ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
Revision: 1870
Committed: Tue May 7 19:09:54 2013 UTC (11 years, 11 months ago) by gezelter
File size: 29412 byte(s)
Log Message:
Chasing down bugs in the TIP4P_FQ model.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <math.h>
44 #include <iostream>
45
46 #ifdef IS_MPI
47 #include <mpi.h>
48 #endif //is_mpi
49
50 #include "brains/Thermo.hpp"
51 #include "primitives/Molecule.hpp"
52 #include "utils/simError.h"
53 #include "utils/PhysicalConstants.hpp"
54 #include "types/FixedChargeAdapter.hpp"
55 #include "types/FluctuatingChargeAdapter.hpp"
56 #include "types/MultipoleAdapter.hpp"
57 #ifdef HAVE_QHULL
58 #include "math/ConvexHull.hpp"
59 #include "math/AlphaHull.hpp"
60 #endif
61
62 using namespace std;
63 namespace OpenMD {
64
65 RealType Thermo::getTranslationalKinetic() {
66 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
67
68 if (!snap->hasTranslationalKineticEnergy) {
69 SimInfo::MoleculeIterator miter;
70 vector<StuntDouble*>::iterator iiter;
71 Molecule* mol;
72 StuntDouble* sd;
73 Vector3d vel;
74 RealType mass;
75 RealType kinetic(0.0);
76
77 for (mol = info_->beginMolecule(miter); mol != NULL;
78 mol = info_->nextMolecule(miter)) {
79
80 for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
81 sd = mol->nextIntegrableObject(iiter)) {
82
83 mass = sd->getMass();
84 vel = sd->getVel();
85
86 kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
87
88 }
89 }
90
91 #ifdef IS_MPI
92 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
93 MPI::SUM);
94 #endif
95
96 kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
97
98
99 snap->setTranslationalKineticEnergy(kinetic);
100 }
101 return snap->getTranslationalKineticEnergy();
102 }
103
104 RealType Thermo::getRotationalKinetic() {
105 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
106
107 if (!snap->hasRotationalKineticEnergy) {
108 SimInfo::MoleculeIterator miter;
109 vector<StuntDouble*>::iterator iiter;
110 Molecule* mol;
111 StuntDouble* sd;
112 Vector3d angMom;
113 Mat3x3d I;
114 int i, j, k;
115 RealType kinetic(0.0);
116
117 for (mol = info_->beginMolecule(miter); mol != NULL;
118 mol = info_->nextMolecule(miter)) {
119
120 for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
121 sd = mol->nextIntegrableObject(iiter)) {
122
123 if (sd->isDirectional()) {
124 angMom = sd->getJ();
125 I = sd->getI();
126
127 if (sd->isLinear()) {
128 i = sd->linearAxis();
129 j = (i + 1) % 3;
130 k = (i + 2) % 3;
131 kinetic += angMom[j] * angMom[j] / I(j, j)
132 + angMom[k] * angMom[k] / I(k, k);
133 } else {
134 kinetic += angMom[0]*angMom[0]/I(0, 0)
135 + angMom[1]*angMom[1]/I(1, 1)
136 + angMom[2]*angMom[2]/I(2, 2);
137 }
138 }
139 }
140 }
141
142 #ifdef IS_MPI
143 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
144 MPI::SUM);
145 #endif
146
147 kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
148
149 snap->setRotationalKineticEnergy(kinetic);
150 }
151 return snap->getRotationalKineticEnergy();
152 }
153
154
155
156 RealType Thermo::getKinetic() {
157 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
158
159 if (!snap->hasKineticEnergy) {
160 RealType ke = getTranslationalKinetic() + getRotationalKinetic();
161 snap->setKineticEnergy(ke);
162 }
163 return snap->getKineticEnergy();
164 }
165
166 RealType Thermo::getPotential() {
167
168 // ForceManager computes the potential and stores it in the
169 // Snapshot. All we have to do is report it.
170
171 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
172 return snap->getPotentialEnergy();
173 }
174
175 RealType Thermo::getTotalEnergy() {
176
177 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
178
179 if (!snap->hasTotalEnergy) {
180 snap->setTotalEnergy(this->getKinetic() + this->getPotential());
181 }
182
183 return snap->getTotalEnergy();
184 }
185
186 RealType Thermo::getTemperature() {
187
188 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
189
190 if (!snap->hasTemperature) {
191
192 RealType temperature = ( 2.0 * this->getKinetic() )
193 / (info_->getNdf()* PhysicalConstants::kb );
194
195 snap->setTemperature(temperature);
196 }
197
198 return snap->getTemperature();
199 }
200
201 RealType Thermo::getElectronicTemperature() {
202 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
203
204 if (!snap->hasElectronicTemperature) {
205
206 SimInfo::MoleculeIterator miter;
207 vector<Atom*>::iterator iiter;
208 Molecule* mol;
209 Atom* atom;
210 RealType cvel;
211 RealType cmass;
212 RealType kinetic(0.0);
213 RealType eTemp;
214
215 for (mol = info_->beginMolecule(miter); mol != NULL;
216 mol = info_->nextMolecule(miter)) {
217
218 for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
219 atom = mol->nextFluctuatingCharge(iiter)) {
220
221 cmass = atom->getChargeMass();
222 cvel = atom->getFlucQVel();
223
224 kinetic += cmass * cvel * cvel;
225
226 }
227 }
228
229 #ifdef IS_MPI
230 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
231 MPI::SUM);
232 #endif
233
234 kinetic *= 0.5;
235 eTemp = (2.0 * kinetic) /
236 (info_->getNFluctuatingCharges() * PhysicalConstants::kb );
237
238 snap->setElectronicTemperature(eTemp);
239 }
240
241 return snap->getElectronicTemperature();
242 }
243
244
245 RealType Thermo::getVolume() {
246 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
247 return snap->getVolume();
248 }
249
250 RealType Thermo::getPressure() {
251 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
252
253 if (!snap->hasPressure) {
254 // Relies on the calculation of the full molecular pressure tensor
255
256 Mat3x3d tensor;
257 RealType pressure;
258
259 tensor = getPressureTensor();
260
261 pressure = PhysicalConstants::pressureConvert *
262 (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
263
264 snap->setPressure(pressure);
265 }
266
267 return snap->getPressure();
268 }
269
270 Mat3x3d Thermo::getPressureTensor() {
271 // returns pressure tensor in units amu*fs^-2*Ang^-1
272 // routine derived via viral theorem description in:
273 // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
274 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
275
276 if (!snap->hasPressureTensor) {
277
278 Mat3x3d pressureTensor;
279 Mat3x3d p_tens(0.0);
280 RealType mass;
281 Vector3d vcom;
282
283 SimInfo::MoleculeIterator i;
284 vector<StuntDouble*>::iterator j;
285 Molecule* mol;
286 StuntDouble* sd;
287 for (mol = info_->beginMolecule(i); mol != NULL;
288 mol = info_->nextMolecule(i)) {
289
290 for (sd = mol->beginIntegrableObject(j); sd != NULL;
291 sd = mol->nextIntegrableObject(j)) {
292
293 mass = sd->getMass();
294 vcom = sd->getVel();
295 p_tens += mass * outProduct(vcom, vcom);
296 }
297 }
298
299 #ifdef IS_MPI
300 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9,
301 MPI::REALTYPE, MPI::SUM);
302 #endif
303
304 RealType volume = this->getVolume();
305 Mat3x3d stressTensor = snap->getStressTensor();
306
307 pressureTensor = (p_tens +
308 PhysicalConstants::energyConvert * stressTensor)/volume;
309
310 snap->setPressureTensor(pressureTensor);
311 }
312 return snap->getPressureTensor();
313 }
314
315
316
317
318 Vector3d Thermo::getSystemDipole() {
319 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
320
321 if (!snap->hasSystemDipole) {
322 SimInfo::MoleculeIterator miter;
323 vector<Atom*>::iterator aiter;
324 Molecule* mol;
325 Atom* atom;
326 RealType charge;
327 Vector3d ri(0.0);
328 Vector3d dipoleVector(0.0);
329 Vector3d nPos(0.0);
330 Vector3d pPos(0.0);
331 RealType nChg(0.0);
332 RealType pChg(0.0);
333 int nCount = 0;
334 int pCount = 0;
335
336 RealType chargeToC = 1.60217733e-19;
337 RealType angstromToM = 1.0e-10;
338 RealType debyeToCm = 3.33564095198e-30;
339
340 for (mol = info_->beginMolecule(miter); mol != NULL;
341 mol = info_->nextMolecule(miter)) {
342
343 for (atom = mol->beginAtom(aiter); atom != NULL;
344 atom = mol->nextAtom(aiter)) {
345
346 charge = 0.0;
347
348 FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
349 if ( fca.isFixedCharge() ) {
350 charge = fca.getCharge();
351 }
352
353 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
354 if ( fqa.isFluctuatingCharge() ) {
355 charge += atom->getFlucQPos();
356 }
357
358 charge *= chargeToC;
359
360 ri = atom->getPos();
361 snap->wrapVector(ri);
362 ri *= angstromToM;
363
364 if (charge < 0.0) {
365 nPos += ri;
366 nChg -= charge;
367 nCount++;
368 } else if (charge > 0.0) {
369 pPos += ri;
370 pChg += charge;
371 pCount++;
372 }
373
374 if (atom->isDipole()) {
375 dipoleVector += atom->getDipole() * debyeToCm;
376 }
377 }
378 }
379
380
381 #ifdef IS_MPI
382 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE,
383 MPI::SUM);
384 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE,
385 MPI::SUM);
386
387 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER,
388 MPI::SUM);
389 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER,
390 MPI::SUM);
391
392 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3,
393 MPI::REALTYPE, MPI::SUM);
394 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3,
395 MPI::REALTYPE, MPI::SUM);
396
397 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(),
398 3, MPI::REALTYPE, MPI::SUM);
399 #endif
400
401 // first load the accumulated dipole moment (if dipoles were present)
402 Vector3d boxDipole = dipoleVector;
403 // now include the dipole moment due to charges
404 // use the lesser of the positive and negative charge totals
405 RealType chg_value = nChg <= pChg ? nChg : pChg;
406
407 // find the average positions
408 if (pCount > 0 && nCount > 0 ) {
409 pPos /= pCount;
410 nPos /= nCount;
411 }
412
413 // dipole is from the negative to the positive (physics notation)
414 boxDipole += (pPos - nPos) * chg_value;
415 snap->setSystemDipole(boxDipole);
416 }
417
418 return snap->getSystemDipole();
419 }
420
421 // Returns the Heat Flux Vector for the system
422 Vector3d Thermo::getHeatFlux(){
423 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
424 SimInfo::MoleculeIterator miter;
425 vector<StuntDouble*>::iterator iiter;
426 Molecule* mol;
427 StuntDouble* sd;
428 RigidBody::AtomIterator ai;
429 Atom* atom;
430 Vector3d vel;
431 Vector3d angMom;
432 Mat3x3d I;
433 int i;
434 int j;
435 int k;
436 RealType mass;
437
438 Vector3d x_a;
439 RealType kinetic;
440 RealType potential;
441 RealType eatom;
442 // Convective portion of the heat flux
443 Vector3d heatFluxJc = V3Zero;
444
445 /* Calculate convective portion of the heat flux */
446 for (mol = info_->beginMolecule(miter); mol != NULL;
447 mol = info_->nextMolecule(miter)) {
448
449 for (sd = mol->beginIntegrableObject(iiter);
450 sd != NULL;
451 sd = mol->nextIntegrableObject(iiter)) {
452
453 mass = sd->getMass();
454 vel = sd->getVel();
455
456 kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
457
458 if (sd->isDirectional()) {
459 angMom = sd->getJ();
460 I = sd->getI();
461
462 if (sd->isLinear()) {
463 i = sd->linearAxis();
464 j = (i + 1) % 3;
465 k = (i + 2) % 3;
466 kinetic += angMom[j] * angMom[j] / I(j, j)
467 + angMom[k] * angMom[k] / I(k, k);
468 } else {
469 kinetic += angMom[0]*angMom[0]/I(0, 0)
470 + angMom[1]*angMom[1]/I(1, 1)
471 + angMom[2]*angMom[2]/I(2, 2);
472 }
473 }
474
475 potential = 0.0;
476
477 if (sd->isRigidBody()) {
478 RigidBody* rb = dynamic_cast<RigidBody*>(sd);
479 for (atom = rb->beginAtom(ai); atom != NULL;
480 atom = rb->nextAtom(ai)) {
481 potential += atom->getParticlePot();
482 }
483 } else {
484 potential = sd->getParticlePot();
485 }
486
487 potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
488 // The potential may not be a 1/2 factor
489 eatom = (kinetic + potential)/2.0; // amu A^2/fs^2
490 heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
491 heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
492 heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
493 }
494 }
495
496 /* The J_v vector is reduced in the forceManager so everyone has
497 * the global Jv. Jc is computed over the local atoms and must be
498 * reduced among all processors.
499 */
500 #ifdef IS_MPI
501 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,
502 MPI::SUM);
503 #endif
504
505 // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
506
507 Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
508 PhysicalConstants::energyConvert;
509
510 // Correct for the fact the flux is 1/V (Jc + Jv)
511 return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
512 }
513
514
515 Vector3d Thermo::getComVel(){
516 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
517
518 if (!snap->hasCOMvel) {
519
520 SimInfo::MoleculeIterator i;
521 Molecule* mol;
522
523 Vector3d comVel(0.0);
524 RealType totalMass(0.0);
525
526 for (mol = info_->beginMolecule(i); mol != NULL;
527 mol = info_->nextMolecule(i)) {
528 RealType mass = mol->getMass();
529 totalMass += mass;
530 comVel += mass * mol->getComVel();
531 }
532
533 #ifdef IS_MPI
534 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
535 MPI::SUM);
536 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
537 MPI::REALTYPE, MPI::SUM);
538 #endif
539
540 comVel /= totalMass;
541 snap->setCOMvel(comVel);
542 }
543 return snap->getCOMvel();
544 }
545
546 Vector3d Thermo::getCom(){
547 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
548
549 if (!snap->hasCOM) {
550
551 SimInfo::MoleculeIterator i;
552 Molecule* mol;
553
554 Vector3d com(0.0);
555 RealType totalMass(0.0);
556
557 for (mol = info_->beginMolecule(i); mol != NULL;
558 mol = info_->nextMolecule(i)) {
559 RealType mass = mol->getMass();
560 totalMass += mass;
561 com += mass * mol->getCom();
562 }
563
564 #ifdef IS_MPI
565 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
566 MPI::SUM);
567 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
568 MPI::REALTYPE, MPI::SUM);
569 #endif
570
571 com /= totalMass;
572 snap->setCOM(com);
573 }
574 return snap->getCOM();
575 }
576
577 /**
578 * Returns center of mass and center of mass velocity in one
579 * function call.
580 */
581 void Thermo::getComAll(Vector3d &com, Vector3d &comVel){
582 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
583
584 if (!(snap->hasCOM && snap->hasCOMvel)) {
585
586 SimInfo::MoleculeIterator i;
587 Molecule* mol;
588
589 RealType totalMass(0.0);
590
591 com = 0.0;
592 comVel = 0.0;
593
594 for (mol = info_->beginMolecule(i); mol != NULL;
595 mol = info_->nextMolecule(i)) {
596 RealType mass = mol->getMass();
597 totalMass += mass;
598 com += mass * mol->getCom();
599 comVel += mass * mol->getComVel();
600 }
601
602 #ifdef IS_MPI
603 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
604 MPI::SUM);
605 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
606 MPI::REALTYPE, MPI::SUM);
607 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
608 MPI::REALTYPE, MPI::SUM);
609 #endif
610
611 com /= totalMass;
612 comVel /= totalMass;
613 snap->setCOM(com);
614 snap->setCOMvel(comVel);
615 }
616 com = snap->getCOM();
617 comVel = snap->getCOMvel();
618 return;
619 }
620
621 /**
622 * \brief Return inertia tensor for entire system and angular momentum
623 * Vector.
624 *
625 *
626 *
627 * [ Ixx -Ixy -Ixz ]
628 * I =| -Iyx Iyy -Iyz |
629 * [ -Izx -Iyz Izz ]
630 */
631 void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,
632 Vector3d &angularMomentum){
633
634 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
635
636 if (!(snap->hasInertiaTensor && snap->hasCOMw)) {
637
638 RealType xx = 0.0;
639 RealType yy = 0.0;
640 RealType zz = 0.0;
641 RealType xy = 0.0;
642 RealType xz = 0.0;
643 RealType yz = 0.0;
644 Vector3d com(0.0);
645 Vector3d comVel(0.0);
646
647 getComAll(com, comVel);
648
649 SimInfo::MoleculeIterator i;
650 Molecule* mol;
651
652 Vector3d thisq(0.0);
653 Vector3d thisv(0.0);
654
655 RealType thisMass = 0.0;
656
657 for (mol = info_->beginMolecule(i); mol != NULL;
658 mol = info_->nextMolecule(i)) {
659
660 thisq = mol->getCom()-com;
661 thisv = mol->getComVel()-comVel;
662 thisMass = mol->getMass();
663 // Compute moment of intertia coefficients.
664 xx += thisq[0]*thisq[0]*thisMass;
665 yy += thisq[1]*thisq[1]*thisMass;
666 zz += thisq[2]*thisq[2]*thisMass;
667
668 // compute products of intertia
669 xy += thisq[0]*thisq[1]*thisMass;
670 xz += thisq[0]*thisq[2]*thisMass;
671 yz += thisq[1]*thisq[2]*thisMass;
672
673 angularMomentum += cross( thisq, thisv ) * thisMass;
674 }
675
676 inertiaTensor(0,0) = yy + zz;
677 inertiaTensor(0,1) = -xy;
678 inertiaTensor(0,2) = -xz;
679 inertiaTensor(1,0) = -xy;
680 inertiaTensor(1,1) = xx + zz;
681 inertiaTensor(1,2) = -yz;
682 inertiaTensor(2,0) = -xz;
683 inertiaTensor(2,1) = -yz;
684 inertiaTensor(2,2) = xx + yy;
685
686 #ifdef IS_MPI
687 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(),
688 9, MPI::REALTYPE, MPI::SUM);
689 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
690 angularMomentum.getArrayPointer(), 3,
691 MPI::REALTYPE, MPI::SUM);
692 #endif
693
694 snap->setCOMw(angularMomentum);
695 snap->setInertiaTensor(inertiaTensor);
696 }
697
698 angularMomentum = snap->getCOMw();
699 inertiaTensor = snap->getInertiaTensor();
700
701 return;
702 }
703
704
705 Mat3x3d Thermo::getBoundingBox(){
706
707 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
708
709 if (!(snap->hasBoundingBox)) {
710
711 SimInfo::MoleculeIterator i;
712 Molecule::RigidBodyIterator ri;
713 Molecule::AtomIterator ai;
714 Molecule* mol;
715 RigidBody* rb;
716 Atom* atom;
717 Vector3d pos, bMax, bMin;
718 int index = 0;
719
720 for (mol = info_->beginMolecule(i); mol != NULL;
721 mol = info_->nextMolecule(i)) {
722
723 //change the positions of atoms which belong to the rigidbodies
724 for (rb = mol->beginRigidBody(ri); rb != NULL;
725 rb = mol->nextRigidBody(ri)) {
726 rb->updateAtoms();
727 }
728
729 for(atom = mol->beginAtom(ai); atom != NULL;
730 atom = mol->nextAtom(ai)) {
731
732 pos = atom->getPos();
733
734 if (index == 0) {
735 bMax = pos;
736 bMin = pos;
737 } else {
738 for (int i = 0; i < 3; i++) {
739 bMax[i] = max(bMax[i], pos[i]);
740 bMin[i] = min(bMin[i], pos[i]);
741 }
742 }
743 index++;
744 }
745 }
746
747 #ifdef IS_MPI
748 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bMax[0], 3, MPI::REALTYPE,
749 MPI::MAX);
750
751 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bMin[0], 3, MPI::REALTYPE,
752 MPI::MIN);
753 #endif
754 Mat3x3d bBox = Mat3x3d(0.0);
755 for (int i = 0; i < 3; i++) {
756 bBox(i,i) = bMax[i] - bMin[i];
757 }
758 snap->setBoundingBox(bBox);
759 }
760
761 return snap->getBoundingBox();
762 }
763
764
765 // Returns the angular momentum of the system
766 Vector3d Thermo::getAngularMomentum(){
767 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
768
769 if (!snap->hasCOMw) {
770
771 Vector3d com(0.0);
772 Vector3d comVel(0.0);
773 Vector3d angularMomentum(0.0);
774
775 getComAll(com, comVel);
776
777 SimInfo::MoleculeIterator i;
778 Molecule* mol;
779
780 Vector3d thisr(0.0);
781 Vector3d thisp(0.0);
782
783 RealType thisMass;
784
785 for (mol = info_->beginMolecule(i); mol != NULL;
786 mol = info_->nextMolecule(i)) {
787 thisMass = mol->getMass();
788 thisr = mol->getCom() - com;
789 thisp = (mol->getComVel() - comVel) * thisMass;
790
791 angularMomentum += cross( thisr, thisp );
792 }
793
794 #ifdef IS_MPI
795 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
796 angularMomentum.getArrayPointer(), 3,
797 MPI::REALTYPE, MPI::SUM);
798 #endif
799
800 snap->setCOMw(angularMomentum);
801 }
802
803 return snap->getCOMw();
804 }
805
806
807 /**
808 * Returns the Volume of the system based on a ellipsoid with
809 * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
810 * where R_i are related to the principle inertia moments
811 * R_i = sqrt(C*I_i/N), this reduces to
812 * V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).
813 * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
814 */
815 RealType Thermo::getGyrationalVolume(){
816 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
817
818 if (!snap->hasGyrationalVolume) {
819
820 Mat3x3d intTensor;
821 RealType det;
822 Vector3d dummyAngMom;
823 RealType sysconstants;
824 RealType geomCnst;
825 RealType volume;
826
827 geomCnst = 3.0/2.0;
828 /* Get the inertial tensor and angular momentum for free*/
829 getInertiaTensor(intTensor, dummyAngMom);
830
831 det = intTensor.determinant();
832 sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects());
833 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
834
835 snap->setGyrationalVolume(volume);
836 }
837 return snap->getGyrationalVolume();
838 }
839
840 void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){
841 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
842
843 if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) {
844
845 Mat3x3d intTensor;
846 Vector3d dummyAngMom;
847 RealType sysconstants;
848 RealType geomCnst;
849
850 geomCnst = 3.0/2.0;
851 /* Get the inertia tensor and angular momentum for free*/
852 this->getInertiaTensor(intTensor, dummyAngMom);
853
854 detI = intTensor.determinant();
855 sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects());
856 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
857 snap->setGyrationalVolume(volume);
858 } else {
859 volume = snap->getGyrationalVolume();
860 detI = snap->getInertiaTensor().determinant();
861 }
862 return;
863 }
864
865 RealType Thermo::getTaggedAtomPairDistance(){
866 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
867 Globals* simParams = info_->getSimParams();
868
869 if (simParams->haveTaggedAtomPair() &&
870 simParams->havePrintTaggedPairDistance()) {
871 if ( simParams->getPrintTaggedPairDistance()) {
872
873 pair<int, int> tap = simParams->getTaggedAtomPair();
874 Vector3d pos1, pos2, rab;
875
876 #ifdef IS_MPI
877 int mol1 = info_->getGlobalMolMembership(tap.first);
878 int mol2 = info_->getGlobalMolMembership(tap.second);
879
880 int proc1 = info_->getMolToProc(mol1);
881 int proc2 = info_->getMolToProc(mol2);
882
883 RealType data[3];
884 if (proc1 == worldRank) {
885 StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
886 pos1 = sd1->getPos();
887 data[0] = pos1.x();
888 data[1] = pos1.y();
889 data[2] = pos1.z();
890 MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1);
891 } else {
892 MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1);
893 pos1 = Vector3d(data);
894 }
895
896 if (proc2 == worldRank) {
897 StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
898 pos2 = sd2->getPos();
899 data[0] = pos2.x();
900 data[1] = pos2.y();
901 data[2] = pos2.z();
902 MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2);
903 } else {
904 MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2);
905 pos2 = Vector3d(data);
906 }
907 #else
908 StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
909 StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
910 pos1 = at1->getPos();
911 pos2 = at2->getPos();
912 #endif
913 rab = pos2 - pos1;
914 currSnapshot->wrapVector(rab);
915 return rab.length();
916 }
917 return 0.0;
918 }
919 return 0.0;
920 }
921
922 RealType Thermo::getHullVolume(){
923 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
924
925 #ifdef HAVE_QHULL
926 if (!snap->hasHullVolume) {
927 Hull* surfaceMesh_;
928
929 Globals* simParams = info_->getSimParams();
930 const std::string ht = simParams->getHULL_Method();
931
932 if (ht == "Convex") {
933 surfaceMesh_ = new ConvexHull();
934 } else if (ht == "AlphaShape") {
935 surfaceMesh_ = new AlphaHull(simParams->getAlpha());
936 } else {
937 return 0.0;
938 }
939
940 // Build a vector of stunt doubles to determine if they are
941 // surface atoms
942 std::vector<StuntDouble*> localSites_;
943 Molecule* mol;
944 StuntDouble* sd;
945 SimInfo::MoleculeIterator i;
946 Molecule::IntegrableObjectIterator j;
947
948 for (mol = info_->beginMolecule(i); mol != NULL;
949 mol = info_->nextMolecule(i)) {
950 for (sd = mol->beginIntegrableObject(j);
951 sd != NULL;
952 sd = mol->nextIntegrableObject(j)) {
953 localSites_.push_back(sd);
954 }
955 }
956
957 // Compute surface Mesh
958 surfaceMesh_->computeHull(localSites_);
959 snap->setHullVolume(surfaceMesh_->getVolume());
960
961 delete surfaceMesh_;
962 }
963
964 return snap->getHullVolume();
965 #else
966 return 0.0;
967 #endif
968 }
969
970
971 }

Properties

Name Value
svn:keywords Author Id Revision Date