ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
Revision: 1798
Committed: Thu Sep 13 14:10:11 2012 UTC (12 years, 7 months ago) by gezelter
File size: 27771 byte(s)
Log Message:
Merged trunk changes into the development branch

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <math.h>
44 #include <iostream>
45
46 #ifdef IS_MPI
47 #include <mpi.h>
48 #endif //is_mpi
49
50 #include "brains/Thermo.hpp"
51 #include "primitives/Molecule.hpp"
52 #include "utils/simError.h"
53 #include "utils/PhysicalConstants.hpp"
54 #include "types/FixedChargeAdapter.hpp"
55 #include "types/FluctuatingChargeAdapter.hpp"
56 #include "types/MultipoleAdapter.hpp"
57 #ifdef HAVE_QHULL
58 #include "math/ConvexHull.hpp"
59 #include "math/AlphaHull.hpp"
60 #endif
61
62 using namespace std;
63 namespace OpenMD {
64
65 RealType Thermo::getTranslationalKinetic() {
66 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
67
68 if (!snap->hasTranslationalKineticEnergy) {
69 SimInfo::MoleculeIterator miter;
70 vector<StuntDouble*>::iterator iiter;
71 Molecule* mol;
72 StuntDouble* sd;
73 Vector3d vel;
74 RealType mass;
75 RealType kinetic(0.0);
76
77 for (mol = info_->beginMolecule(miter); mol != NULL;
78 mol = info_->nextMolecule(miter)) {
79
80 for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
81 sd = mol->nextIntegrableObject(iiter)) {
82
83 mass = sd->getMass();
84 vel = sd->getVel();
85
86 kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
87
88 }
89 }
90
91 #ifdef IS_MPI
92 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
93 MPI::SUM);
94 #endif
95
96 kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
97
98
99 snap->setTranslationalKineticEnergy(kinetic);
100 }
101 return snap->getTranslationalKineticEnergy();
102 }
103
104 RealType Thermo::getRotationalKinetic() {
105 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
106
107 if (!snap->hasRotationalKineticEnergy) {
108 SimInfo::MoleculeIterator miter;
109 vector<StuntDouble*>::iterator iiter;
110 Molecule* mol;
111 StuntDouble* sd;
112 Vector3d angMom;
113 Mat3x3d I;
114 int i, j, k;
115 RealType kinetic(0.0);
116
117 for (mol = info_->beginMolecule(miter); mol != NULL;
118 mol = info_->nextMolecule(miter)) {
119
120 for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
121 sd = mol->nextIntegrableObject(iiter)) {
122
123 if (sd->isDirectional()) {
124 angMom = sd->getJ();
125 I = sd->getI();
126
127 if (sd->isLinear()) {
128 i = sd->linearAxis();
129 j = (i + 1) % 3;
130 k = (i + 2) % 3;
131 kinetic += angMom[j] * angMom[j] / I(j, j)
132 + angMom[k] * angMom[k] / I(k, k);
133 } else {
134 kinetic += angMom[0]*angMom[0]/I(0, 0)
135 + angMom[1]*angMom[1]/I(1, 1)
136 + angMom[2]*angMom[2]/I(2, 2);
137 }
138 }
139 }
140 }
141
142 #ifdef IS_MPI
143 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
144 MPI::SUM);
145 #endif
146
147 kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
148
149 snap->setRotationalKineticEnergy(kinetic);
150 }
151 return snap->getRotationalKineticEnergy();
152 }
153
154
155
156 RealType Thermo::getKinetic() {
157 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
158
159 if (!snap->hasKineticEnergy) {
160 RealType ke = getTranslationalKinetic() + getRotationalKinetic();
161 snap->setKineticEnergy(ke);
162 }
163 return snap->getKineticEnergy();
164 }
165
166 RealType Thermo::getPotential() {
167
168 // ForceManager computes the potential and stores it in the
169 // Snapshot. All we have to do is report it.
170
171 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
172 return snap->getPotentialEnergy();
173 }
174
175 RealType Thermo::getTotalEnergy() {
176
177 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
178
179 if (!snap->hasTotalEnergy) {
180 snap->setTotalEnergy(this->getKinetic() + this->getPotential());
181 }
182
183 return snap->getTotalEnergy();
184 }
185
186 RealType Thermo::getTemperature() {
187
188 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
189
190 if (!snap->hasTemperature) {
191
192 RealType temperature = ( 2.0 * this->getKinetic() )
193 / (info_->getNdf()* PhysicalConstants::kb );
194
195 snap->setTemperature(temperature);
196 }
197
198 return snap->getTemperature();
199 }
200
201 RealType Thermo::getElectronicTemperature() {
202 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
203
204 if (!snap->hasElectronicTemperature) {
205
206 SimInfo::MoleculeIterator miter;
207 vector<Atom*>::iterator iiter;
208 Molecule* mol;
209 Atom* atom;
210 RealType cvel;
211 RealType cmass;
212 RealType kinetic(0.0);
213 RealType eTemp;
214
215 for (mol = info_->beginMolecule(miter); mol != NULL;
216 mol = info_->nextMolecule(miter)) {
217
218 for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
219 atom = mol->nextFluctuatingCharge(iiter)) {
220
221 cmass = atom->getChargeMass();
222 cvel = atom->getFlucQVel();
223
224 kinetic += cmass * cvel * cvel;
225
226 }
227 }
228
229 #ifdef IS_MPI
230 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
231 MPI::SUM);
232 #endif
233
234 kinetic *= 0.5;
235 eTemp = (2.0 * kinetic) /
236 (info_->getNFluctuatingCharges() * PhysicalConstants::kb );
237
238 snap->setElectronicTemperature(eTemp);
239 }
240
241 return snap->getElectronicTemperature();
242 }
243
244
245 RealType Thermo::getVolume() {
246 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
247 return snap->getVolume();
248 }
249
250 RealType Thermo::getPressure() {
251 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
252
253 if (!snap->hasPressure) {
254 // Relies on the calculation of the full molecular pressure tensor
255
256 Mat3x3d tensor;
257 RealType pressure;
258
259 tensor = getPressureTensor();
260
261 pressure = PhysicalConstants::pressureConvert *
262 (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
263
264 snap->setPressure(pressure);
265 }
266
267 return snap->getPressure();
268 }
269
270 Mat3x3d Thermo::getPressureTensor() {
271 // returns pressure tensor in units amu*fs^-2*Ang^-1
272 // routine derived via viral theorem description in:
273 // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
274 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
275
276 if (!snap->hasPressureTensor) {
277
278 Mat3x3d pressureTensor;
279 Mat3x3d p_tens(0.0);
280 RealType mass;
281 Vector3d vcom;
282
283 SimInfo::MoleculeIterator i;
284 vector<StuntDouble*>::iterator j;
285 Molecule* mol;
286 StuntDouble* sd;
287 for (mol = info_->beginMolecule(i); mol != NULL;
288 mol = info_->nextMolecule(i)) {
289
290 for (sd = mol->beginIntegrableObject(j); sd != NULL;
291 sd = mol->nextIntegrableObject(j)) {
292
293 mass = sd->getMass();
294 vcom = sd->getVel();
295 p_tens += mass * outProduct(vcom, vcom);
296 }
297 }
298
299 #ifdef IS_MPI
300 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9,
301 MPI::REALTYPE, MPI::SUM);
302 #endif
303
304 RealType volume = this->getVolume();
305 Mat3x3d stressTensor = snap->getStressTensor();
306
307 pressureTensor = (p_tens +
308 PhysicalConstants::energyConvert * stressTensor)/volume;
309
310 snap->setPressureTensor(pressureTensor);
311 }
312 return snap->getPressureTensor();
313 }
314
315
316
317
318 Vector3d Thermo::getSystemDipole() {
319 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
320
321 if (!snap->hasSystemDipole) {
322 SimInfo::MoleculeIterator miter;
323 vector<Atom*>::iterator aiter;
324 Molecule* mol;
325 Atom* atom;
326 RealType charge;
327 RealType moment(0.0);
328 Vector3d ri(0.0);
329 Vector3d dipoleVector(0.0);
330 Vector3d nPos(0.0);
331 Vector3d pPos(0.0);
332 RealType nChg(0.0);
333 RealType pChg(0.0);
334 int nCount = 0;
335 int pCount = 0;
336
337 RealType chargeToC = 1.60217733e-19;
338 RealType angstromToM = 1.0e-10;
339 RealType debyeToCm = 3.33564095198e-30;
340
341 for (mol = info_->beginMolecule(miter); mol != NULL;
342 mol = info_->nextMolecule(miter)) {
343
344 for (atom = mol->beginAtom(aiter); atom != NULL;
345 atom = mol->nextAtom(aiter)) {
346
347 charge = 0.0;
348
349 FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
350 if ( fca.isFixedCharge() ) {
351 charge = fca.getCharge();
352 }
353
354 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
355 if ( fqa.isFluctuatingCharge() ) {
356 charge += atom->getFlucQPos();
357 }
358
359 charge *= chargeToC;
360
361 ri = atom->getPos();
362 snap->wrapVector(ri);
363 ri *= angstromToM;
364
365 if (charge < 0.0) {
366 nPos += ri;
367 nChg -= charge;
368 nCount++;
369 } else if (charge > 0.0) {
370 pPos += ri;
371 pChg += charge;
372 pCount++;
373 }
374
375 if (atom->isDipole()) {
376 dipoleVector += atom->getDipole() * debyeToCm;
377 }
378 }
379 }
380
381
382 #ifdef IS_MPI
383 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE,
384 MPI::SUM);
385 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE,
386 MPI::SUM);
387
388 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER,
389 MPI::SUM);
390 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER,
391 MPI::SUM);
392
393 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3,
394 MPI::REALTYPE, MPI::SUM);
395 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3,
396 MPI::REALTYPE, MPI::SUM);
397
398 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(),
399 3, MPI::REALTYPE, MPI::SUM);
400 #endif
401
402 // first load the accumulated dipole moment (if dipoles were present)
403 Vector3d boxDipole = dipoleVector;
404 // now include the dipole moment due to charges
405 // use the lesser of the positive and negative charge totals
406 RealType chg_value = nChg <= pChg ? nChg : pChg;
407
408 // find the average positions
409 if (pCount > 0 && nCount > 0 ) {
410 pPos /= pCount;
411 nPos /= nCount;
412 }
413
414 // dipole is from the negative to the positive (physics notation)
415 boxDipole += (pPos - nPos) * chg_value;
416 snap->setSystemDipole(boxDipole);
417 }
418
419 return snap->getSystemDipole();
420 }
421
422 // Returns the Heat Flux Vector for the system
423 Vector3d Thermo::getHeatFlux(){
424 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
425 SimInfo::MoleculeIterator miter;
426 vector<StuntDouble*>::iterator iiter;
427 Molecule* mol;
428 StuntDouble* sd;
429 RigidBody::AtomIterator ai;
430 Atom* atom;
431 Vector3d vel;
432 Vector3d angMom;
433 Mat3x3d I;
434 int i;
435 int j;
436 int k;
437 RealType mass;
438
439 Vector3d x_a;
440 RealType kinetic;
441 RealType potential;
442 RealType eatom;
443 RealType AvgE_a_ = 0;
444 // Convective portion of the heat flux
445 Vector3d heatFluxJc = V3Zero;
446
447 /* Calculate convective portion of the heat flux */
448 for (mol = info_->beginMolecule(miter); mol != NULL;
449 mol = info_->nextMolecule(miter)) {
450
451 for (sd = mol->beginIntegrableObject(iiter);
452 sd != NULL;
453 sd = mol->nextIntegrableObject(iiter)) {
454
455 mass = sd->getMass();
456 vel = sd->getVel();
457
458 kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
459
460 if (sd->isDirectional()) {
461 angMom = sd->getJ();
462 I = sd->getI();
463
464 if (sd->isLinear()) {
465 i = sd->linearAxis();
466 j = (i + 1) % 3;
467 k = (i + 2) % 3;
468 kinetic += angMom[j] * angMom[j] / I(j, j)
469 + angMom[k] * angMom[k] / I(k, k);
470 } else {
471 kinetic += angMom[0]*angMom[0]/I(0, 0)
472 + angMom[1]*angMom[1]/I(1, 1)
473 + angMom[2]*angMom[2]/I(2, 2);
474 }
475 }
476
477 potential = 0.0;
478
479 if (sd->isRigidBody()) {
480 RigidBody* rb = dynamic_cast<RigidBody*>(sd);
481 for (atom = rb->beginAtom(ai); atom != NULL;
482 atom = rb->nextAtom(ai)) {
483 potential += atom->getParticlePot();
484 }
485 } else {
486 potential = sd->getParticlePot();
487 }
488
489 potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
490 // The potential may not be a 1/2 factor
491 eatom = (kinetic + potential)/2.0; // amu A^2/fs^2
492 heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
493 heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
494 heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
495 }
496 }
497
498 /* The J_v vector is reduced in the forceManager so everyone has
499 * the global Jv. Jc is computed over the local atoms and must be
500 * reduced among all processors.
501 */
502 #ifdef IS_MPI
503 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,
504 MPI::SUM);
505 #endif
506
507 // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
508
509 Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
510 PhysicalConstants::energyConvert;
511
512 // Correct for the fact the flux is 1/V (Jc + Jv)
513 return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
514 }
515
516
517 Vector3d Thermo::getComVel(){
518 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
519
520 if (!snap->hasCOMvel) {
521
522 SimInfo::MoleculeIterator i;
523 Molecule* mol;
524
525 Vector3d comVel(0.0);
526 RealType totalMass(0.0);
527
528 for (mol = info_->beginMolecule(i); mol != NULL;
529 mol = info_->nextMolecule(i)) {
530 RealType mass = mol->getMass();
531 totalMass += mass;
532 comVel += mass * mol->getComVel();
533 }
534
535 #ifdef IS_MPI
536 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
537 MPI::SUM);
538 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
539 MPI::REALTYPE, MPI::SUM);
540 #endif
541
542 comVel /= totalMass;
543 snap->setCOMvel(comVel);
544 }
545 return snap->getCOMvel();
546 }
547
548 Vector3d Thermo::getCom(){
549 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
550
551 if (!snap->hasCOM) {
552
553 SimInfo::MoleculeIterator i;
554 Molecule* mol;
555
556 Vector3d com(0.0);
557 RealType totalMass(0.0);
558
559 for (mol = info_->beginMolecule(i); mol != NULL;
560 mol = info_->nextMolecule(i)) {
561 RealType mass = mol->getMass();
562 totalMass += mass;
563 com += mass * mol->getCom();
564 }
565
566 #ifdef IS_MPI
567 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
568 MPI::SUM);
569 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
570 MPI::REALTYPE, MPI::SUM);
571 #endif
572
573 com /= totalMass;
574 snap->setCOM(com);
575 }
576 return snap->getCOM();
577 }
578
579 /**
580 * Returns center of mass and center of mass velocity in one
581 * function call.
582 */
583 void Thermo::getComAll(Vector3d &com, Vector3d &comVel){
584 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
585
586 if (!(snap->hasCOM && snap->hasCOMvel)) {
587
588 SimInfo::MoleculeIterator i;
589 Molecule* mol;
590
591 RealType totalMass(0.0);
592
593 com = 0.0;
594 comVel = 0.0;
595
596 for (mol = info_->beginMolecule(i); mol != NULL;
597 mol = info_->nextMolecule(i)) {
598 RealType mass = mol->getMass();
599 totalMass += mass;
600 com += mass * mol->getCom();
601 comVel += mass * mol->getComVel();
602 }
603
604 #ifdef IS_MPI
605 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
606 MPI::SUM);
607 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
608 MPI::REALTYPE, MPI::SUM);
609 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
610 MPI::REALTYPE, MPI::SUM);
611 #endif
612
613 com /= totalMass;
614 comVel /= totalMass;
615 snap->setCOM(com);
616 snap->setCOMvel(comVel);
617 }
618 com = snap->getCOM();
619 comVel = snap->getCOMvel();
620 return;
621 }
622
623 /**
624 * Return intertia tensor for entire system and angular momentum
625 * Vector.
626 *
627 *
628 *
629 * [ Ixx -Ixy -Ixz ]
630 * I =| -Iyx Iyy -Iyz |
631 * [ -Izx -Iyz Izz ]
632 */
633 void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,
634 Vector3d &angularMomentum){
635
636 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
637
638 if (!(snap->hasInertiaTensor && snap->hasCOMw)) {
639
640 RealType xx = 0.0;
641 RealType yy = 0.0;
642 RealType zz = 0.0;
643 RealType xy = 0.0;
644 RealType xz = 0.0;
645 RealType yz = 0.0;
646 Vector3d com(0.0);
647 Vector3d comVel(0.0);
648
649 getComAll(com, comVel);
650
651 SimInfo::MoleculeIterator i;
652 Molecule* mol;
653
654 Vector3d thisq(0.0);
655 Vector3d thisv(0.0);
656
657 RealType thisMass = 0.0;
658
659 for (mol = info_->beginMolecule(i); mol != NULL;
660 mol = info_->nextMolecule(i)) {
661
662 thisq = mol->getCom()-com;
663 thisv = mol->getComVel()-comVel;
664 thisMass = mol->getMass();
665 // Compute moment of intertia coefficients.
666 xx += thisq[0]*thisq[0]*thisMass;
667 yy += thisq[1]*thisq[1]*thisMass;
668 zz += thisq[2]*thisq[2]*thisMass;
669
670 // compute products of intertia
671 xy += thisq[0]*thisq[1]*thisMass;
672 xz += thisq[0]*thisq[2]*thisMass;
673 yz += thisq[1]*thisq[2]*thisMass;
674
675 angularMomentum += cross( thisq, thisv ) * thisMass;
676 }
677
678 inertiaTensor(0,0) = yy + zz;
679 inertiaTensor(0,1) = -xy;
680 inertiaTensor(0,2) = -xz;
681 inertiaTensor(1,0) = -xy;
682 inertiaTensor(1,1) = xx + zz;
683 inertiaTensor(1,2) = -yz;
684 inertiaTensor(2,0) = -xz;
685 inertiaTensor(2,1) = -yz;
686 inertiaTensor(2,2) = xx + yy;
687
688 #ifdef IS_MPI
689 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(),
690 9, MPI::REALTYPE, MPI::SUM);
691 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
692 angularMomentum.getArrayPointer(), 3,
693 MPI::REALTYPE, MPI::SUM);
694 #endif
695
696 snap->setCOMw(angularMomentum);
697 snap->setInertiaTensor(inertiaTensor);
698 }
699
700 angularMomentum = snap->getCOMw();
701 inertiaTensor = snap->getInertiaTensor();
702
703 return;
704 }
705
706 // Returns the angular momentum of the system
707 Vector3d Thermo::getAngularMomentum(){
708 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
709
710 if (!snap->hasCOMw) {
711
712 Vector3d com(0.0);
713 Vector3d comVel(0.0);
714 Vector3d angularMomentum(0.0);
715
716 getComAll(com, comVel);
717
718 SimInfo::MoleculeIterator i;
719 Molecule* mol;
720
721 Vector3d thisr(0.0);
722 Vector3d thisp(0.0);
723
724 RealType thisMass;
725
726 for (mol = info_->beginMolecule(i); mol != NULL;
727 mol = info_->nextMolecule(i)) {
728 thisMass = mol->getMass();
729 thisr = mol->getCom() - com;
730 thisp = (mol->getComVel() - comVel) * thisMass;
731
732 angularMomentum += cross( thisr, thisp );
733 }
734
735 #ifdef IS_MPI
736 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
737 angularMomentum.getArrayPointer(), 3,
738 MPI::REALTYPE, MPI::SUM);
739 #endif
740
741 snap->setCOMw(angularMomentum);
742 }
743
744 return snap->getCOMw();
745 }
746
747
748 /**
749 * Returns the Volume of the system based on a ellipsoid with
750 * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
751 * where R_i are related to the principle inertia moments
752 * R_i = sqrt(C*I_i/N), this reduces to
753 * V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).
754 * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
755 */
756 RealType Thermo::getGyrationalVolume(){
757 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
758
759 if (!snap->hasGyrationalVolume) {
760
761 Mat3x3d intTensor;
762 RealType det;
763 Vector3d dummyAngMom;
764 RealType sysconstants;
765 RealType geomCnst;
766 RealType volume;
767
768 geomCnst = 3.0/2.0;
769 /* Get the inertial tensor and angular momentum for free*/
770 getInertiaTensor(intTensor, dummyAngMom);
771
772 det = intTensor.determinant();
773 sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects());
774 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
775
776 snap->setGyrationalVolume(volume);
777 }
778 return snap->getGyrationalVolume();
779 }
780
781 void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){
782 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
783
784 if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) {
785
786 Mat3x3d intTensor;
787 Vector3d dummyAngMom;
788 RealType sysconstants;
789 RealType geomCnst;
790
791 geomCnst = 3.0/2.0;
792 /* Get the inertia tensor and angular momentum for free*/
793 this->getInertiaTensor(intTensor, dummyAngMom);
794
795 detI = intTensor.determinant();
796 sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects());
797 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
798 snap->setGyrationalVolume(volume);
799 } else {
800 volume = snap->getGyrationalVolume();
801 detI = snap->getInertiaTensor().determinant();
802 }
803 return;
804 }
805
806 RealType Thermo::getTaggedAtomPairDistance(){
807 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
808 Globals* simParams = info_->getSimParams();
809
810 if (simParams->haveTaggedAtomPair() &&
811 simParams->havePrintTaggedPairDistance()) {
812 if ( simParams->getPrintTaggedPairDistance()) {
813
814 pair<int, int> tap = simParams->getTaggedAtomPair();
815 Vector3d pos1, pos2, rab;
816
817 #ifdef IS_MPI
818 int mol1 = info_->getGlobalMolMembership(tap.first);
819 int mol2 = info_->getGlobalMolMembership(tap.second);
820
821 int proc1 = info_->getMolToProc(mol1);
822 int proc2 = info_->getMolToProc(mol2);
823
824 RealType data[3];
825 if (proc1 == worldRank) {
826 StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
827 pos1 = sd1->getPos();
828 data[0] = pos1.x();
829 data[1] = pos1.y();
830 data[2] = pos1.z();
831 MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1);
832 } else {
833 MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1);
834 pos1 = Vector3d(data);
835 }
836
837 if (proc2 == worldRank) {
838 StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
839 pos2 = sd2->getPos();
840 data[0] = pos2.x();
841 data[1] = pos2.y();
842 data[2] = pos2.z();
843 MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2);
844 } else {
845 MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2);
846 pos2 = Vector3d(data);
847 }
848 #else
849 StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
850 StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
851 pos1 = at1->getPos();
852 pos2 = at2->getPos();
853 #endif
854 rab = pos2 - pos1;
855 currSnapshot->wrapVector(rab);
856 return rab.length();
857 }
858 return 0.0;
859 }
860 return 0.0;
861 }
862
863 RealType Thermo::getHullVolume(){
864 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
865
866 #ifdef HAVE_QHULL
867 if (!snap->hasHullVolume) {
868 Hull* surfaceMesh_;
869
870 Globals* simParams = info_->getSimParams();
871 const std::string ht = simParams->getHULL_Method();
872
873 if (ht == "Convex") {
874 surfaceMesh_ = new ConvexHull();
875 } else if (ht == "AlphaShape") {
876 surfaceMesh_ = new AlphaHull(simParams->getAlpha());
877 } else {
878 return 0.0;
879 }
880
881 // Build a vector of stunt doubles to determine if they are
882 // surface atoms
883 std::vector<StuntDouble*> localSites_;
884 Molecule* mol;
885 StuntDouble* sd;
886 SimInfo::MoleculeIterator i;
887 Molecule::IntegrableObjectIterator j;
888
889 for (mol = info_->beginMolecule(i); mol != NULL;
890 mol = info_->nextMolecule(i)) {
891 for (sd = mol->beginIntegrableObject(j);
892 sd != NULL;
893 sd = mol->nextIntegrableObject(j)) {
894 localSites_.push_back(sd);
895 }
896 }
897
898 // Compute surface Mesh
899 surfaceMesh_->computeHull(localSites_);
900 snap->setHullVolume(surfaceMesh_->getVolume());
901 }
902 return snap->getHullVolume();
903 #else
904 return 0.0;
905 #endif
906 }
907 }

Properties

Name Value
svn:keywords Author Id Revision Date