35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <math.h> |
51 |
|
#include "primitives/Molecule.hpp" |
52 |
|
#include "utils/simError.h" |
53 |
|
#include "utils/PhysicalConstants.hpp" |
54 |
+ |
#include "types/FixedChargeAdapter.hpp" |
55 |
+ |
#include "types/FluctuatingChargeAdapter.hpp" |
56 |
+ |
#include "types/MultipoleAdapter.hpp" |
57 |
+ |
#ifdef HAVE_QHULL |
58 |
+ |
#include "math/ConvexHull.hpp" |
59 |
+ |
#include "math/AlphaHull.hpp" |
60 |
+ |
#endif |
61 |
|
|
62 |
+ |
using namespace std; |
63 |
|
namespace OpenMD { |
64 |
|
|
65 |
< |
RealType Thermo::getKinetic() { |
66 |
< |
SimInfo::MoleculeIterator miter; |
67 |
< |
std::vector<StuntDouble*>::iterator iiter; |
68 |
< |
Molecule* mol; |
69 |
< |
StuntDouble* integrableObject; |
70 |
< |
Vector3d vel; |
71 |
< |
Vector3d angMom; |
72 |
< |
Mat3x3d I; |
73 |
< |
int i; |
74 |
< |
int j; |
75 |
< |
int k; |
76 |
< |
RealType mass; |
77 |
< |
RealType kinetic = 0.0; |
78 |
< |
RealType kinetic_global = 0.0; |
70 |
< |
|
71 |
< |
for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { |
72 |
< |
for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; |
73 |
< |
integrableObject = mol->nextIntegrableObject(iiter)) { |
65 |
> |
RealType Thermo::getTranslationalKinetic() { |
66 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
67 |
> |
|
68 |
> |
if (!snap->hasTranslationalKineticEnergy) { |
69 |
> |
SimInfo::MoleculeIterator miter; |
70 |
> |
vector<StuntDouble*>::iterator iiter; |
71 |
> |
Molecule* mol; |
72 |
> |
StuntDouble* sd; |
73 |
> |
Vector3d vel; |
74 |
> |
RealType mass; |
75 |
> |
RealType kinetic(0.0); |
76 |
> |
|
77 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
78 |
> |
mol = info_->nextMolecule(miter)) { |
79 |
|
|
80 |
< |
mass = integrableObject->getMass(); |
81 |
< |
vel = integrableObject->getVel(); |
82 |
< |
|
83 |
< |
kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
84 |
< |
|
85 |
< |
if (integrableObject->isDirectional()) { |
86 |
< |
angMom = integrableObject->getJ(); |
87 |
< |
I = integrableObject->getI(); |
80 |
> |
for (sd = mol->beginIntegrableObject(iiter); sd != NULL; |
81 |
> |
sd = mol->nextIntegrableObject(iiter)) { |
82 |
> |
|
83 |
> |
mass = sd->getMass(); |
84 |
> |
vel = sd->getVel(); |
85 |
> |
|
86 |
> |
kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
87 |
> |
|
88 |
> |
} |
89 |
> |
} |
90 |
> |
|
91 |
> |
#ifdef IS_MPI |
92 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, |
93 |
> |
MPI::SUM); |
94 |
> |
#endif |
95 |
> |
|
96 |
> |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
97 |
> |
|
98 |
> |
|
99 |
> |
snap->setTranslationalKineticEnergy(kinetic); |
100 |
> |
} |
101 |
> |
return snap->getTranslationalKineticEnergy(); |
102 |
> |
} |
103 |
|
|
104 |
< |
if (integrableObject->isLinear()) { |
105 |
< |
i = integrableObject->linearAxis(); |
106 |
< |
j = (i + 1) % 3; |
107 |
< |
k = (i + 2) % 3; |
108 |
< |
kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); |
109 |
< |
} else { |
110 |
< |
kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) |
111 |
< |
+ angMom[2]*angMom[2]/I(2, 2); |
112 |
< |
} |
113 |
< |
} |
104 |
> |
RealType Thermo::getRotationalKinetic() { |
105 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
106 |
> |
|
107 |
> |
if (!snap->hasRotationalKineticEnergy) { |
108 |
> |
SimInfo::MoleculeIterator miter; |
109 |
> |
vector<StuntDouble*>::iterator iiter; |
110 |
> |
Molecule* mol; |
111 |
> |
StuntDouble* sd; |
112 |
> |
Vector3d angMom; |
113 |
> |
Mat3x3d I; |
114 |
> |
int i, j, k; |
115 |
> |
RealType kinetic(0.0); |
116 |
> |
|
117 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
118 |
> |
mol = info_->nextMolecule(miter)) { |
119 |
> |
|
120 |
> |
for (sd = mol->beginIntegrableObject(iiter); sd != NULL; |
121 |
> |
sd = mol->nextIntegrableObject(iiter)) { |
122 |
> |
|
123 |
> |
if (sd->isDirectional()) { |
124 |
> |
angMom = sd->getJ(); |
125 |
> |
I = sd->getI(); |
126 |
|
|
127 |
+ |
if (sd->isLinear()) { |
128 |
+ |
i = sd->linearAxis(); |
129 |
+ |
j = (i + 1) % 3; |
130 |
+ |
k = (i + 2) % 3; |
131 |
+ |
kinetic += angMom[j] * angMom[j] / I(j, j) |
132 |
+ |
+ angMom[k] * angMom[k] / I(k, k); |
133 |
+ |
} else { |
134 |
+ |
kinetic += angMom[0]*angMom[0]/I(0, 0) |
135 |
+ |
+ angMom[1]*angMom[1]/I(1, 1) |
136 |
+ |
+ angMom[2]*angMom[2]/I(2, 2); |
137 |
+ |
} |
138 |
+ |
} |
139 |
+ |
} |
140 |
|
} |
141 |
< |
} |
97 |
< |
|
141 |
> |
|
142 |
|
#ifdef IS_MPI |
143 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, |
144 |
+ |
MPI::SUM); |
145 |
+ |
#endif |
146 |
+ |
|
147 |
+ |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
148 |
+ |
|
149 |
+ |
snap->setRotationalKineticEnergy(kinetic); |
150 |
+ |
} |
151 |
+ |
return snap->getRotationalKineticEnergy(); |
152 |
+ |
} |
153 |
|
|
154 |
< |
MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, |
101 |
< |
MPI_COMM_WORLD); |
102 |
< |
kinetic = kinetic_global; |
154 |
> |
|
155 |
|
|
156 |
< |
#endif //is_mpi |
156 |
> |
RealType Thermo::getKinetic() { |
157 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
158 |
|
|
159 |
< |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
160 |
< |
|
161 |
< |
return kinetic; |
159 |
> |
if (!snap->hasKineticEnergy) { |
160 |
> |
RealType ke = getTranslationalKinetic() + getRotationalKinetic(); |
161 |
> |
snap->setKineticEnergy(ke); |
162 |
> |
} |
163 |
> |
return snap->getKineticEnergy(); |
164 |
|
} |
165 |
|
|
166 |
|
RealType Thermo::getPotential() { |
112 |
– |
RealType potential = 0.0; |
113 |
– |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
114 |
– |
RealType shortRangePot_local = curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; |
167 |
|
|
168 |
< |
// Get total potential for entire system from MPI. |
168 |
> |
// ForceManager computes the potential and stores it in the |
169 |
> |
// Snapshot. All we have to do is report it. |
170 |
|
|
171 |
< |
#ifdef IS_MPI |
171 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
172 |
> |
return snap->getPotentialEnergy(); |
173 |
> |
} |
174 |
|
|
175 |
< |
MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM, |
121 |
< |
MPI_COMM_WORLD); |
122 |
< |
potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
175 |
> |
RealType Thermo::getTotalEnergy() { |
176 |
|
|
177 |
< |
#else |
177 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
178 |
|
|
179 |
< |
potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
179 |
> |
if (!snap->hasTotalEnergy) { |
180 |
> |
snap->setTotalEnergy(this->getKinetic() + this->getPotential()); |
181 |
> |
} |
182 |
|
|
183 |
< |
#endif // is_mpi |
129 |
< |
|
130 |
< |
return potential; |
183 |
> |
return snap->getTotalEnergy(); |
184 |
|
} |
185 |
|
|
133 |
– |
RealType Thermo::getTotalE() { |
134 |
– |
RealType total; |
135 |
– |
|
136 |
– |
total = this->getKinetic() + this->getPotential(); |
137 |
– |
return total; |
138 |
– |
} |
139 |
– |
|
186 |
|
RealType Thermo::getTemperature() { |
141 |
– |
|
142 |
– |
RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb ); |
143 |
– |
return temperature; |
144 |
– |
} |
187 |
|
|
188 |
< |
RealType Thermo::getVolume() { |
147 |
< |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
148 |
< |
return curSnapshot->getVolume(); |
149 |
< |
} |
188 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
189 |
|
|
190 |
< |
RealType Thermo::getPressure() { |
190 |
> |
if (!snap->hasTemperature) { |
191 |
|
|
192 |
< |
// Relies on the calculation of the full molecular pressure tensor |
192 |
> |
RealType temperature = ( 2.0 * this->getKinetic() ) |
193 |
> |
/ (info_->getNdf()* PhysicalConstants::kb ); |
194 |
|
|
195 |
+ |
snap->setTemperature(temperature); |
196 |
+ |
} |
197 |
+ |
|
198 |
+ |
return snap->getTemperature(); |
199 |
+ |
} |
200 |
|
|
201 |
< |
Mat3x3d tensor; |
202 |
< |
RealType pressure; |
201 |
> |
RealType Thermo::getElectronicTemperature() { |
202 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
203 |
|
|
204 |
< |
tensor = getPressureTensor(); |
204 |
> |
if (!snap->hasElectronicTemperature) { |
205 |
> |
|
206 |
> |
SimInfo::MoleculeIterator miter; |
207 |
> |
vector<Atom*>::iterator iiter; |
208 |
> |
Molecule* mol; |
209 |
> |
Atom* atom; |
210 |
> |
RealType cvel; |
211 |
> |
RealType cmass; |
212 |
> |
RealType kinetic(0.0); |
213 |
> |
RealType eTemp; |
214 |
> |
|
215 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
216 |
> |
mol = info_->nextMolecule(miter)) { |
217 |
> |
|
218 |
> |
for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL; |
219 |
> |
atom = mol->nextFluctuatingCharge(iiter)) { |
220 |
> |
|
221 |
> |
cmass = atom->getChargeMass(); |
222 |
> |
cvel = atom->getFlucQVel(); |
223 |
> |
|
224 |
> |
kinetic += cmass * cvel * cvel; |
225 |
> |
|
226 |
> |
} |
227 |
> |
} |
228 |
> |
|
229 |
> |
#ifdef IS_MPI |
230 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, |
231 |
> |
MPI::SUM); |
232 |
> |
#endif |
233 |
|
|
234 |
< |
pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; |
234 |
> |
kinetic *= 0.5; |
235 |
> |
eTemp = (2.0 * kinetic) / |
236 |
> |
(info_->getNFluctuatingCharges() * PhysicalConstants::kb ); |
237 |
> |
|
238 |
> |
snap->setElectronicTemperature(eTemp); |
239 |
> |
} |
240 |
|
|
241 |
< |
return pressure; |
241 |
> |
return snap->getElectronicTemperature(); |
242 |
|
} |
243 |
|
|
166 |
– |
RealType Thermo::getPressure(int direction) { |
244 |
|
|
245 |
< |
// Relies on the calculation of the full molecular pressure tensor |
245 |
> |
RealType Thermo::getVolume() { |
246 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
247 |
> |
return snap->getVolume(); |
248 |
> |
} |
249 |
|
|
250 |
< |
|
251 |
< |
Mat3x3d tensor; |
172 |
< |
RealType pressure; |
250 |
> |
RealType Thermo::getPressure() { |
251 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
252 |
|
|
253 |
< |
tensor = getPressureTensor(); |
254 |
< |
|
255 |
< |
pressure = PhysicalConstants::pressureConvert * tensor(direction, direction); |
256 |
< |
|
257 |
< |
return pressure; |
253 |
> |
if (!snap->hasPressure) { |
254 |
> |
// Relies on the calculation of the full molecular pressure tensor |
255 |
> |
|
256 |
> |
Mat3x3d tensor; |
257 |
> |
RealType pressure; |
258 |
> |
|
259 |
> |
tensor = getPressureTensor(); |
260 |
> |
|
261 |
> |
pressure = PhysicalConstants::pressureConvert * |
262 |
> |
(tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; |
263 |
> |
|
264 |
> |
snap->setPressure(pressure); |
265 |
> |
} |
266 |
> |
|
267 |
> |
return snap->getPressure(); |
268 |
|
} |
269 |
|
|
270 |
|
Mat3x3d Thermo::getPressureTensor() { |
271 |
|
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
272 |
|
// routine derived via viral theorem description in: |
273 |
|
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
274 |
< |
Mat3x3d pressureTensor; |
186 |
< |
Mat3x3d p_local(0.0); |
187 |
< |
Mat3x3d p_global(0.0); |
274 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
275 |
|
|
276 |
< |
SimInfo::MoleculeIterator i; |
277 |
< |
std::vector<StuntDouble*>::iterator j; |
278 |
< |
Molecule* mol; |
279 |
< |
StuntDouble* integrableObject; |
280 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
281 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
282 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
283 |
< |
|
284 |
< |
RealType mass = integrableObject->getMass(); |
285 |
< |
Vector3d vcom = integrableObject->getVel(); |
286 |
< |
p_local += mass * outProduct(vcom, vcom); |
276 |
> |
if (!snap->hasPressureTensor) { |
277 |
> |
|
278 |
> |
Mat3x3d pressureTensor; |
279 |
> |
Mat3x3d p_tens(0.0); |
280 |
> |
RealType mass; |
281 |
> |
Vector3d vcom; |
282 |
> |
|
283 |
> |
SimInfo::MoleculeIterator i; |
284 |
> |
vector<StuntDouble*>::iterator j; |
285 |
> |
Molecule* mol; |
286 |
> |
StuntDouble* sd; |
287 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
288 |
> |
mol = info_->nextMolecule(i)) { |
289 |
> |
|
290 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
291 |
> |
sd = mol->nextIntegrableObject(j)) { |
292 |
> |
|
293 |
> |
mass = sd->getMass(); |
294 |
> |
vcom = sd->getVel(); |
295 |
> |
p_tens += mass * outProduct(vcom, vcom); |
296 |
> |
} |
297 |
|
} |
298 |
+ |
|
299 |
+ |
#ifdef IS_MPI |
300 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9, |
301 |
+ |
MPI::REALTYPE, MPI::SUM); |
302 |
+ |
#endif |
303 |
+ |
|
304 |
+ |
RealType volume = this->getVolume(); |
305 |
+ |
Mat3x3d stressTensor = snap->getStressTensor(); |
306 |
+ |
|
307 |
+ |
pressureTensor = (p_tens + |
308 |
+ |
PhysicalConstants::energyConvert * stressTensor)/volume; |
309 |
+ |
|
310 |
+ |
snap->setPressureTensor(pressureTensor); |
311 |
|
} |
312 |
< |
|
312 |
> |
return snap->getPressureTensor(); |
313 |
> |
} |
314 |
> |
|
315 |
> |
|
316 |
> |
|
317 |
> |
|
318 |
> |
Vector3d Thermo::getSystemDipole() { |
319 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
320 |
> |
|
321 |
> |
if (!snap->hasSystemDipole) { |
322 |
> |
SimInfo::MoleculeIterator miter; |
323 |
> |
vector<Atom*>::iterator aiter; |
324 |
> |
Molecule* mol; |
325 |
> |
Atom* atom; |
326 |
> |
RealType charge; |
327 |
> |
Vector3d ri(0.0); |
328 |
> |
Vector3d dipoleVector(0.0); |
329 |
> |
Vector3d nPos(0.0); |
330 |
> |
Vector3d pPos(0.0); |
331 |
> |
RealType nChg(0.0); |
332 |
> |
RealType pChg(0.0); |
333 |
> |
int nCount = 0; |
334 |
> |
int pCount = 0; |
335 |
> |
|
336 |
> |
RealType chargeToC = 1.60217733e-19; |
337 |
> |
RealType angstromToM = 1.0e-10; |
338 |
> |
RealType debyeToCm = 3.33564095198e-30; |
339 |
> |
|
340 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
341 |
> |
mol = info_->nextMolecule(miter)) { |
342 |
> |
|
343 |
> |
for (atom = mol->beginAtom(aiter); atom != NULL; |
344 |
> |
atom = mol->nextAtom(aiter)) { |
345 |
> |
|
346 |
> |
charge = 0.0; |
347 |
> |
|
348 |
> |
FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType()); |
349 |
> |
if ( fca.isFixedCharge() ) { |
350 |
> |
charge = fca.getCharge(); |
351 |
> |
} |
352 |
> |
|
353 |
> |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType()); |
354 |
> |
if ( fqa.isFluctuatingCharge() ) { |
355 |
> |
charge += atom->getFlucQPos(); |
356 |
> |
} |
357 |
> |
|
358 |
> |
charge *= chargeToC; |
359 |
> |
|
360 |
> |
ri = atom->getPos(); |
361 |
> |
snap->wrapVector(ri); |
362 |
> |
ri *= angstromToM; |
363 |
> |
|
364 |
> |
if (charge < 0.0) { |
365 |
> |
nPos += ri; |
366 |
> |
nChg -= charge; |
367 |
> |
nCount++; |
368 |
> |
} else if (charge > 0.0) { |
369 |
> |
pPos += ri; |
370 |
> |
pChg += charge; |
371 |
> |
pCount++; |
372 |
> |
} |
373 |
> |
|
374 |
> |
if (atom->isDipole()) { |
375 |
> |
dipoleVector += atom->getDipole() * debyeToCm; |
376 |
> |
} |
377 |
> |
} |
378 |
> |
} |
379 |
> |
|
380 |
> |
|
381 |
|
#ifdef IS_MPI |
382 |
< |
MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
383 |
< |
#else |
384 |
< |
p_global = p_local; |
385 |
< |
#endif // is_mpi |
382 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE, |
383 |
> |
MPI::SUM); |
384 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE, |
385 |
> |
MPI::SUM); |
386 |
|
|
387 |
< |
RealType volume = this->getVolume(); |
388 |
< |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
389 |
< |
Mat3x3d tau = curSnapshot->statData.getTau(); |
387 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER, |
388 |
> |
MPI::SUM); |
389 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER, |
390 |
> |
MPI::SUM); |
391 |
|
|
392 |
< |
pressureTensor = (p_global + PhysicalConstants::energyConvert* tau)/volume; |
393 |
< |
|
394 |
< |
return pressureTensor; |
395 |
< |
} |
392 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3, |
393 |
> |
MPI::REALTYPE, MPI::SUM); |
394 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3, |
395 |
> |
MPI::REALTYPE, MPI::SUM); |
396 |
|
|
397 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(), |
398 |
+ |
3, MPI::REALTYPE, MPI::SUM); |
399 |
+ |
#endif |
400 |
+ |
|
401 |
+ |
// first load the accumulated dipole moment (if dipoles were present) |
402 |
+ |
Vector3d boxDipole = dipoleVector; |
403 |
+ |
// now include the dipole moment due to charges |
404 |
+ |
// use the lesser of the positive and negative charge totals |
405 |
+ |
RealType chg_value = nChg <= pChg ? nChg : pChg; |
406 |
+ |
|
407 |
+ |
// find the average positions |
408 |
+ |
if (pCount > 0 && nCount > 0 ) { |
409 |
+ |
pPos /= pCount; |
410 |
+ |
nPos /= nCount; |
411 |
+ |
} |
412 |
+ |
|
413 |
+ |
// dipole is from the negative to the positive (physics notation) |
414 |
+ |
boxDipole += (pPos - nPos) * chg_value; |
415 |
+ |
snap->setSystemDipole(boxDipole); |
416 |
+ |
} |
417 |
|
|
418 |
< |
void Thermo::saveStat(){ |
418 |
> |
return snap->getSystemDipole(); |
419 |
> |
} |
420 |
> |
|
421 |
> |
// Returns the Heat Flux Vector for the system |
422 |
> |
Vector3d Thermo::getHeatFlux(){ |
423 |
|
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
424 |
< |
Stats& stat = currSnapshot->statData; |
424 |
> |
SimInfo::MoleculeIterator miter; |
425 |
> |
vector<StuntDouble*>::iterator iiter; |
426 |
> |
Molecule* mol; |
427 |
> |
StuntDouble* sd; |
428 |
> |
RigidBody::AtomIterator ai; |
429 |
> |
Atom* atom; |
430 |
> |
Vector3d vel; |
431 |
> |
Vector3d angMom; |
432 |
> |
Mat3x3d I; |
433 |
> |
int i; |
434 |
> |
int j; |
435 |
> |
int k; |
436 |
> |
RealType mass; |
437 |
> |
|
438 |
> |
Vector3d x_a; |
439 |
> |
RealType kinetic; |
440 |
> |
RealType potential; |
441 |
> |
RealType eatom; |
442 |
> |
// Convective portion of the heat flux |
443 |
> |
Vector3d heatFluxJc = V3Zero; |
444 |
> |
|
445 |
> |
/* Calculate convective portion of the heat flux */ |
446 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
447 |
> |
mol = info_->nextMolecule(miter)) { |
448 |
> |
|
449 |
> |
for (sd = mol->beginIntegrableObject(iiter); |
450 |
> |
sd != NULL; |
451 |
> |
sd = mol->nextIntegrableObject(iiter)) { |
452 |
> |
|
453 |
> |
mass = sd->getMass(); |
454 |
> |
vel = sd->getVel(); |
455 |
> |
|
456 |
> |
kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
457 |
> |
|
458 |
> |
if (sd->isDirectional()) { |
459 |
> |
angMom = sd->getJ(); |
460 |
> |
I = sd->getI(); |
461 |
> |
|
462 |
> |
if (sd->isLinear()) { |
463 |
> |
i = sd->linearAxis(); |
464 |
> |
j = (i + 1) % 3; |
465 |
> |
k = (i + 2) % 3; |
466 |
> |
kinetic += angMom[j] * angMom[j] / I(j, j) |
467 |
> |
+ angMom[k] * angMom[k] / I(k, k); |
468 |
> |
} else { |
469 |
> |
kinetic += angMom[0]*angMom[0]/I(0, 0) |
470 |
> |
+ angMom[1]*angMom[1]/I(1, 1) |
471 |
> |
+ angMom[2]*angMom[2]/I(2, 2); |
472 |
> |
} |
473 |
> |
} |
474 |
> |
|
475 |
> |
potential = 0.0; |
476 |
> |
|
477 |
> |
if (sd->isRigidBody()) { |
478 |
> |
RigidBody* rb = dynamic_cast<RigidBody*>(sd); |
479 |
> |
for (atom = rb->beginAtom(ai); atom != NULL; |
480 |
> |
atom = rb->nextAtom(ai)) { |
481 |
> |
potential += atom->getParticlePot(); |
482 |
> |
} |
483 |
> |
} else { |
484 |
> |
potential = sd->getParticlePot(); |
485 |
> |
} |
486 |
> |
|
487 |
> |
potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 |
488 |
> |
// The potential may not be a 1/2 factor |
489 |
> |
eatom = (kinetic + potential)/2.0; // amu A^2/fs^2 |
490 |
> |
heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 |
491 |
> |
heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 |
492 |
> |
heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 |
493 |
> |
} |
494 |
> |
} |
495 |
> |
|
496 |
> |
/* The J_v vector is reduced in the forceManager so everyone has |
497 |
> |
* the global Jv. Jc is computed over the local atoms and must be |
498 |
> |
* reduced among all processors. |
499 |
> |
*/ |
500 |
> |
#ifdef IS_MPI |
501 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE, |
502 |
> |
MPI::SUM); |
503 |
> |
#endif |
504 |
|
|
505 |
< |
stat[Stats::KINETIC_ENERGY] = getKinetic(); |
224 |
< |
stat[Stats::POTENTIAL_ENERGY] = getPotential(); |
225 |
< |
stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY] + stat[Stats::POTENTIAL_ENERGY] ; |
226 |
< |
stat[Stats::TEMPERATURE] = getTemperature(); |
227 |
< |
stat[Stats::PRESSURE] = getPressure(); |
228 |
< |
stat[Stats::VOLUME] = getVolume(); |
505 |
> |
// (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 |
506 |
|
|
507 |
< |
Mat3x3d tensor =getPressureTensor(); |
508 |
< |
stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0); |
509 |
< |
stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1); |
510 |
< |
stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2); |
511 |
< |
stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0); |
512 |
< |
stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1); |
236 |
< |
stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2); |
237 |
< |
stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0); |
238 |
< |
stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1); |
239 |
< |
stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2); |
507 |
> |
Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() * |
508 |
> |
PhysicalConstants::energyConvert; |
509 |
> |
|
510 |
> |
// Correct for the fact the flux is 1/V (Jc + Jv) |
511 |
> |
return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3 |
512 |
> |
} |
513 |
|
|
514 |
< |
// grab the simulation box dipole moment if specified |
515 |
< |
if (info_->getCalcBoxDipole()){ |
516 |
< |
Vector3d totalDipole = getBoxDipole(); |
517 |
< |
stat[Stats::BOX_DIPOLE_X] = totalDipole(0); |
518 |
< |
stat[Stats::BOX_DIPOLE_Y] = totalDipole(1); |
519 |
< |
stat[Stats::BOX_DIPOLE_Z] = totalDipole(2); |
514 |
> |
|
515 |
> |
Vector3d Thermo::getComVel(){ |
516 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
517 |
> |
|
518 |
> |
if (!snap->hasCOMvel) { |
519 |
> |
|
520 |
> |
SimInfo::MoleculeIterator i; |
521 |
> |
Molecule* mol; |
522 |
> |
|
523 |
> |
Vector3d comVel(0.0); |
524 |
> |
RealType totalMass(0.0); |
525 |
> |
|
526 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
527 |
> |
mol = info_->nextMolecule(i)) { |
528 |
> |
RealType mass = mol->getMass(); |
529 |
> |
totalMass += mass; |
530 |
> |
comVel += mass * mol->getComVel(); |
531 |
> |
} |
532 |
> |
|
533 |
> |
#ifdef IS_MPI |
534 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, |
535 |
> |
MPI::SUM); |
536 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3, |
537 |
> |
MPI::REALTYPE, MPI::SUM); |
538 |
> |
#endif |
539 |
> |
|
540 |
> |
comVel /= totalMass; |
541 |
> |
snap->setCOMvel(comVel); |
542 |
|
} |
543 |
+ |
return snap->getCOMvel(); |
544 |
+ |
} |
545 |
|
|
546 |
< |
Globals* simParams = info_->getSimParams(); |
546 |
> |
Vector3d Thermo::getCom(){ |
547 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
548 |
> |
|
549 |
> |
if (!snap->hasCOM) { |
550 |
> |
|
551 |
> |
SimInfo::MoleculeIterator i; |
552 |
> |
Molecule* mol; |
553 |
> |
|
554 |
> |
Vector3d com(0.0); |
555 |
> |
RealType totalMass(0.0); |
556 |
> |
|
557 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
558 |
> |
mol = info_->nextMolecule(i)) { |
559 |
> |
RealType mass = mol->getMass(); |
560 |
> |
totalMass += mass; |
561 |
> |
com += mass * mol->getCom(); |
562 |
> |
} |
563 |
> |
|
564 |
> |
#ifdef IS_MPI |
565 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, |
566 |
> |
MPI::SUM); |
567 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3, |
568 |
> |
MPI::REALTYPE, MPI::SUM); |
569 |
> |
#endif |
570 |
> |
|
571 |
> |
com /= totalMass; |
572 |
> |
snap->setCOM(com); |
573 |
> |
} |
574 |
> |
return snap->getCOM(); |
575 |
> |
} |
576 |
> |
|
577 |
> |
/** |
578 |
> |
* Returns center of mass and center of mass velocity in one |
579 |
> |
* function call. |
580 |
> |
*/ |
581 |
> |
void Thermo::getComAll(Vector3d &com, Vector3d &comVel){ |
582 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
583 |
> |
|
584 |
> |
if (!(snap->hasCOM && snap->hasCOMvel)) { |
585 |
> |
|
586 |
> |
SimInfo::MoleculeIterator i; |
587 |
> |
Molecule* mol; |
588 |
> |
|
589 |
> |
RealType totalMass(0.0); |
590 |
> |
|
591 |
> |
com = 0.0; |
592 |
> |
comVel = 0.0; |
593 |
> |
|
594 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
595 |
> |
mol = info_->nextMolecule(i)) { |
596 |
> |
RealType mass = mol->getMass(); |
597 |
> |
totalMass += mass; |
598 |
> |
com += mass * mol->getCom(); |
599 |
> |
comVel += mass * mol->getComVel(); |
600 |
> |
} |
601 |
> |
|
602 |
> |
#ifdef IS_MPI |
603 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, |
604 |
> |
MPI::SUM); |
605 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3, |
606 |
> |
MPI::REALTYPE, MPI::SUM); |
607 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3, |
608 |
> |
MPI::REALTYPE, MPI::SUM); |
609 |
> |
#endif |
610 |
> |
|
611 |
> |
com /= totalMass; |
612 |
> |
comVel /= totalMass; |
613 |
> |
snap->setCOM(com); |
614 |
> |
snap->setCOMvel(comVel); |
615 |
> |
} |
616 |
> |
com = snap->getCOM(); |
617 |
> |
comVel = snap->getCOMvel(); |
618 |
> |
return; |
619 |
> |
} |
620 |
> |
|
621 |
> |
/** |
622 |
> |
* \brief Return inertia tensor for entire system and angular momentum |
623 |
> |
* Vector. |
624 |
> |
* |
625 |
> |
* |
626 |
> |
* |
627 |
> |
* [ Ixx -Ixy -Ixz ] |
628 |
> |
* I =| -Iyx Iyy -Iyz | |
629 |
> |
* [ -Izx -Iyz Izz ] |
630 |
> |
*/ |
631 |
> |
void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor, |
632 |
> |
Vector3d &angularMomentum){ |
633 |
> |
|
634 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
635 |
> |
|
636 |
> |
if (!(snap->hasInertiaTensor && snap->hasCOMw)) { |
637 |
> |
|
638 |
> |
RealType xx = 0.0; |
639 |
> |
RealType yy = 0.0; |
640 |
> |
RealType zz = 0.0; |
641 |
> |
RealType xy = 0.0; |
642 |
> |
RealType xz = 0.0; |
643 |
> |
RealType yz = 0.0; |
644 |
> |
Vector3d com(0.0); |
645 |
> |
Vector3d comVel(0.0); |
646 |
> |
|
647 |
> |
getComAll(com, comVel); |
648 |
> |
|
649 |
> |
SimInfo::MoleculeIterator i; |
650 |
> |
Molecule* mol; |
651 |
> |
|
652 |
> |
Vector3d thisq(0.0); |
653 |
> |
Vector3d thisv(0.0); |
654 |
> |
|
655 |
> |
RealType thisMass = 0.0; |
656 |
> |
|
657 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
658 |
> |
mol = info_->nextMolecule(i)) { |
659 |
> |
|
660 |
> |
thisq = mol->getCom()-com; |
661 |
> |
thisv = mol->getComVel()-comVel; |
662 |
> |
thisMass = mol->getMass(); |
663 |
> |
// Compute moment of intertia coefficients. |
664 |
> |
xx += thisq[0]*thisq[0]*thisMass; |
665 |
> |
yy += thisq[1]*thisq[1]*thisMass; |
666 |
> |
zz += thisq[2]*thisq[2]*thisMass; |
667 |
> |
|
668 |
> |
// compute products of intertia |
669 |
> |
xy += thisq[0]*thisq[1]*thisMass; |
670 |
> |
xz += thisq[0]*thisq[2]*thisMass; |
671 |
> |
yz += thisq[1]*thisq[2]*thisMass; |
672 |
> |
|
673 |
> |
angularMomentum += cross( thisq, thisv ) * thisMass; |
674 |
> |
} |
675 |
> |
|
676 |
> |
inertiaTensor(0,0) = yy + zz; |
677 |
> |
inertiaTensor(0,1) = -xy; |
678 |
> |
inertiaTensor(0,2) = -xz; |
679 |
> |
inertiaTensor(1,0) = -xy; |
680 |
> |
inertiaTensor(1,1) = xx + zz; |
681 |
> |
inertiaTensor(1,2) = -yz; |
682 |
> |
inertiaTensor(2,0) = -xz; |
683 |
> |
inertiaTensor(2,1) = -yz; |
684 |
> |
inertiaTensor(2,2) = xx + yy; |
685 |
> |
|
686 |
> |
#ifdef IS_MPI |
687 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(), |
688 |
> |
9, MPI::REALTYPE, MPI::SUM); |
689 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, |
690 |
> |
angularMomentum.getArrayPointer(), 3, |
691 |
> |
MPI::REALTYPE, MPI::SUM); |
692 |
> |
#endif |
693 |
> |
|
694 |
> |
snap->setCOMw(angularMomentum); |
695 |
> |
snap->setInertiaTensor(inertiaTensor); |
696 |
> |
} |
697 |
> |
|
698 |
> |
angularMomentum = snap->getCOMw(); |
699 |
> |
inertiaTensor = snap->getInertiaTensor(); |
700 |
> |
|
701 |
> |
return; |
702 |
> |
} |
703 |
> |
|
704 |
> |
|
705 |
> |
Mat3x3d Thermo::getBoundingBox(){ |
706 |
> |
|
707 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
708 |
> |
|
709 |
> |
if (!(snap->hasBoundingBox)) { |
710 |
> |
|
711 |
> |
SimInfo::MoleculeIterator i; |
712 |
> |
Molecule::RigidBodyIterator ri; |
713 |
> |
Molecule::AtomIterator ai; |
714 |
> |
Molecule* mol; |
715 |
> |
RigidBody* rb; |
716 |
> |
Atom* atom; |
717 |
> |
Vector3d pos, bMax, bMin; |
718 |
> |
int index = 0; |
719 |
> |
|
720 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
721 |
> |
mol = info_->nextMolecule(i)) { |
722 |
> |
|
723 |
> |
//change the positions of atoms which belong to the rigidbodies |
724 |
> |
for (rb = mol->beginRigidBody(ri); rb != NULL; |
725 |
> |
rb = mol->nextRigidBody(ri)) { |
726 |
> |
rb->updateAtoms(); |
727 |
> |
} |
728 |
> |
|
729 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
730 |
> |
atom = mol->nextAtom(ai)) { |
731 |
> |
|
732 |
> |
pos = atom->getPos(); |
733 |
> |
|
734 |
> |
if (index == 0) { |
735 |
> |
bMax = pos; |
736 |
> |
bMin = pos; |
737 |
> |
} else { |
738 |
> |
for (int i = 0; i < 3; i++) { |
739 |
> |
bMax[i] = max(bMax[i], pos[i]); |
740 |
> |
bMin[i] = min(bMin[i], pos[i]); |
741 |
> |
} |
742 |
> |
} |
743 |
> |
index++; |
744 |
> |
} |
745 |
> |
} |
746 |
> |
|
747 |
> |
#ifdef IS_MPI |
748 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bMax[0], 3, MPI::REALTYPE, |
749 |
> |
MPI::MAX); |
750 |
> |
|
751 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bMin[0], 3, MPI::REALTYPE, |
752 |
> |
MPI::MIN); |
753 |
> |
#endif |
754 |
> |
Mat3x3d bBox = Mat3x3d(0.0); |
755 |
> |
for (int i = 0; i < 3; i++) { |
756 |
> |
bBox(i,i) = bMax[i] - bMin[i]; |
757 |
> |
} |
758 |
> |
snap->setBoundingBox(bBox); |
759 |
> |
} |
760 |
> |
|
761 |
> |
return snap->getBoundingBox(); |
762 |
> |
} |
763 |
> |
|
764 |
> |
|
765 |
> |
// Returns the angular momentum of the system |
766 |
> |
Vector3d Thermo::getAngularMomentum(){ |
767 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
768 |
> |
|
769 |
> |
if (!snap->hasCOMw) { |
770 |
> |
|
771 |
> |
Vector3d com(0.0); |
772 |
> |
Vector3d comVel(0.0); |
773 |
> |
Vector3d angularMomentum(0.0); |
774 |
> |
|
775 |
> |
getComAll(com, comVel); |
776 |
> |
|
777 |
> |
SimInfo::MoleculeIterator i; |
778 |
> |
Molecule* mol; |
779 |
> |
|
780 |
> |
Vector3d thisr(0.0); |
781 |
> |
Vector3d thisp(0.0); |
782 |
> |
|
783 |
> |
RealType thisMass; |
784 |
> |
|
785 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
786 |
> |
mol = info_->nextMolecule(i)) { |
787 |
> |
thisMass = mol->getMass(); |
788 |
> |
thisr = mol->getCom() - com; |
789 |
> |
thisp = (mol->getComVel() - comVel) * thisMass; |
790 |
> |
|
791 |
> |
angularMomentum += cross( thisr, thisp ); |
792 |
> |
} |
793 |
> |
|
794 |
> |
#ifdef IS_MPI |
795 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, |
796 |
> |
angularMomentum.getArrayPointer(), 3, |
797 |
> |
MPI::REALTYPE, MPI::SUM); |
798 |
> |
#endif |
799 |
> |
|
800 |
> |
snap->setCOMw(angularMomentum); |
801 |
> |
} |
802 |
> |
|
803 |
> |
return snap->getCOMw(); |
804 |
> |
} |
805 |
> |
|
806 |
> |
|
807 |
> |
/** |
808 |
> |
* Returns the Volume of the system based on a ellipsoid with |
809 |
> |
* semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
810 |
> |
* where R_i are related to the principle inertia moments |
811 |
> |
* R_i = sqrt(C*I_i/N), this reduces to |
812 |
> |
* V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). |
813 |
> |
* See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
814 |
> |
*/ |
815 |
> |
RealType Thermo::getGyrationalVolume(){ |
816 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
817 |
> |
|
818 |
> |
if (!snap->hasGyrationalVolume) { |
819 |
> |
|
820 |
> |
Mat3x3d intTensor; |
821 |
> |
RealType det; |
822 |
> |
Vector3d dummyAngMom; |
823 |
> |
RealType sysconstants; |
824 |
> |
RealType geomCnst; |
825 |
> |
RealType volume; |
826 |
> |
|
827 |
> |
geomCnst = 3.0/2.0; |
828 |
> |
/* Get the inertial tensor and angular momentum for free*/ |
829 |
> |
getInertiaTensor(intTensor, dummyAngMom); |
830 |
> |
|
831 |
> |
det = intTensor.determinant(); |
832 |
> |
sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects()); |
833 |
> |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
834 |
|
|
835 |
+ |
snap->setGyrationalVolume(volume); |
836 |
+ |
} |
837 |
+ |
return snap->getGyrationalVolume(); |
838 |
+ |
} |
839 |
+ |
|
840 |
+ |
void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){ |
841 |
+ |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
842 |
+ |
|
843 |
+ |
if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) { |
844 |
+ |
|
845 |
+ |
Mat3x3d intTensor; |
846 |
+ |
Vector3d dummyAngMom; |
847 |
+ |
RealType sysconstants; |
848 |
+ |
RealType geomCnst; |
849 |
+ |
|
850 |
+ |
geomCnst = 3.0/2.0; |
851 |
+ |
/* Get the inertia tensor and angular momentum for free*/ |
852 |
+ |
this->getInertiaTensor(intTensor, dummyAngMom); |
853 |
+ |
|
854 |
+ |
detI = intTensor.determinant(); |
855 |
+ |
sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects()); |
856 |
+ |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
857 |
+ |
snap->setGyrationalVolume(volume); |
858 |
+ |
} else { |
859 |
+ |
volume = snap->getGyrationalVolume(); |
860 |
+ |
detI = snap->getInertiaTensor().determinant(); |
861 |
+ |
} |
862 |
+ |
return; |
863 |
+ |
} |
864 |
+ |
|
865 |
+ |
RealType Thermo::getTaggedAtomPairDistance(){ |
866 |
+ |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
867 |
+ |
Globals* simParams = info_->getSimParams(); |
868 |
+ |
|
869 |
|
if (simParams->haveTaggedAtomPair() && |
870 |
|
simParams->havePrintTaggedPairDistance()) { |
871 |
|
if ( simParams->getPrintTaggedPairDistance()) { |
872 |
|
|
873 |
< |
std::pair<int, int> tap = simParams->getTaggedAtomPair(); |
873 |
> |
pair<int, int> tap = simParams->getTaggedAtomPair(); |
874 |
|
Vector3d pos1, pos2, rab; |
875 |
< |
|
875 |
> |
|
876 |
|
#ifdef IS_MPI |
259 |
– |
std::cerr << "tap = " << tap.first << " " << tap.second << std::endl; |
260 |
– |
|
877 |
|
int mol1 = info_->getGlobalMolMembership(tap.first); |
878 |
|
int mol2 = info_->getGlobalMolMembership(tap.second); |
263 |
– |
std::cerr << "mols = " << mol1 << " " << mol2 << std::endl; |
879 |
|
|
880 |
|
int proc1 = info_->getMolToProc(mol1); |
881 |
|
int proc2 = info_->getMolToProc(mol2); |
882 |
|
|
268 |
– |
std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl; |
269 |
– |
|
883 |
|
RealType data[3]; |
884 |
|
if (proc1 == worldRank) { |
885 |
|
StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); |
273 |
– |
std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl; |
886 |
|
pos1 = sd1->getPos(); |
887 |
|
data[0] = pos1.x(); |
888 |
|
data[1] = pos1.y(); |
889 |
|
data[2] = pos1.z(); |
890 |
< |
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
890 |
> |
MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1); |
891 |
|
} else { |
892 |
< |
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
892 |
> |
MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1); |
893 |
|
pos1 = Vector3d(data); |
894 |
|
} |
895 |
|
|
284 |
– |
|
896 |
|
if (proc2 == worldRank) { |
897 |
|
StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); |
287 |
– |
std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl; |
898 |
|
pos2 = sd2->getPos(); |
899 |
|
data[0] = pos2.x(); |
900 |
|
data[1] = pos2.y(); |
901 |
< |
data[2] = pos2.z(); |
902 |
< |
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
901 |
> |
data[2] = pos2.z(); |
902 |
> |
MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2); |
903 |
|
} else { |
904 |
< |
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
904 |
> |
MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2); |
905 |
|
pos2 = Vector3d(data); |
906 |
|
} |
907 |
|
#else |
912 |
|
#endif |
913 |
|
rab = pos2 - pos1; |
914 |
|
currSnapshot->wrapVector(rab); |
915 |
< |
stat[Stats::TAGGED_PAIR_DISTANCE] = rab.length(); |
915 |
> |
return rab.length(); |
916 |
|
} |
917 |
+ |
return 0.0; |
918 |
|
} |
919 |
< |
|
309 |
< |
/**@todo need refactorying*/ |
310 |
< |
//Conserved Quantity is set by integrator and time is set by setTime |
311 |
< |
|
919 |
> |
return 0.0; |
920 |
|
} |
921 |
|
|
922 |
< |
|
923 |
< |
Vector3d Thermo::getBoxDipole() { |
924 |
< |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
925 |
< |
SimInfo::MoleculeIterator miter; |
926 |
< |
std::vector<Atom*>::iterator aiter; |
927 |
< |
Molecule* mol; |
928 |
< |
Atom* atom; |
929 |
< |
RealType charge; |
930 |
< |
RealType moment(0.0); |
931 |
< |
Vector3d ri(0.0); |
932 |
< |
Vector3d dipoleVector(0.0); |
933 |
< |
Vector3d nPos(0.0); |
934 |
< |
Vector3d pPos(0.0); |
935 |
< |
RealType nChg(0.0); |
936 |
< |
RealType pChg(0.0); |
329 |
< |
int nCount = 0; |
330 |
< |
int pCount = 0; |
331 |
< |
|
332 |
< |
RealType chargeToC = 1.60217733e-19; |
333 |
< |
RealType angstromToM = 1.0e-10; |
334 |
< |
RealType debyeToCm = 3.33564095198e-30; |
335 |
< |
|
336 |
< |
for (mol = info_->beginMolecule(miter); mol != NULL; |
337 |
< |
mol = info_->nextMolecule(miter)) { |
338 |
< |
|
339 |
< |
for (atom = mol->beginAtom(aiter); atom != NULL; |
340 |
< |
atom = mol->nextAtom(aiter)) { |
341 |
< |
|
342 |
< |
if (atom->isCharge() ) { |
343 |
< |
charge = 0.0; |
344 |
< |
GenericData* data = atom->getAtomType()->getPropertyByName("Charge"); |
345 |
< |
if (data != NULL) { |
346 |
< |
|
347 |
< |
charge = (dynamic_cast<DoubleGenericData*>(data))->getData(); |
348 |
< |
charge *= chargeToC; |
349 |
< |
|
350 |
< |
ri = atom->getPos(); |
351 |
< |
currSnapshot->wrapVector(ri); |
352 |
< |
ri *= angstromToM; |
353 |
< |
|
354 |
< |
if (charge < 0.0) { |
355 |
< |
nPos += ri; |
356 |
< |
nChg -= charge; |
357 |
< |
nCount++; |
358 |
< |
} else if (charge > 0.0) { |
359 |
< |
pPos += ri; |
360 |
< |
pChg += charge; |
361 |
< |
pCount++; |
362 |
< |
} |
363 |
< |
} |
364 |
< |
} |
365 |
< |
|
366 |
< |
if (atom->isDipole() ) { |
367 |
< |
Vector3d u_i = atom->getElectroFrame().getColumn(2); |
368 |
< |
GenericData* data = dynamic_cast<DirectionalAtomType*>(atom->getAtomType())->getPropertyByName("Dipole"); |
369 |
< |
if (data != NULL) { |
370 |
< |
moment = (dynamic_cast<DoubleGenericData*>(data))->getData(); |
371 |
< |
|
372 |
< |
moment *= debyeToCm; |
373 |
< |
dipoleVector += u_i * moment; |
374 |
< |
} |
375 |
< |
} |
922 |
> |
RealType Thermo::getHullVolume(){ |
923 |
> |
#ifdef HAVE_QHULL |
924 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
925 |
> |
if (!snap->hasHullVolume) { |
926 |
> |
Hull* surfaceMesh_; |
927 |
> |
|
928 |
> |
Globals* simParams = info_->getSimParams(); |
929 |
> |
const std::string ht = simParams->getHULL_Method(); |
930 |
> |
|
931 |
> |
if (ht == "Convex") { |
932 |
> |
surfaceMesh_ = new ConvexHull(); |
933 |
> |
} else if (ht == "AlphaShape") { |
934 |
> |
surfaceMesh_ = new AlphaHull(simParams->getAlpha()); |
935 |
> |
} else { |
936 |
> |
return 0.0; |
937 |
|
} |
938 |
+ |
|
939 |
+ |
// Build a vector of stunt doubles to determine if they are |
940 |
+ |
// surface atoms |
941 |
+ |
std::vector<StuntDouble*> localSites_; |
942 |
+ |
Molecule* mol; |
943 |
+ |
StuntDouble* sd; |
944 |
+ |
SimInfo::MoleculeIterator i; |
945 |
+ |
Molecule::IntegrableObjectIterator j; |
946 |
+ |
|
947 |
+ |
for (mol = info_->beginMolecule(i); mol != NULL; |
948 |
+ |
mol = info_->nextMolecule(i)) { |
949 |
+ |
for (sd = mol->beginIntegrableObject(j); |
950 |
+ |
sd != NULL; |
951 |
+ |
sd = mol->nextIntegrableObject(j)) { |
952 |
+ |
localSites_.push_back(sd); |
953 |
+ |
} |
954 |
+ |
} |
955 |
+ |
|
956 |
+ |
// Compute surface Mesh |
957 |
+ |
surfaceMesh_->computeHull(localSites_); |
958 |
+ |
snap->setHullVolume(surfaceMesh_->getVolume()); |
959 |
+ |
|
960 |
+ |
delete surfaceMesh_; |
961 |
|
} |
962 |
|
|
963 |
< |
|
964 |
< |
#ifdef IS_MPI |
965 |
< |
RealType pChg_global, nChg_global; |
966 |
< |
int pCount_global, nCount_global; |
967 |
< |
Vector3d pPos_global, nPos_global, dipVec_global; |
963 |
> |
return snap->getHullVolume(); |
964 |
> |
#else |
965 |
> |
return 0.0; |
966 |
> |
#endif |
967 |
> |
} |
968 |
|
|
385 |
– |
MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM, |
386 |
– |
MPI_COMM_WORLD); |
387 |
– |
pChg = pChg_global; |
388 |
– |
MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM, |
389 |
– |
MPI_COMM_WORLD); |
390 |
– |
nChg = nChg_global; |
391 |
– |
MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM, |
392 |
– |
MPI_COMM_WORLD); |
393 |
– |
pCount = pCount_global; |
394 |
– |
MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM, |
395 |
– |
MPI_COMM_WORLD); |
396 |
– |
nCount = nCount_global; |
397 |
– |
MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3, |
398 |
– |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
399 |
– |
pPos = pPos_global; |
400 |
– |
MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3, |
401 |
– |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
402 |
– |
nPos = nPos_global; |
403 |
– |
MPI_Allreduce(dipoleVector.getArrayPointer(), |
404 |
– |
dipVec_global.getArrayPointer(), 3, |
405 |
– |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
406 |
– |
dipoleVector = dipVec_global; |
407 |
– |
#endif //is_mpi |
969 |
|
|
970 |
< |
// first load the accumulated dipole moment (if dipoles were present) |
410 |
< |
Vector3d boxDipole = dipoleVector; |
411 |
< |
// now include the dipole moment due to charges |
412 |
< |
// use the lesser of the positive and negative charge totals |
413 |
< |
RealType chg_value = nChg <= pChg ? nChg : pChg; |
414 |
< |
|
415 |
< |
// find the average positions |
416 |
< |
if (pCount > 0 && nCount > 0 ) { |
417 |
< |
pPos /= pCount; |
418 |
< |
nPos /= nCount; |
419 |
< |
} |
420 |
< |
|
421 |
< |
// dipole is from the negative to the positive (physics notation) |
422 |
< |
boxDipole += (pPos - nPos) * chg_value; |
423 |
< |
|
424 |
< |
return boxDipole; |
425 |
< |
} |
426 |
< |
} //end namespace OpenMD |
970 |
> |
} |