ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
(Generate patch)

Comparing:
trunk/src/brains/Thermo.cpp (file contents), Revision 541 by tim, Sun May 22 21:05:15 2005 UTC vs.
branches/development/src/brains/Thermo.cpp (file contents), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <math.h>
# Line 49 | Line 50
50   #include "brains/Thermo.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "utils/simError.h"
53 < #include "utils/OOPSEConstant.hpp"
53 > #include "utils/PhysicalConstants.hpp"
54  
55 < namespace oopse {
55 > namespace OpenMD {
56  
57 <  double Thermo::getKinetic() {
57 >  RealType Thermo::getKinetic() {
58      SimInfo::MoleculeIterator miter;
59      std::vector<StuntDouble*>::iterator iiter;
60      Molecule* mol;
# Line 64 | Line 65 | namespace oopse {
65      int i;
66      int j;
67      int k;
68 <    double kinetic = 0.0;
69 <    double kinetic_global = 0.0;
68 >    RealType mass;
69 >    RealType kinetic = 0.0;
70 >    RealType kinetic_global = 0.0;
71      
72      for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
73        for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
74             integrableObject = mol->nextIntegrableObject(iiter)) {
75 <
76 <        double mass = integrableObject->getMass();
77 <        Vector3d vel = integrableObject->getVel();
78 <
75 >        
76 >        mass = integrableObject->getMass();
77 >        vel = integrableObject->getVel();
78 >        
79          kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
80 <
80 >        
81          if (integrableObject->isDirectional()) {
82            angMom = integrableObject->getJ();
83            I = integrableObject->getI();
# Line 96 | Line 98 | namespace oopse {
98      
99   #ifdef IS_MPI
100  
101 <    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_DOUBLE, MPI_SUM,
101 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
102                    MPI_COMM_WORLD);
103      kinetic = kinetic_global;
104  
105   #endif //is_mpi
106  
107 <    kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert;
107 >    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
108  
109      return kinetic;
110    }
111  
112 <  double Thermo::getPotential() {
113 <    double potential = 0.0;
112 >  RealType Thermo::getPotential() {
113 >    RealType potential = 0.0;
114      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
115 <    double potential_local = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] +
114 <      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
115 >    RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
116  
117      // Get total potential for entire system from MPI.
118  
119   #ifdef IS_MPI
120  
121 <    MPI_Allreduce(&potential_local, &potential, 1, MPI_DOUBLE, MPI_SUM,
121 >    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
122                    MPI_COMM_WORLD);
123 +    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
124  
125   #else
126  
127 <    potential = potential_local;
127 >    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
128  
129   #endif // is_mpi
130  
131      return potential;
132    }
133  
134 <  double Thermo::getTotalE() {
135 <    double total;
134 >  RealType Thermo::getTotalE() {
135 >    RealType total;
136  
137      total = this->getKinetic() + this->getPotential();
138      return total;
139    }
140  
141 <  double Thermo::getTemperature() {
141 >  RealType Thermo::getTemperature() {
142      
143 <    double temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb );
143 >    RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
144      return temperature;
145    }
146  
147 <  double Thermo::getVolume() {
147 >  RealType Thermo::getVolume() {
148      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
149      return curSnapshot->getVolume();
150    }
151  
152 <  double Thermo::getPressure() {
152 >  RealType Thermo::getPressure() {
153  
154      // Relies on the calculation of the full molecular pressure tensor
155  
156  
157      Mat3x3d tensor;
158 <    double pressure;
158 >    RealType pressure;
159  
160      tensor = getPressureTensor();
161  
162 <    pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
162 >    pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
163  
164      return pressure;
165    }
166  
167 <  double Thermo::getPressure(int direction) {
167 >  RealType Thermo::getPressure(int direction) {
168  
169      // Relies on the calculation of the full molecular pressure tensor
170  
171            
172      Mat3x3d tensor;
173 <    double pressure;
173 >    RealType pressure;
174  
175      tensor = getPressureTensor();
176  
177 <    pressure = OOPSEConstant::pressureConvert * tensor(direction, direction);
177 >    pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
178  
179      return pressure;
180    }
181  
180
181
182    Mat3x3d Thermo::getPressureTensor() {
183      // returns pressure tensor in units amu*fs^-2*Ang^-1
184      // routine derived via viral theorem description in:
# Line 195 | Line 195 | namespace oopse {
195        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
196             integrableObject = mol->nextIntegrableObject(j)) {
197  
198 <        double mass = integrableObject->getMass();
198 >        RealType mass = integrableObject->getMass();
199          Vector3d vcom = integrableObject->getVel();
200          p_local += mass * outProduct(vcom, vcom);        
201        }
202      }
203      
204   #ifdef IS_MPI
205 <    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
205 >    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
206   #else
207      p_global = p_local;
208   #endif // is_mpi
209  
210 <    double volume = this->getVolume();
210 >    RealType volume = this->getVolume();
211      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
212      Mat3x3d tau = curSnapshot->statData.getTau();
213  
214 <    pressureTensor =  (p_global + OOPSEConstant::energyConvert* tau)/volume;
215 <
214 >    pressureTensor =  (p_global + PhysicalConstants::energyConvert* tau)/volume;
215 >    
216      return pressureTensor;
217    }
218  
219 +
220    void Thermo::saveStat(){
221      Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
222      Stats& stat = currSnapshot->statData;
# Line 228 | Line 229 | namespace oopse {
229      stat[Stats::VOLUME] = getVolume();      
230  
231      Mat3x3d tensor =getPressureTensor();
232 <    stat[Stats::PRESSURE_TENSOR_X] = tensor(0, 0);      
233 <    stat[Stats::PRESSURE_TENSOR_Y] = tensor(1, 1);      
234 <    stat[Stats::PRESSURE_TENSOR_Z] = tensor(2, 2);      
232 >    stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);      
233 >    stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);      
234 >    stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);      
235 >    stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);      
236 >    stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);      
237 >    stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);      
238 >    stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);      
239 >    stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);      
240 >    stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);      
241 >
242 >    // grab the simulation box dipole moment if specified
243 >    if (info_->getCalcBoxDipole()){
244 >      Vector3d totalDipole = getBoxDipole();
245 >      stat[Stats::BOX_DIPOLE_X] = totalDipole(0);
246 >      stat[Stats::BOX_DIPOLE_Y] = totalDipole(1);
247 >      stat[Stats::BOX_DIPOLE_Z] = totalDipole(2);
248 >    }
249 >
250 >    Globals* simParams = info_->getSimParams();
251 >
252 >    if (simParams->haveTaggedAtomPair() &&
253 >        simParams->havePrintTaggedPairDistance()) {
254 >      if ( simParams->getPrintTaggedPairDistance()) {
255 >        
256 >        std::pair<int, int> tap = simParams->getTaggedAtomPair();
257 >        Vector3d pos1, pos2, rab;
258 >
259 > #ifdef IS_MPI        
260 >        std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl;
261 >
262 >        int mol1 = info_->getGlobalMolMembership(tap.first);
263 >        int mol2 = info_->getGlobalMolMembership(tap.second);
264 >        std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
265 >
266 >        int proc1 = info_->getMolToProc(mol1);
267 >        int proc2 = info_->getMolToProc(mol2);
268 >
269 >        std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
270 >
271 >        RealType data[3];
272 >        if (proc1 == worldRank) {
273 >          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
274 >          std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
275 >          pos1 = sd1->getPos();
276 >          data[0] = pos1.x();
277 >          data[1] = pos1.y();
278 >          data[2] = pos1.z();          
279 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
280 >        } else {
281 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
282 >          pos1 = Vector3d(data);
283 >        }
284  
285  
286 +        if (proc2 == worldRank) {
287 +          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
288 +          std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
289 +          pos2 = sd2->getPos();
290 +          data[0] = pos2.x();
291 +          data[1] = pos2.y();
292 +          data[2] = pos2.z();          
293 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
294 +        } else {
295 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
296 +          pos2 = Vector3d(data);
297 +        }
298 + #else
299 +        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
300 +        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
301 +        pos1 = at1->getPos();
302 +        pos2 = at2->getPos();
303 + #endif        
304 +        rab = pos2 - pos1;
305 +        currSnapshot->wrapVector(rab);
306 +        stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length();
307 +      }
308 +    }
309 +      
310      /**@todo need refactorying*/
311      //Conserved Quantity is set by integrator and time is set by setTime
312      
313    }
314  
315 < } //end namespace oopse
315 >
316 >  Vector3d Thermo::getBoxDipole() {
317 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
318 >    SimInfo::MoleculeIterator miter;
319 >    std::vector<Atom*>::iterator aiter;
320 >    Molecule* mol;
321 >    Atom* atom;
322 >    RealType charge;
323 >    RealType moment(0.0);
324 >    Vector3d ri(0.0);
325 >    Vector3d dipoleVector(0.0);
326 >    Vector3d nPos(0.0);
327 >    Vector3d pPos(0.0);
328 >    RealType nChg(0.0);
329 >    RealType pChg(0.0);
330 >    int nCount = 0;
331 >    int pCount = 0;
332 >
333 >    RealType chargeToC = 1.60217733e-19;
334 >    RealType angstromToM = 1.0e-10;
335 >    RealType debyeToCm = 3.33564095198e-30;
336 >    
337 >    for (mol = info_->beginMolecule(miter); mol != NULL;
338 >         mol = info_->nextMolecule(miter)) {
339 >
340 >      for (atom = mol->beginAtom(aiter); atom != NULL;
341 >           atom = mol->nextAtom(aiter)) {
342 >        
343 >        if (atom->isCharge() ) {
344 >          charge = 0.0;
345 >          GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
346 >          if (data != NULL) {
347 >
348 >            charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
349 >            charge *= chargeToC;
350 >
351 >            ri = atom->getPos();
352 >            currSnapshot->wrapVector(ri);
353 >            ri *= angstromToM;
354 >
355 >            if (charge < 0.0) {
356 >              nPos += ri;
357 >              nChg -= charge;
358 >              nCount++;
359 >            } else if (charge > 0.0) {
360 >              pPos += ri;
361 >              pChg += charge;
362 >              pCount++;
363 >            }                      
364 >          }
365 >        }
366 >        
367 >        if (atom->isDipole() ) {
368 >          Vector3d u_i = atom->getElectroFrame().getColumn(2);
369 >          GenericData* data = dynamic_cast<DirectionalAtomType*>(atom->getAtomType())->getPropertyByName("Dipole");
370 >          if (data != NULL) {
371 >            moment = (dynamic_cast<DoubleGenericData*>(data))->getData();
372 >            
373 >            moment *= debyeToCm;
374 >            dipoleVector += u_i * moment;
375 >          }
376 >        }
377 >      }
378 >    }
379 >    
380 >                      
381 > #ifdef IS_MPI
382 >    RealType pChg_global, nChg_global;
383 >    int pCount_global, nCount_global;
384 >    Vector3d pPos_global, nPos_global, dipVec_global;
385 >
386 >    MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
387 >                  MPI_COMM_WORLD);
388 >    pChg = pChg_global;
389 >    MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
390 >                  MPI_COMM_WORLD);
391 >    nChg = nChg_global;
392 >    MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
393 >                  MPI_COMM_WORLD);
394 >    pCount = pCount_global;
395 >    MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
396 >                  MPI_COMM_WORLD);
397 >    nCount = nCount_global;
398 >    MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
399 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
400 >    pPos = pPos_global;
401 >    MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
402 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
403 >    nPos = nPos_global;
404 >    MPI_Allreduce(dipoleVector.getArrayPointer(),
405 >                  dipVec_global.getArrayPointer(), 3,
406 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
407 >    dipoleVector = dipVec_global;
408 > #endif //is_mpi
409 >
410 >    // first load the accumulated dipole moment (if dipoles were present)
411 >    Vector3d boxDipole = dipoleVector;
412 >    // now include the dipole moment due to charges
413 >    // use the lesser of the positive and negative charge totals
414 >    RealType chg_value = nChg <= pChg ? nChg : pChg;
415 >      
416 >    // find the average positions
417 >    if (pCount > 0 && nCount > 0 ) {
418 >      pPos /= pCount;
419 >      nPos /= nCount;
420 >    }
421 >
422 >    // dipole is from the negative to the positive (physics notation)
423 >    boxDipole += (pPos - nPos) * chg_value;
424 >
425 >    return boxDipole;
426 >  }
427 > } //end namespace OpenMD

Comparing:
trunk/src/brains/Thermo.cpp (property svn:keywords), Revision 541 by tim, Sun May 22 21:05:15 2005 UTC vs.
branches/development/src/brains/Thermo.cpp (property svn:keywords), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines