ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
(Generate patch)

Comparing:
trunk/src/brains/Thermo.cpp (file contents), Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
branches/development/src/brains/Thermo.cpp (file contents), Revision 1710 by gezelter, Fri May 18 21:44:02 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <math.h>
# Line 49 | Line 50
50   #include "brains/Thermo.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "utils/simError.h"
53 < #include "utils/OOPSEConstant.hpp"
53 > #include "utils/PhysicalConstants.hpp"
54 > #include "types/MultipoleAdapter.hpp"
55  
56 < namespace oopse {
56 > namespace OpenMD {
57  
58 <  double Thermo::getKinetic() {
58 >  RealType Thermo::getKinetic() {
59      SimInfo::MoleculeIterator miter;
60      std::vector<StuntDouble*>::iterator iiter;
61      Molecule* mol;
# Line 64 | Line 66 | namespace oopse {
66      int i;
67      int j;
68      int k;
69 <    double kinetic = 0.0;
70 <    double kinetic_global = 0.0;
69 >    RealType mass;
70 >    RealType kinetic = 0.0;
71 >    RealType kinetic_global = 0.0;
72      
73      for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
74        for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
75             integrableObject = mol->nextIntegrableObject(iiter)) {
76 <
77 <        double mass = integrableObject->getMass();
78 <        Vector3d vel = integrableObject->getVel();
79 <
76 >        
77 >        mass = integrableObject->getMass();
78 >        vel = integrableObject->getVel();
79 >        
80          kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
81 <
81 >        
82          if (integrableObject->isDirectional()) {
83            angMom = integrableObject->getJ();
84            I = integrableObject->getI();
# Line 96 | Line 99 | namespace oopse {
99      
100   #ifdef IS_MPI
101  
102 <    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_DOUBLE, MPI_SUM,
102 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
103                    MPI_COMM_WORLD);
104      kinetic = kinetic_global;
105  
106   #endif //is_mpi
107  
108 <    kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert;
108 >    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
109  
110      return kinetic;
111    }
112  
113 <  double Thermo::getPotential() {
114 <    double potential = 0.0;
113 >  RealType Thermo::getPotential() {
114 >    RealType potential = 0.0;
115      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
116 <    double potential_local = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] +
114 <      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
116 >    RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
117  
118      // Get total potential for entire system from MPI.
119  
120   #ifdef IS_MPI
121  
122 <    MPI_Allreduce(&potential_local, &potential, 1, MPI_DOUBLE, MPI_SUM,
122 >    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
123                    MPI_COMM_WORLD);
124 +    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
125  
126   #else
127  
128 <    potential = potential_local;
128 >    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
129  
130   #endif // is_mpi
131  
132      return potential;
133    }
134  
135 <  double Thermo::getTotalE() {
136 <    double total;
135 >  RealType Thermo::getTotalE() {
136 >    RealType total;
137  
138      total = this->getKinetic() + this->getPotential();
139      return total;
140    }
141  
142 <  double Thermo::getTemperature() {
142 >  RealType Thermo::getTemperature() {
143      
144 <    double temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb );
144 >    RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
145      return temperature;
146    }
147  
148 <  double Thermo::getVolume() {
148 >  RealType Thermo::getVolume() {
149      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
150      return curSnapshot->getVolume();
151    }
152  
153 <  double Thermo::getPressure() {
153 >  RealType Thermo::getPressure() {
154  
155      // Relies on the calculation of the full molecular pressure tensor
156  
157  
158      Mat3x3d tensor;
159 <    double pressure;
159 >    RealType pressure;
160  
161      tensor = getPressureTensor();
162  
163 <    pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
163 >    pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
164  
165      return pressure;
166    }
167  
168 +  RealType Thermo::getPressure(int direction) {
169 +
170 +    // Relies on the calculation of the full molecular pressure tensor
171 +
172 +          
173 +    Mat3x3d tensor;
174 +    RealType pressure;
175 +
176 +    tensor = getPressureTensor();
177 +
178 +    pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
179 +
180 +    return pressure;
181 +  }
182 +
183    Mat3x3d Thermo::getPressureTensor() {
184      // returns pressure tensor in units amu*fs^-2*Ang^-1
185      // routine derived via viral theorem description in:
# Line 178 | Line 196 | namespace oopse {
196        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
197             integrableObject = mol->nextIntegrableObject(j)) {
198  
199 <        double mass = integrableObject->getMass();
199 >        RealType mass = integrableObject->getMass();
200          Vector3d vcom = integrableObject->getVel();
201          p_local += mass * outProduct(vcom, vcom);        
202        }
203      }
204      
205   #ifdef IS_MPI
206 <    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
206 >    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
207   #else
208      p_global = p_local;
209   #endif // is_mpi
210  
211 <    double volume = this->getVolume();
211 >    RealType volume = this->getVolume();
212      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
213 <    Mat3x3d tau = curSnapshot->statData.getTau();
213 >    Mat3x3d tau = curSnapshot->getTau();
214  
215 <    pressureTensor =  (p_global + OOPSEConstant::energyConvert* tau)/volume;
216 <
215 >    pressureTensor =  (p_global + PhysicalConstants::energyConvert* tau)/volume;
216 >    
217      return pressureTensor;
218    }
219  
220 +
221    void Thermo::saveStat(){
222      Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
223      Stats& stat = currSnapshot->statData;
# Line 210 | Line 229 | namespace oopse {
229      stat[Stats::PRESSURE] = getPressure();
230      stat[Stats::VOLUME] = getVolume();      
231  
232 +    Mat3x3d tensor =getPressureTensor();
233 +    stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);      
234 +    stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);      
235 +    stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);      
236 +    stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);      
237 +    stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);      
238 +    stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);      
239 +    stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);      
240 +    stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);      
241 +    stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);      
242 +
243 +    // grab the simulation box dipole moment if specified
244 +    if (info_->getCalcBoxDipole()){
245 +      Vector3d totalDipole = getBoxDipole();
246 +      stat[Stats::BOX_DIPOLE_X] = totalDipole(0);
247 +      stat[Stats::BOX_DIPOLE_Y] = totalDipole(1);
248 +      stat[Stats::BOX_DIPOLE_Z] = totalDipole(2);
249 +    }
250 +
251 +    Globals* simParams = info_->getSimParams();
252 +
253 +    if (simParams->haveTaggedAtomPair() &&
254 +        simParams->havePrintTaggedPairDistance()) {
255 +      if ( simParams->getPrintTaggedPairDistance()) {
256 +        
257 +        std::pair<int, int> tap = simParams->getTaggedAtomPair();
258 +        Vector3d pos1, pos2, rab;
259 +
260 + #ifdef IS_MPI        
261 +        std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl;
262 +
263 +        int mol1 = info_->getGlobalMolMembership(tap.first);
264 +        int mol2 = info_->getGlobalMolMembership(tap.second);
265 +        std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
266 +
267 +        int proc1 = info_->getMolToProc(mol1);
268 +        int proc2 = info_->getMolToProc(mol2);
269 +
270 +        std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
271 +
272 +        RealType data[3];
273 +        if (proc1 == worldRank) {
274 +          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
275 +          std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
276 +          pos1 = sd1->getPos();
277 +          data[0] = pos1.x();
278 +          data[1] = pos1.y();
279 +          data[2] = pos1.z();          
280 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
281 +        } else {
282 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
283 +          pos1 = Vector3d(data);
284 +        }
285 +
286 +
287 +        if (proc2 == worldRank) {
288 +          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
289 +          std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
290 +          pos2 = sd2->getPos();
291 +          data[0] = pos2.x();
292 +          data[1] = pos2.y();
293 +          data[2] = pos2.z();          
294 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
295 +        } else {
296 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
297 +          pos2 = Vector3d(data);
298 +        }
299 + #else
300 +        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
301 +        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
302 +        pos1 = at1->getPos();
303 +        pos2 = at2->getPos();
304 + #endif        
305 +        rab = pos2 - pos1;
306 +        currSnapshot->wrapVector(rab);
307 +        stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length();
308 +      }
309 +    }
310 +      
311      /**@todo need refactorying*/
312      //Conserved Quantity is set by integrator and time is set by setTime
313      
314    }
315  
316 < } //end namespace oopse
316 >
317 >  Vector3d Thermo::getBoxDipole() {
318 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
319 >    SimInfo::MoleculeIterator miter;
320 >    std::vector<Atom*>::iterator aiter;
321 >    Molecule* mol;
322 >    Atom* atom;
323 >    RealType charge;
324 >    RealType moment(0.0);
325 >    Vector3d ri(0.0);
326 >    Vector3d dipoleVector(0.0);
327 >    Vector3d nPos(0.0);
328 >    Vector3d pPos(0.0);
329 >    RealType nChg(0.0);
330 >    RealType pChg(0.0);
331 >    int nCount = 0;
332 >    int pCount = 0;
333 >
334 >    RealType chargeToC = 1.60217733e-19;
335 >    RealType angstromToM = 1.0e-10;
336 >    RealType debyeToCm = 3.33564095198e-30;
337 >    
338 >    for (mol = info_->beginMolecule(miter); mol != NULL;
339 >         mol = info_->nextMolecule(miter)) {
340 >
341 >      for (atom = mol->beginAtom(aiter); atom != NULL;
342 >           atom = mol->nextAtom(aiter)) {
343 >        
344 >        if (atom->isCharge() ) {
345 >          charge = 0.0;
346 >          GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
347 >          if (data != NULL) {
348 >
349 >            charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
350 >            charge *= chargeToC;
351 >
352 >            ri = atom->getPos();
353 >            currSnapshot->wrapVector(ri);
354 >            ri *= angstromToM;
355 >
356 >            if (charge < 0.0) {
357 >              nPos += ri;
358 >              nChg -= charge;
359 >              nCount++;
360 >            } else if (charge > 0.0) {
361 >              pPos += ri;
362 >              pChg += charge;
363 >              pCount++;
364 >            }                      
365 >          }
366 >        }
367 >        
368 >        MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
369 >        if (ma.isDipole() ) {
370 >          Vector3d u_i = atom->getElectroFrame().getColumn(2);
371 >          moment = ma.getDipoleMoment();
372 >          moment *= debyeToCm;
373 >          dipoleVector += u_i * moment;
374 >        }
375 >      }
376 >    }
377 >    
378 >                      
379 > #ifdef IS_MPI
380 >    RealType pChg_global, nChg_global;
381 >    int pCount_global, nCount_global;
382 >    Vector3d pPos_global, nPos_global, dipVec_global;
383 >
384 >    MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
385 >                  MPI_COMM_WORLD);
386 >    pChg = pChg_global;
387 >    MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
388 >                  MPI_COMM_WORLD);
389 >    nChg = nChg_global;
390 >    MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
391 >                  MPI_COMM_WORLD);
392 >    pCount = pCount_global;
393 >    MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
394 >                  MPI_COMM_WORLD);
395 >    nCount = nCount_global;
396 >    MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
397 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
398 >    pPos = pPos_global;
399 >    MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
400 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
401 >    nPos = nPos_global;
402 >    MPI_Allreduce(dipoleVector.getArrayPointer(),
403 >                  dipVec_global.getArrayPointer(), 3,
404 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
405 >    dipoleVector = dipVec_global;
406 > #endif //is_mpi
407 >
408 >    // first load the accumulated dipole moment (if dipoles were present)
409 >    Vector3d boxDipole = dipoleVector;
410 >    // now include the dipole moment due to charges
411 >    // use the lesser of the positive and negative charge totals
412 >    RealType chg_value = nChg <= pChg ? nChg : pChg;
413 >      
414 >    // find the average positions
415 >    if (pCount > 0 && nCount > 0 ) {
416 >      pPos /= pCount;
417 >      nPos /= nCount;
418 >    }
419 >
420 >    // dipole is from the negative to the positive (physics notation)
421 >    boxDipole += (pPos - nPos) * chg_value;
422 >
423 >    return boxDipole;
424 >  }
425 > } //end namespace OpenMD

Comparing:
trunk/src/brains/Thermo.cpp (property svn:keywords), Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
branches/development/src/brains/Thermo.cpp (property svn:keywords), Revision 1710 by gezelter, Fri May 18 21:44:02 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines