6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <math.h> |
50 |
|
#include "brains/Thermo.hpp" |
51 |
|
#include "primitives/Molecule.hpp" |
52 |
|
#include "utils/simError.h" |
53 |
< |
#include "utils/OOPSEConstant.hpp" |
53 |
> |
#include "utils/PhysicalConstants.hpp" |
54 |
> |
#include "types/MultipoleAdapter.hpp" |
55 |
|
|
56 |
< |
namespace oopse { |
56 |
> |
namespace OpenMD { |
57 |
|
|
58 |
< |
double Thermo::getKinetic() { |
58 |
> |
RealType Thermo::getKinetic() { |
59 |
|
SimInfo::MoleculeIterator miter; |
60 |
|
std::vector<StuntDouble*>::iterator iiter; |
61 |
|
Molecule* mol; |
66 |
|
int i; |
67 |
|
int j; |
68 |
|
int k; |
69 |
< |
double kinetic = 0.0; |
70 |
< |
double kinetic_global = 0.0; |
69 |
> |
RealType mass; |
70 |
> |
RealType kinetic = 0.0; |
71 |
> |
RealType kinetic_global = 0.0; |
72 |
|
|
73 |
|
for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { |
74 |
|
for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; |
75 |
|
integrableObject = mol->nextIntegrableObject(iiter)) { |
76 |
< |
|
77 |
< |
double mass = integrableObject->getMass(); |
78 |
< |
Vector3d vel = integrableObject->getVel(); |
79 |
< |
|
76 |
> |
|
77 |
> |
mass = integrableObject->getMass(); |
78 |
> |
vel = integrableObject->getVel(); |
79 |
> |
|
80 |
|
kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
81 |
< |
|
81 |
> |
|
82 |
|
if (integrableObject->isDirectional()) { |
83 |
|
angMom = integrableObject->getJ(); |
84 |
|
I = integrableObject->getI(); |
99 |
|
|
100 |
|
#ifdef IS_MPI |
101 |
|
|
102 |
< |
MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_DOUBLE, MPI_SUM, |
102 |
> |
MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, |
103 |
|
MPI_COMM_WORLD); |
104 |
|
kinetic = kinetic_global; |
105 |
|
|
106 |
|
#endif //is_mpi |
107 |
|
|
108 |
< |
kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert; |
108 |
> |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
109 |
|
|
110 |
|
return kinetic; |
111 |
|
} |
112 |
|
|
113 |
< |
double Thermo::getPotential() { |
114 |
< |
double potential = 0.0; |
113 |
> |
RealType Thermo::getPotential() { |
114 |
> |
RealType potential = 0.0; |
115 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
116 |
< |
double potential_local = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] + |
114 |
< |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; |
116 |
> |
RealType shortRangePot_local = curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; |
117 |
|
|
118 |
|
// Get total potential for entire system from MPI. |
119 |
|
|
120 |
|
#ifdef IS_MPI |
121 |
|
|
122 |
< |
MPI_Allreduce(&potential_local, &potential, 1, MPI_DOUBLE, MPI_SUM, |
122 |
> |
MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM, |
123 |
|
MPI_COMM_WORLD); |
124 |
+ |
potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
125 |
|
|
126 |
|
#else |
127 |
|
|
128 |
< |
potential = potential_local; |
128 |
> |
potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
129 |
|
|
130 |
|
#endif // is_mpi |
131 |
|
|
132 |
|
return potential; |
133 |
|
} |
134 |
|
|
135 |
< |
double Thermo::getTotalE() { |
136 |
< |
double total; |
135 |
> |
RealType Thermo::getTotalE() { |
136 |
> |
RealType total; |
137 |
|
|
138 |
|
total = this->getKinetic() + this->getPotential(); |
139 |
|
return total; |
140 |
|
} |
141 |
|
|
142 |
< |
double Thermo::getTemperature() { |
142 |
> |
RealType Thermo::getTemperature() { |
143 |
|
|
144 |
< |
double temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb ); |
144 |
> |
RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb ); |
145 |
|
return temperature; |
146 |
|
} |
147 |
|
|
148 |
< |
double Thermo::getVolume() { |
148 |
> |
RealType Thermo::getVolume() { |
149 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
150 |
|
return curSnapshot->getVolume(); |
151 |
|
} |
152 |
|
|
153 |
< |
double Thermo::getPressure() { |
153 |
> |
RealType Thermo::getPressure() { |
154 |
|
|
155 |
|
// Relies on the calculation of the full molecular pressure tensor |
156 |
|
|
157 |
|
|
158 |
|
Mat3x3d tensor; |
159 |
< |
double pressure; |
159 |
> |
RealType pressure; |
160 |
|
|
161 |
|
tensor = getPressureTensor(); |
162 |
|
|
163 |
< |
pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; |
163 |
> |
pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; |
164 |
|
|
165 |
|
return pressure; |
166 |
|
} |
167 |
|
|
168 |
+ |
RealType Thermo::getPressure(int direction) { |
169 |
+ |
|
170 |
+ |
// Relies on the calculation of the full molecular pressure tensor |
171 |
+ |
|
172 |
+ |
|
173 |
+ |
Mat3x3d tensor; |
174 |
+ |
RealType pressure; |
175 |
+ |
|
176 |
+ |
tensor = getPressureTensor(); |
177 |
+ |
|
178 |
+ |
pressure = PhysicalConstants::pressureConvert * tensor(direction, direction); |
179 |
+ |
|
180 |
+ |
return pressure; |
181 |
+ |
} |
182 |
+ |
|
183 |
|
Mat3x3d Thermo::getPressureTensor() { |
184 |
|
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
185 |
|
// routine derived via viral theorem description in: |
196 |
|
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
197 |
|
integrableObject = mol->nextIntegrableObject(j)) { |
198 |
|
|
199 |
< |
double mass = integrableObject->getMass(); |
199 |
> |
RealType mass = integrableObject->getMass(); |
200 |
|
Vector3d vcom = integrableObject->getVel(); |
201 |
|
p_local += mass * outProduct(vcom, vcom); |
202 |
|
} |
203 |
|
} |
204 |
|
|
205 |
|
#ifdef IS_MPI |
206 |
< |
MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
206 |
> |
MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
207 |
|
#else |
208 |
|
p_global = p_local; |
209 |
|
#endif // is_mpi |
210 |
|
|
211 |
< |
double volume = this->getVolume(); |
211 |
> |
RealType volume = this->getVolume(); |
212 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
213 |
< |
Mat3x3d tau = curSnapshot->statData.getTau(); |
213 |
> |
Mat3x3d tau = curSnapshot->getTau(); |
214 |
|
|
215 |
< |
pressureTensor = (p_global + OOPSEConstant::energyConvert* tau)/volume; |
216 |
< |
|
215 |
> |
pressureTensor = (p_global + PhysicalConstants::energyConvert* tau)/volume; |
216 |
> |
|
217 |
|
return pressureTensor; |
218 |
|
} |
219 |
|
|
220 |
+ |
|
221 |
|
void Thermo::saveStat(){ |
222 |
|
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
223 |
|
Stats& stat = currSnapshot->statData; |
229 |
|
stat[Stats::PRESSURE] = getPressure(); |
230 |
|
stat[Stats::VOLUME] = getVolume(); |
231 |
|
|
232 |
+ |
Mat3x3d tensor =getPressureTensor(); |
233 |
+ |
stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0); |
234 |
+ |
stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1); |
235 |
+ |
stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2); |
236 |
+ |
stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0); |
237 |
+ |
stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1); |
238 |
+ |
stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2); |
239 |
+ |
stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0); |
240 |
+ |
stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1); |
241 |
+ |
stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2); |
242 |
+ |
|
243 |
+ |
// grab the simulation box dipole moment if specified |
244 |
+ |
if (info_->getCalcBoxDipole()){ |
245 |
+ |
Vector3d totalDipole = getBoxDipole(); |
246 |
+ |
stat[Stats::BOX_DIPOLE_X] = totalDipole(0); |
247 |
+ |
stat[Stats::BOX_DIPOLE_Y] = totalDipole(1); |
248 |
+ |
stat[Stats::BOX_DIPOLE_Z] = totalDipole(2); |
249 |
+ |
} |
250 |
+ |
|
251 |
+ |
Globals* simParams = info_->getSimParams(); |
252 |
+ |
|
253 |
+ |
if (simParams->haveTaggedAtomPair() && |
254 |
+ |
simParams->havePrintTaggedPairDistance()) { |
255 |
+ |
if ( simParams->getPrintTaggedPairDistance()) { |
256 |
+ |
|
257 |
+ |
std::pair<int, int> tap = simParams->getTaggedAtomPair(); |
258 |
+ |
Vector3d pos1, pos2, rab; |
259 |
+ |
|
260 |
+ |
#ifdef IS_MPI |
261 |
+ |
std::cerr << "tap = " << tap.first << " " << tap.second << std::endl; |
262 |
+ |
|
263 |
+ |
int mol1 = info_->getGlobalMolMembership(tap.first); |
264 |
+ |
int mol2 = info_->getGlobalMolMembership(tap.second); |
265 |
+ |
std::cerr << "mols = " << mol1 << " " << mol2 << std::endl; |
266 |
+ |
|
267 |
+ |
int proc1 = info_->getMolToProc(mol1); |
268 |
+ |
int proc2 = info_->getMolToProc(mol2); |
269 |
+ |
|
270 |
+ |
std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl; |
271 |
+ |
|
272 |
+ |
RealType data[3]; |
273 |
+ |
if (proc1 == worldRank) { |
274 |
+ |
StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); |
275 |
+ |
std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl; |
276 |
+ |
pos1 = sd1->getPos(); |
277 |
+ |
data[0] = pos1.x(); |
278 |
+ |
data[1] = pos1.y(); |
279 |
+ |
data[2] = pos1.z(); |
280 |
+ |
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
281 |
+ |
} else { |
282 |
+ |
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
283 |
+ |
pos1 = Vector3d(data); |
284 |
+ |
} |
285 |
+ |
|
286 |
+ |
|
287 |
+ |
if (proc2 == worldRank) { |
288 |
+ |
StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); |
289 |
+ |
std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl; |
290 |
+ |
pos2 = sd2->getPos(); |
291 |
+ |
data[0] = pos2.x(); |
292 |
+ |
data[1] = pos2.y(); |
293 |
+ |
data[2] = pos2.z(); |
294 |
+ |
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
295 |
+ |
} else { |
296 |
+ |
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
297 |
+ |
pos2 = Vector3d(data); |
298 |
+ |
} |
299 |
+ |
#else |
300 |
+ |
StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first); |
301 |
+ |
StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); |
302 |
+ |
pos1 = at1->getPos(); |
303 |
+ |
pos2 = at2->getPos(); |
304 |
+ |
#endif |
305 |
+ |
rab = pos2 - pos1; |
306 |
+ |
currSnapshot->wrapVector(rab); |
307 |
+ |
stat[Stats::TAGGED_PAIR_DISTANCE] = rab.length(); |
308 |
+ |
} |
309 |
+ |
} |
310 |
+ |
|
311 |
|
/**@todo need refactorying*/ |
312 |
|
//Conserved Quantity is set by integrator and time is set by setTime |
313 |
|
|
314 |
|
} |
315 |
|
|
316 |
< |
} //end namespace oopse |
316 |
> |
|
317 |
> |
Vector3d Thermo::getBoxDipole() { |
318 |
> |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
319 |
> |
SimInfo::MoleculeIterator miter; |
320 |
> |
std::vector<Atom*>::iterator aiter; |
321 |
> |
Molecule* mol; |
322 |
> |
Atom* atom; |
323 |
> |
RealType charge; |
324 |
> |
RealType moment(0.0); |
325 |
> |
Vector3d ri(0.0); |
326 |
> |
Vector3d dipoleVector(0.0); |
327 |
> |
Vector3d nPos(0.0); |
328 |
> |
Vector3d pPos(0.0); |
329 |
> |
RealType nChg(0.0); |
330 |
> |
RealType pChg(0.0); |
331 |
> |
int nCount = 0; |
332 |
> |
int pCount = 0; |
333 |
> |
|
334 |
> |
RealType chargeToC = 1.60217733e-19; |
335 |
> |
RealType angstromToM = 1.0e-10; |
336 |
> |
RealType debyeToCm = 3.33564095198e-30; |
337 |
> |
|
338 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
339 |
> |
mol = info_->nextMolecule(miter)) { |
340 |
> |
|
341 |
> |
for (atom = mol->beginAtom(aiter); atom != NULL; |
342 |
> |
atom = mol->nextAtom(aiter)) { |
343 |
> |
|
344 |
> |
if (atom->isCharge() ) { |
345 |
> |
charge = 0.0; |
346 |
> |
GenericData* data = atom->getAtomType()->getPropertyByName("Charge"); |
347 |
> |
if (data != NULL) { |
348 |
> |
|
349 |
> |
charge = (dynamic_cast<DoubleGenericData*>(data))->getData(); |
350 |
> |
charge *= chargeToC; |
351 |
> |
|
352 |
> |
ri = atom->getPos(); |
353 |
> |
currSnapshot->wrapVector(ri); |
354 |
> |
ri *= angstromToM; |
355 |
> |
|
356 |
> |
if (charge < 0.0) { |
357 |
> |
nPos += ri; |
358 |
> |
nChg -= charge; |
359 |
> |
nCount++; |
360 |
> |
} else if (charge > 0.0) { |
361 |
> |
pPos += ri; |
362 |
> |
pChg += charge; |
363 |
> |
pCount++; |
364 |
> |
} |
365 |
> |
} |
366 |
> |
} |
367 |
> |
|
368 |
> |
MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType()); |
369 |
> |
if (ma.isDipole() ) { |
370 |
> |
Vector3d u_i = atom->getElectroFrame().getColumn(2); |
371 |
> |
moment = ma.getDipoleMoment(); |
372 |
> |
moment *= debyeToCm; |
373 |
> |
dipoleVector += u_i * moment; |
374 |
> |
} |
375 |
> |
} |
376 |
> |
} |
377 |
> |
|
378 |
> |
|
379 |
> |
#ifdef IS_MPI |
380 |
> |
RealType pChg_global, nChg_global; |
381 |
> |
int pCount_global, nCount_global; |
382 |
> |
Vector3d pPos_global, nPos_global, dipVec_global; |
383 |
> |
|
384 |
> |
MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM, |
385 |
> |
MPI_COMM_WORLD); |
386 |
> |
pChg = pChg_global; |
387 |
> |
MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM, |
388 |
> |
MPI_COMM_WORLD); |
389 |
> |
nChg = nChg_global; |
390 |
> |
MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM, |
391 |
> |
MPI_COMM_WORLD); |
392 |
> |
pCount = pCount_global; |
393 |
> |
MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM, |
394 |
> |
MPI_COMM_WORLD); |
395 |
> |
nCount = nCount_global; |
396 |
> |
MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3, |
397 |
> |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
398 |
> |
pPos = pPos_global; |
399 |
> |
MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3, |
400 |
> |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
401 |
> |
nPos = nPos_global; |
402 |
> |
MPI_Allreduce(dipoleVector.getArrayPointer(), |
403 |
> |
dipVec_global.getArrayPointer(), 3, |
404 |
> |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
405 |
> |
dipoleVector = dipVec_global; |
406 |
> |
#endif //is_mpi |
407 |
> |
|
408 |
> |
// first load the accumulated dipole moment (if dipoles were present) |
409 |
> |
Vector3d boxDipole = dipoleVector; |
410 |
> |
// now include the dipole moment due to charges |
411 |
> |
// use the lesser of the positive and negative charge totals |
412 |
> |
RealType chg_value = nChg <= pChg ? nChg : pChg; |
413 |
> |
|
414 |
> |
// find the average positions |
415 |
> |
if (pCount > 0 && nCount > 0 ) { |
416 |
> |
pPos /= pCount; |
417 |
> |
nPos /= nCount; |
418 |
> |
} |
419 |
> |
|
420 |
> |
// dipole is from the negative to the positive (physics notation) |
421 |
> |
boxDipole += (pPos - nPos) * chg_value; |
422 |
> |
|
423 |
> |
return boxDipole; |
424 |
> |
} |
425 |
> |
} //end namespace OpenMD |