |
494 |
+ |
// Convective portion of the heat flux |
495 |
+ |
Vector3d heatFluxJc = V3Zero; |
496 |
+ |
|
497 |
+ |
/* Calculate convective portion of the heat flux */ |
498 |
+ |
for (mol = info_->beginMolecule(miter); mol != NULL; |
499 |
+ |
mol = info_->nextMolecule(miter)) { |
500 |
+ |
|
501 |
+ |
for (integrableObject = mol->beginIntegrableObject(iiter); |
502 |
+ |
integrableObject != NULL; |
503 |
+ |
integrableObject = mol->nextIntegrableObject(iiter)) { |
504 |
+ |
|
505 |
+ |
mass = integrableObject->getMass(); |
506 |
+ |
vel = integrableObject->getVel(); |
507 |
+ |
|
508 |
+ |
kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
509 |
+ |
|
510 |
+ |
if (integrableObject->isDirectional()) { |
511 |
+ |
angMom = integrableObject->getJ(); |
512 |
+ |
I = integrableObject->getI(); |
513 |
+ |
|
514 |
+ |
if (integrableObject->isLinear()) { |
515 |
+ |
i = integrableObject->linearAxis(); |
516 |
+ |
j = (i + 1) % 3; |
517 |
+ |
k = (i + 2) % 3; |
518 |
+ |
kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); |
519 |
+ |
} else { |
520 |
+ |
kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) |
521 |
+ |
+ angMom[2]*angMom[2]/I(2, 2); |
522 |
+ |
} |
523 |
+ |
} |
524 |
+ |
|
525 |
+ |
potential = 0.0; |
526 |
+ |
|
527 |
+ |
if (integrableObject->isRigidBody()) { |
528 |
+ |
RigidBody* rb = dynamic_cast<RigidBody*>(integrableObject); |
529 |
+ |
for (atom = rb->beginAtom(ai); atom != NULL; |
530 |
+ |
atom = rb->nextAtom(ai)) { |
531 |
+ |
potential += atom->getParticlePot(); |
532 |
+ |
} |
533 |
+ |
} else { |
534 |
+ |
potential = integrableObject->getParticlePot(); |
535 |
+ |
cerr << "ppot = " << potential << "\n"; |
536 |
+ |
} |
537 |
+ |
|
538 |
+ |
potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 |
539 |
+ |
// The potential may not be a 1/2 factor |
540 |
+ |
eatom = (kinetic + potential)/2.0; // amu A^2/fs^2 |
541 |
+ |
heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 |
542 |
+ |
heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 |
543 |
+ |
heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 |
544 |
+ |
} |
545 |
+ |
} |
546 |
+ |
|
547 |
+ |
std::cerr << "Heat flux heatFluxJc is: " << heatFluxJc << std::endl; |
548 |
+ |
|
549 |
+ |
/* The J_v vector is reduced in fortan so everyone has the global |
550 |
+ |
* Jv. Jc is computed over the local atoms and must be reduced |
551 |
+ |
* among all processors. |
552 |
+ |
*/ |
553 |
+ |
#ifdef IS_MPI |
554 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE, |
555 |
+ |
MPI::SUM); |
556 |
+ |
#endif |
557 |
+ |
|
558 |
+ |
// (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 |
559 |
+ |
|
560 |
+ |
Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() * |
561 |
+ |
PhysicalConstants::energyConvert; |
562 |
+ |
|
563 |
+ |
std::cerr << "Heat flux Jc is: " << heatFluxJc << std::endl; |
564 |
+ |
std::cerr << "Heat flux Jv is: " << heatFluxJv << std::endl; |
565 |
+ |
|
566 |
+ |
// Correct for the fact the flux is 1/V (Jc + Jv) |
567 |
+ |
return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3 |
568 |
+ |
} |
569 |
|
} //end namespace OpenMD |