ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
(Generate patch)

Comparing:
trunk/src/brains/Thermo.cpp (file contents), Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
branches/development/src/brains/Thermo.cpp (file contents), Revision 1723 by gezelter, Thu May 24 20:59:54 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <math.h>
# Line 49 | Line 50
50   #include "brains/Thermo.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "utils/simError.h"
53 < #include "utils/OOPSEConstant.hpp"
53 > #include "utils/PhysicalConstants.hpp"
54 > #include "types/MultipoleAdapter.hpp"
55  
56 < namespace oopse {
56 > namespace OpenMD {
57  
58 <  double Thermo::getKinetic() {
58 >  RealType Thermo::getKinetic() {
59      SimInfo::MoleculeIterator miter;
60      std::vector<StuntDouble*>::iterator iiter;
61      Molecule* mol;
# Line 64 | Line 66 | namespace oopse {
66      int i;
67      int j;
68      int k;
69 <    double kinetic = 0.0;
70 <    double kinetic_global = 0.0;
69 >    RealType mass;
70 >    RealType kinetic = 0.0;
71 >    RealType kinetic_global = 0.0;
72      
73      for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
74        for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
75             integrableObject = mol->nextIntegrableObject(iiter)) {
76 <
77 <        double mass = integrableObject->getMass();
78 <        Vector3d vel = integrableObject->getVel();
79 <
76 >        
77 >        mass = integrableObject->getMass();
78 >        vel = integrableObject->getVel();
79 >        
80          kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
81 <
81 >        
82          if (integrableObject->isDirectional()) {
83            angMom = integrableObject->getJ();
84            I = integrableObject->getI();
# Line 96 | Line 99 | namespace oopse {
99      
100   #ifdef IS_MPI
101  
102 <    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_DOUBLE, MPI_SUM,
102 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
103                    MPI_COMM_WORLD);
104      kinetic = kinetic_global;
105  
106   #endif //is_mpi
107  
108 <    kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert;
108 >    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
109  
110      return kinetic;
111    }
112  
113 <  double Thermo::getPotential() {
114 <    double potential = 0.0;
113 >  RealType Thermo::getPotential() {
114 >    RealType potential = 0.0;
115      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
116 <    double potential_local = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] +
114 <      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
116 >    RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
117  
118      // Get total potential for entire system from MPI.
119  
120   #ifdef IS_MPI
121  
122 <    MPI_Allreduce(&potential_local, &potential, 1, MPI_DOUBLE, MPI_SUM,
122 >    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
123                    MPI_COMM_WORLD);
124 +    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
125  
126   #else
127  
128 <    potential = potential_local;
128 >    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
129  
130   #endif // is_mpi
131  
132      return potential;
133    }
134  
135 <  double Thermo::getTotalE() {
136 <    double total;
135 >  RealType Thermo::getTotalE() {
136 >    RealType total;
137  
138      total = this->getKinetic() + this->getPotential();
139      return total;
140    }
141  
142 <  double Thermo::getTemperature() {
142 >  RealType Thermo::getTemperature() {
143      
144 <    double temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb );
144 >    RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
145      return temperature;
146    }
147  
148 <  double Thermo::getVolume() {
148 >  RealType Thermo::getElectronicTemperature() {
149 >    SimInfo::MoleculeIterator miter;
150 >    std::vector<Atom*>::iterator iiter;
151 >    Molecule* mol;
152 >    Atom* atom;    
153 >    RealType cvel;
154 >    RealType cmass;
155 >    RealType kinetic = 0.0;
156 >    RealType kinetic_global = 0.0;
157 >    
158 >    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
159 >      for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
160 >           atom = mol->nextFluctuatingCharge(iiter)) {
161 >        cmass = atom->getChargeMass();
162 >        cvel = atom->getFlucQVel();
163 >        
164 >        kinetic += cmass * cvel * cvel;
165 >        
166 >      }
167 >    }
168 >    
169 > #ifdef IS_MPI
170 >
171 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
172 >                  MPI_COMM_WORLD);
173 >    kinetic = kinetic_global;
174 >
175 > #endif //is_mpi
176 >
177 >    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
178 >    return ( 2.0 * kinetic) / (info_->getNFluctuatingCharges()* PhysicalConstants::kb );    
179 >  }
180 >
181 >
182 >
183 >
184 >  RealType Thermo::getVolume() {
185      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
186      return curSnapshot->getVolume();
187    }
188  
189 <  double Thermo::getPressure() {
189 >  RealType Thermo::getPressure() {
190  
191      // Relies on the calculation of the full molecular pressure tensor
192  
193  
194      Mat3x3d tensor;
195 <    double pressure;
195 >    RealType pressure;
196  
197      tensor = getPressureTensor();
198  
199 <    pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
199 >    pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
200  
201      return pressure;
202    }
203  
204 +  RealType Thermo::getPressure(int direction) {
205 +
206 +    // Relies on the calculation of the full molecular pressure tensor
207 +
208 +          
209 +    Mat3x3d tensor;
210 +    RealType pressure;
211 +
212 +    tensor = getPressureTensor();
213 +
214 +    pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
215 +
216 +    return pressure;
217 +  }
218 +
219    Mat3x3d Thermo::getPressureTensor() {
220      // returns pressure tensor in units amu*fs^-2*Ang^-1
221      // routine derived via viral theorem description in:
# Line 178 | Line 232 | namespace oopse {
232        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
233             integrableObject = mol->nextIntegrableObject(j)) {
234  
235 <        double mass = integrableObject->getMass();
235 >        RealType mass = integrableObject->getMass();
236          Vector3d vcom = integrableObject->getVel();
237          p_local += mass * outProduct(vcom, vcom);        
238        }
239      }
240      
241   #ifdef IS_MPI
242 <    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
242 >    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
243   #else
244      p_global = p_local;
245   #endif // is_mpi
246  
247 <    double volume = this->getVolume();
247 >    RealType volume = this->getVolume();
248      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
249 <    Mat3x3d tau = curSnapshot->statData.getTau();
249 >    Mat3x3d stressTensor = curSnapshot->getStressTensor();
250  
251 <    pressureTensor =  (p_global + OOPSEConstant::energyConvert* tau)/volume;
252 <
251 >    pressureTensor =  (p_global +
252 >                       PhysicalConstants::energyConvert * stressTensor)/volume;
253 >    
254      return pressureTensor;
255    }
256  
257 +
258    void Thermo::saveStat(){
259      Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
260      Stats& stat = currSnapshot->statData;
# Line 210 | Line 266 | namespace oopse {
266      stat[Stats::PRESSURE] = getPressure();
267      stat[Stats::VOLUME] = getVolume();      
268  
269 +    Mat3x3d tensor =getPressureTensor();
270 +    stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);      
271 +    stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);      
272 +    stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);      
273 +    stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);      
274 +    stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);      
275 +    stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);      
276 +    stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);      
277 +    stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);      
278 +    stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);      
279 +
280 +    // grab the simulation box dipole moment if specified
281 +    if (info_->getCalcBoxDipole()){
282 +      Vector3d totalDipole = getBoxDipole();
283 +      stat[Stats::BOX_DIPOLE_X] = totalDipole(0);
284 +      stat[Stats::BOX_DIPOLE_Y] = totalDipole(1);
285 +      stat[Stats::BOX_DIPOLE_Z] = totalDipole(2);
286 +    }
287 +
288 +    Globals* simParams = info_->getSimParams();
289 +    // grab the heat flux if desired
290 +    if (simParams->havePrintHeatFlux()) {
291 +      if (simParams->getPrintHeatFlux()){
292 +        Vector3d heatFlux = getHeatFlux();
293 +        stat[Stats::HEATFLUX_X] = heatFlux(0);
294 +        stat[Stats::HEATFLUX_Y] = heatFlux(1);
295 +        stat[Stats::HEATFLUX_Z] = heatFlux(2);
296 +      }
297 +    }
298 +
299 +    if (simParams->haveTaggedAtomPair() &&
300 +        simParams->havePrintTaggedPairDistance()) {
301 +      if ( simParams->getPrintTaggedPairDistance()) {
302 +        
303 +        std::pair<int, int> tap = simParams->getTaggedAtomPair();
304 +        Vector3d pos1, pos2, rab;
305 +
306 + #ifdef IS_MPI        
307 +        std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl;
308 +
309 +        int mol1 = info_->getGlobalMolMembership(tap.first);
310 +        int mol2 = info_->getGlobalMolMembership(tap.second);
311 +        std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
312 +
313 +        int proc1 = info_->getMolToProc(mol1);
314 +        int proc2 = info_->getMolToProc(mol2);
315 +
316 +        std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
317 +
318 +        RealType data[3];
319 +        if (proc1 == worldRank) {
320 +          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
321 +          std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
322 +          pos1 = sd1->getPos();
323 +          data[0] = pos1.x();
324 +          data[1] = pos1.y();
325 +          data[2] = pos1.z();          
326 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
327 +        } else {
328 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
329 +          pos1 = Vector3d(data);
330 +        }
331 +
332 +
333 +        if (proc2 == worldRank) {
334 +          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
335 +          std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
336 +          pos2 = sd2->getPos();
337 +          data[0] = pos2.x();
338 +          data[1] = pos2.y();
339 +          data[2] = pos2.z();          
340 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
341 +        } else {
342 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
343 +          pos2 = Vector3d(data);
344 +        }
345 + #else
346 +        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
347 +        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
348 +        pos1 = at1->getPos();
349 +        pos2 = at2->getPos();
350 + #endif        
351 +        rab = pos2 - pos1;
352 +        currSnapshot->wrapVector(rab);
353 +        stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length();
354 +      }
355 +    }
356 +      
357      /**@todo need refactorying*/
358      //Conserved Quantity is set by integrator and time is set by setTime
359      
360    }
361  
362 < } //end namespace oopse
362 >
363 >  Vector3d Thermo::getBoxDipole() {
364 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
365 >    SimInfo::MoleculeIterator miter;
366 >    std::vector<Atom*>::iterator aiter;
367 >    Molecule* mol;
368 >    Atom* atom;
369 >    RealType charge;
370 >    RealType moment(0.0);
371 >    Vector3d ri(0.0);
372 >    Vector3d dipoleVector(0.0);
373 >    Vector3d nPos(0.0);
374 >    Vector3d pPos(0.0);
375 >    RealType nChg(0.0);
376 >    RealType pChg(0.0);
377 >    int nCount = 0;
378 >    int pCount = 0;
379 >
380 >    RealType chargeToC = 1.60217733e-19;
381 >    RealType angstromToM = 1.0e-10;
382 >    RealType debyeToCm = 3.33564095198e-30;
383 >    
384 >    for (mol = info_->beginMolecule(miter); mol != NULL;
385 >         mol = info_->nextMolecule(miter)) {
386 >
387 >      for (atom = mol->beginAtom(aiter); atom != NULL;
388 >           atom = mol->nextAtom(aiter)) {
389 >        
390 >        if (atom->isCharge() ) {
391 >          charge = 0.0;
392 >          GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
393 >          if (data != NULL) {
394 >
395 >            charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
396 >            charge *= chargeToC;
397 >
398 >            ri = atom->getPos();
399 >            currSnapshot->wrapVector(ri);
400 >            ri *= angstromToM;
401 >
402 >            if (charge < 0.0) {
403 >              nPos += ri;
404 >              nChg -= charge;
405 >              nCount++;
406 >            } else if (charge > 0.0) {
407 >              pPos += ri;
408 >              pChg += charge;
409 >              pCount++;
410 >            }                      
411 >          }
412 >        }
413 >        
414 >        MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
415 >        if (ma.isDipole() ) {
416 >          Vector3d u_i = atom->getElectroFrame().getColumn(2);
417 >          moment = ma.getDipoleMoment();
418 >          moment *= debyeToCm;
419 >          dipoleVector += u_i * moment;
420 >        }
421 >      }
422 >    }
423 >    
424 >                      
425 > #ifdef IS_MPI
426 >    RealType pChg_global, nChg_global;
427 >    int pCount_global, nCount_global;
428 >    Vector3d pPos_global, nPos_global, dipVec_global;
429 >
430 >    MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
431 >                  MPI_COMM_WORLD);
432 >    pChg = pChg_global;
433 >    MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
434 >                  MPI_COMM_WORLD);
435 >    nChg = nChg_global;
436 >    MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
437 >                  MPI_COMM_WORLD);
438 >    pCount = pCount_global;
439 >    MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
440 >                  MPI_COMM_WORLD);
441 >    nCount = nCount_global;
442 >    MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
443 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
444 >    pPos = pPos_global;
445 >    MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
446 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
447 >    nPos = nPos_global;
448 >    MPI_Allreduce(dipoleVector.getArrayPointer(),
449 >                  dipVec_global.getArrayPointer(), 3,
450 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
451 >    dipoleVector = dipVec_global;
452 > #endif //is_mpi
453 >
454 >    // first load the accumulated dipole moment (if dipoles were present)
455 >    Vector3d boxDipole = dipoleVector;
456 >    // now include the dipole moment due to charges
457 >    // use the lesser of the positive and negative charge totals
458 >    RealType chg_value = nChg <= pChg ? nChg : pChg;
459 >      
460 >    // find the average positions
461 >    if (pCount > 0 && nCount > 0 ) {
462 >      pPos /= pCount;
463 >      nPos /= nCount;
464 >    }
465 >
466 >    // dipole is from the negative to the positive (physics notation)
467 >    boxDipole += (pPos - nPos) * chg_value;
468 >
469 >    return boxDipole;
470 >  }
471 >
472 >  // Returns the Heat Flux Vector for the system
473 >  Vector3d Thermo::getHeatFlux(){
474 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
475 >    SimInfo::MoleculeIterator miter;
476 >    std::vector<StuntDouble*>::iterator iiter;
477 >    Molecule* mol;
478 >    StuntDouble* integrableObject;    
479 >    RigidBody::AtomIterator ai;
480 >    Atom* atom;      
481 >    Vector3d vel;
482 >    Vector3d angMom;
483 >    Mat3x3d I;
484 >    int i;
485 >    int j;
486 >    int k;
487 >    RealType mass;
488 >
489 >    Vector3d x_a;
490 >    RealType kinetic;
491 >    RealType potential;
492 >    RealType eatom;
493 >    RealType AvgE_a_ = 0;
494 >    // Convective portion of the heat flux
495 >    Vector3d heatFluxJc = V3Zero;
496 >
497 >    /* Calculate convective portion of the heat flux */
498 >    for (mol = info_->beginMolecule(miter); mol != NULL;
499 >         mol = info_->nextMolecule(miter)) {
500 >      
501 >      for (integrableObject = mol->beginIntegrableObject(iiter);
502 >           integrableObject != NULL;
503 >           integrableObject = mol->nextIntegrableObject(iiter)) {
504 >        
505 >        mass = integrableObject->getMass();
506 >        vel = integrableObject->getVel();
507 >
508 >        kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
509 >        
510 >        if (integrableObject->isDirectional()) {
511 >          angMom = integrableObject->getJ();
512 >          I = integrableObject->getI();
513 >
514 >          if (integrableObject->isLinear()) {
515 >            i = integrableObject->linearAxis();
516 >            j = (i + 1) % 3;
517 >            k = (i + 2) % 3;
518 >            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
519 >          } else {                        
520 >            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
521 >              + angMom[2]*angMom[2]/I(2, 2);
522 >          }
523 >        }
524 >
525 >        potential = 0.0;
526 >
527 >        if (integrableObject->isRigidBody()) {
528 >          RigidBody* rb = dynamic_cast<RigidBody*>(integrableObject);
529 >          for (atom = rb->beginAtom(ai); atom != NULL;
530 >               atom = rb->nextAtom(ai)) {
531 >            potential +=  atom->getParticlePot();
532 >          }          
533 >        } else {
534 >          potential = integrableObject->getParticlePot();
535 >          cerr << "ppot = "  << potential << "\n";
536 >        }
537 >
538 >        potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
539 >        // The potential may not be a 1/2 factor
540 >        eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2
541 >        heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
542 >        heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
543 >        heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
544 >      }
545 >    }
546 >
547 >    std::cerr << "Heat flux heatFluxJc is: " << heatFluxJc << std::endl;
548 >
549 >    /* The J_v vector is reduced in fortan so everyone has the global
550 >     *  Jv. Jc is computed over the local atoms and must be reduced
551 >     *  among all processors.
552 >     */
553 > #ifdef IS_MPI
554 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,
555 >                              MPI::SUM);
556 > #endif
557 >    
558 >    // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
559 >
560 >    Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
561 >      PhysicalConstants::energyConvert;
562 >    
563 >    std::cerr << "Heat flux Jc is: " << heatFluxJc << std::endl;
564 >    std::cerr << "Heat flux Jv is: " << heatFluxJv << std::endl;
565 >    
566 >    // Correct for the fact the flux is 1/V (Jc + Jv)
567 >    return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
568 >  }
569 > } //end namespace OpenMD

Comparing:
trunk/src/brains/Thermo.cpp (property svn:keywords), Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
branches/development/src/brains/Thermo.cpp (property svn:keywords), Revision 1723 by gezelter, Thu May 24 20:59:54 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines