ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
Revision: 1767
Committed: Fri Jul 6 22:01:58 2012 UTC (12 years, 9 months ago) by gezelter
File size: 27984 byte(s)
Log Message:
Various fixes required to compile OpenMD with the MS Visual C++ compiler

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <math.h>
44 #include <iostream>
45
46 #ifdef IS_MPI
47 #include <mpi.h>
48 #endif //is_mpi
49
50 #include "brains/Thermo.hpp"
51 #include "primitives/Molecule.hpp"
52 #include "utils/simError.h"
53 #include "utils/PhysicalConstants.hpp"
54 #include "types/FixedChargeAdapter.hpp"
55 #include "types/FluctuatingChargeAdapter.hpp"
56 #include "types/MultipoleAdapter.hpp"
57 #ifdef HAVE_QHULL
58 #include "math/ConvexHull.hpp"
59 #include "math/AlphaHull.hpp"
60 #endif
61
62 using namespace std;
63 namespace OpenMD {
64
65 RealType Thermo::getTranslationalKinetic() {
66 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
67
68 if (!snap->hasTranslationalKineticEnergy) {
69 SimInfo::MoleculeIterator miter;
70 vector<StuntDouble*>::iterator iiter;
71 Molecule* mol;
72 StuntDouble* sd;
73 Vector3d vel;
74 RealType mass;
75 RealType kinetic(0.0);
76
77 for (mol = info_->beginMolecule(miter); mol != NULL;
78 mol = info_->nextMolecule(miter)) {
79
80 for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
81 sd = mol->nextIntegrableObject(iiter)) {
82
83 mass = sd->getMass();
84 vel = sd->getVel();
85
86 kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
87
88 }
89 }
90
91 #ifdef IS_MPI
92 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
93 MPI::SUM);
94 #endif
95
96 kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
97
98
99 snap->setTranslationalKineticEnergy(kinetic);
100 }
101 return snap->getTranslationalKineticEnergy();
102 }
103
104 RealType Thermo::getRotationalKinetic() {
105 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
106
107 if (!snap->hasRotationalKineticEnergy) {
108 SimInfo::MoleculeIterator miter;
109 vector<StuntDouble*>::iterator iiter;
110 Molecule* mol;
111 StuntDouble* sd;
112 Vector3d angMom;
113 Mat3x3d I;
114 int i, j, k;
115 RealType kinetic(0.0);
116
117 for (mol = info_->beginMolecule(miter); mol != NULL;
118 mol = info_->nextMolecule(miter)) {
119
120 for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
121 sd = mol->nextIntegrableObject(iiter)) {
122
123 if (sd->isDirectional()) {
124 angMom = sd->getJ();
125 I = sd->getI();
126
127 if (sd->isLinear()) {
128 i = sd->linearAxis();
129 j = (i + 1) % 3;
130 k = (i + 2) % 3;
131 kinetic += angMom[j] * angMom[j] / I(j, j)
132 + angMom[k] * angMom[k] / I(k, k);
133 } else {
134 kinetic += angMom[0]*angMom[0]/I(0, 0)
135 + angMom[1]*angMom[1]/I(1, 1)
136 + angMom[2]*angMom[2]/I(2, 2);
137 }
138 }
139 }
140 }
141
142 #ifdef IS_MPI
143 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
144 MPI::SUM);
145 #endif
146
147 kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
148
149 snap->setRotationalKineticEnergy(kinetic);
150 }
151 return snap->getRotationalKineticEnergy();
152 }
153
154
155
156 RealType Thermo::getKinetic() {
157 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
158
159 if (!snap->hasKineticEnergy) {
160 RealType ke = getTranslationalKinetic() + getRotationalKinetic();
161 snap->setKineticEnergy(ke);
162 }
163 return snap->getKineticEnergy();
164 }
165
166 RealType Thermo::getPotential() {
167
168 // ForceManager computes the potential and stores it in the
169 // Snapshot. All we have to do is report it.
170
171 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
172 return snap->getPotentialEnergy();
173 }
174
175 RealType Thermo::getTotalEnergy() {
176
177 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
178
179 if (!snap->hasTotalEnergy) {
180 snap->setTotalEnergy(this->getKinetic() + this->getPotential());
181 }
182
183 return snap->getTotalEnergy();
184 }
185
186 RealType Thermo::getTemperature() {
187
188 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
189
190 if (!snap->hasTemperature) {
191
192 RealType temperature = ( 2.0 * this->getKinetic() )
193 / (info_->getNdf()* PhysicalConstants::kb );
194
195 snap->setTemperature(temperature);
196 }
197
198 return snap->getTemperature();
199 }
200
201 RealType Thermo::getElectronicTemperature() {
202 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
203
204 if (!snap->hasElectronicTemperature) {
205
206 SimInfo::MoleculeIterator miter;
207 vector<Atom*>::iterator iiter;
208 Molecule* mol;
209 Atom* atom;
210 RealType cvel;
211 RealType cmass;
212 RealType kinetic(0.0);
213 RealType eTemp;
214
215 for (mol = info_->beginMolecule(miter); mol != NULL;
216 mol = info_->nextMolecule(miter)) {
217
218 for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
219 atom = mol->nextFluctuatingCharge(iiter)) {
220
221 cmass = atom->getChargeMass();
222 cvel = atom->getFlucQVel();
223
224 kinetic += cmass * cvel * cvel;
225
226 }
227 }
228
229 #ifdef IS_MPI
230 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
231 MPI::SUM);
232 #endif
233
234 kinetic *= 0.5;
235 eTemp = (2.0 * kinetic) /
236 (info_->getNFluctuatingCharges() * PhysicalConstants::kb );
237
238 snap->setElectronicTemperature(eTemp);
239 }
240
241 return snap->getElectronicTemperature();
242 }
243
244
245 RealType Thermo::getVolume() {
246 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
247 return snap->getVolume();
248 }
249
250 RealType Thermo::getPressure() {
251 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
252
253 if (!snap->hasPressure) {
254 // Relies on the calculation of the full molecular pressure tensor
255
256 Mat3x3d tensor;
257 RealType pressure;
258
259 tensor = getPressureTensor();
260
261 pressure = PhysicalConstants::pressureConvert *
262 (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
263
264 snap->setPressure(pressure);
265 }
266
267 return snap->getPressure();
268 }
269
270 Mat3x3d Thermo::getPressureTensor() {
271 // returns pressure tensor in units amu*fs^-2*Ang^-1
272 // routine derived via viral theorem description in:
273 // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
274 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
275
276 if (!snap->hasPressureTensor) {
277
278 Mat3x3d pressureTensor;
279 Mat3x3d p_tens(0.0);
280 RealType mass;
281 Vector3d vcom;
282
283 SimInfo::MoleculeIterator i;
284 vector<StuntDouble*>::iterator j;
285 Molecule* mol;
286 StuntDouble* sd;
287 for (mol = info_->beginMolecule(i); mol != NULL;
288 mol = info_->nextMolecule(i)) {
289
290 for (sd = mol->beginIntegrableObject(j); sd != NULL;
291 sd = mol->nextIntegrableObject(j)) {
292
293 mass = sd->getMass();
294 vcom = sd->getVel();
295 p_tens += mass * outProduct(vcom, vcom);
296 }
297 }
298
299 #ifdef IS_MPI
300 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9,
301 MPI::REALTYPE, MPI::SUM);
302 #endif
303
304 RealType volume = this->getVolume();
305 Mat3x3d stressTensor = snap->getStressTensor();
306
307 pressureTensor = (p_tens +
308 PhysicalConstants::energyConvert * stressTensor)/volume;
309
310 snap->setPressureTensor(pressureTensor);
311 }
312 return snap->getPressureTensor();
313 }
314
315
316
317
318 Vector3d Thermo::getSystemDipole() {
319 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
320
321 if (!snap->hasSystemDipole) {
322 SimInfo::MoleculeIterator miter;
323 vector<Atom*>::iterator aiter;
324 Molecule* mol;
325 Atom* atom;
326 RealType charge;
327 RealType moment(0.0);
328 Vector3d ri(0.0);
329 Vector3d dipoleVector(0.0);
330 Vector3d nPos(0.0);
331 Vector3d pPos(0.0);
332 RealType nChg(0.0);
333 RealType pChg(0.0);
334 int nCount = 0;
335 int pCount = 0;
336
337 RealType chargeToC = 1.60217733e-19;
338 RealType angstromToM = 1.0e-10;
339 RealType debyeToCm = 3.33564095198e-30;
340
341 for (mol = info_->beginMolecule(miter); mol != NULL;
342 mol = info_->nextMolecule(miter)) {
343
344 for (atom = mol->beginAtom(aiter); atom != NULL;
345 atom = mol->nextAtom(aiter)) {
346
347 charge = 0.0;
348
349 FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
350 if ( fca.isFixedCharge() ) {
351 charge = fca.getCharge();
352 }
353
354 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
355 if ( fqa.isFluctuatingCharge() ) {
356 charge += atom->getFlucQPos();
357 }
358
359 charge *= chargeToC;
360
361 ri = atom->getPos();
362 snap->wrapVector(ri);
363 ri *= angstromToM;
364
365 if (charge < 0.0) {
366 nPos += ri;
367 nChg -= charge;
368 nCount++;
369 } else if (charge > 0.0) {
370 pPos += ri;
371 pChg += charge;
372 pCount++;
373 }
374
375 MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
376 if (ma.isDipole() ) {
377 Vector3d u_i = atom->getElectroFrame().getColumn(2);
378 moment = ma.getDipoleMoment();
379 moment *= debyeToCm;
380 dipoleVector += u_i * moment;
381 }
382 }
383 }
384
385
386 #ifdef IS_MPI
387 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE,
388 MPI::SUM);
389 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE,
390 MPI::SUM);
391
392 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER,
393 MPI::SUM);
394 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER,
395 MPI::SUM);
396
397 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3,
398 MPI::REALTYPE, MPI::SUM);
399 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3,
400 MPI::REALTYPE, MPI::SUM);
401
402 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(),
403 3, MPI::REALTYPE, MPI::SUM);
404 #endif
405
406 // first load the accumulated dipole moment (if dipoles were present)
407 Vector3d boxDipole = dipoleVector;
408 // now include the dipole moment due to charges
409 // use the lesser of the positive and negative charge totals
410 RealType chg_value = nChg <= pChg ? nChg : pChg;
411
412 // find the average positions
413 if (pCount > 0 && nCount > 0 ) {
414 pPos /= pCount;
415 nPos /= nCount;
416 }
417
418 // dipole is from the negative to the positive (physics notation)
419 boxDipole += (pPos - nPos) * chg_value;
420 snap->setSystemDipole(boxDipole);
421 }
422
423 return snap->getSystemDipole();
424 }
425
426 // Returns the Heat Flux Vector for the system
427 Vector3d Thermo::getHeatFlux(){
428 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
429 SimInfo::MoleculeIterator miter;
430 vector<StuntDouble*>::iterator iiter;
431 Molecule* mol;
432 StuntDouble* sd;
433 RigidBody::AtomIterator ai;
434 Atom* atom;
435 Vector3d vel;
436 Vector3d angMom;
437 Mat3x3d I;
438 int i;
439 int j;
440 int k;
441 RealType mass;
442
443 Vector3d x_a;
444 RealType kinetic;
445 RealType potential;
446 RealType eatom;
447 RealType AvgE_a_ = 0;
448 // Convective portion of the heat flux
449 Vector3d heatFluxJc = V3Zero;
450
451 /* Calculate convective portion of the heat flux */
452 for (mol = info_->beginMolecule(miter); mol != NULL;
453 mol = info_->nextMolecule(miter)) {
454
455 for (sd = mol->beginIntegrableObject(iiter);
456 sd != NULL;
457 sd = mol->nextIntegrableObject(iiter)) {
458
459 mass = sd->getMass();
460 vel = sd->getVel();
461
462 kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
463
464 if (sd->isDirectional()) {
465 angMom = sd->getJ();
466 I = sd->getI();
467
468 if (sd->isLinear()) {
469 i = sd->linearAxis();
470 j = (i + 1) % 3;
471 k = (i + 2) % 3;
472 kinetic += angMom[j] * angMom[j] / I(j, j)
473 + angMom[k] * angMom[k] / I(k, k);
474 } else {
475 kinetic += angMom[0]*angMom[0]/I(0, 0)
476 + angMom[1]*angMom[1]/I(1, 1)
477 + angMom[2]*angMom[2]/I(2, 2);
478 }
479 }
480
481 potential = 0.0;
482
483 if (sd->isRigidBody()) {
484 RigidBody* rb = dynamic_cast<RigidBody*>(sd);
485 for (atom = rb->beginAtom(ai); atom != NULL;
486 atom = rb->nextAtom(ai)) {
487 potential += atom->getParticlePot();
488 }
489 } else {
490 potential = sd->getParticlePot();
491 }
492
493 potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
494 // The potential may not be a 1/2 factor
495 eatom = (kinetic + potential)/2.0; // amu A^2/fs^2
496 heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
497 heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
498 heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
499 }
500 }
501
502 /* The J_v vector is reduced in the forceManager so everyone has
503 * the global Jv. Jc is computed over the local atoms and must be
504 * reduced among all processors.
505 */
506 #ifdef IS_MPI
507 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,
508 MPI::SUM);
509 #endif
510
511 // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
512
513 Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
514 PhysicalConstants::energyConvert;
515
516 // Correct for the fact the flux is 1/V (Jc + Jv)
517 return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
518 }
519
520
521 Vector3d Thermo::getComVel(){
522 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
523
524 if (!snap->hasCOMvel) {
525
526 SimInfo::MoleculeIterator i;
527 Molecule* mol;
528
529 Vector3d comVel(0.0);
530 RealType totalMass(0.0);
531
532 for (mol = info_->beginMolecule(i); mol != NULL;
533 mol = info_->nextMolecule(i)) {
534 RealType mass = mol->getMass();
535 totalMass += mass;
536 comVel += mass * mol->getComVel();
537 }
538
539 #ifdef IS_MPI
540 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
541 MPI::SUM);
542 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
543 MPI::REALTYPE, MPI::SUM);
544 #endif
545
546 comVel /= totalMass;
547 snap->setCOMvel(comVel);
548 }
549 return snap->getCOMvel();
550 }
551
552 Vector3d Thermo::getCom(){
553 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
554
555 if (!snap->hasCOM) {
556
557 SimInfo::MoleculeIterator i;
558 Molecule* mol;
559
560 Vector3d com(0.0);
561 RealType totalMass(0.0);
562
563 for (mol = info_->beginMolecule(i); mol != NULL;
564 mol = info_->nextMolecule(i)) {
565 RealType mass = mol->getMass();
566 totalMass += mass;
567 com += mass * mol->getCom();
568 }
569
570 #ifdef IS_MPI
571 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
572 MPI::SUM);
573 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
574 MPI::REALTYPE, MPI::SUM);
575 #endif
576
577 com /= totalMass;
578 snap->setCOM(com);
579 }
580 return snap->getCOM();
581 }
582
583 /**
584 * Returns center of mass and center of mass velocity in one
585 * function call.
586 */
587 void Thermo::getComAll(Vector3d &com, Vector3d &comVel){
588 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
589
590 if (!(snap->hasCOM && snap->hasCOMvel)) {
591
592 SimInfo::MoleculeIterator i;
593 Molecule* mol;
594
595 RealType totalMass(0.0);
596
597 com = 0.0;
598 comVel = 0.0;
599
600 for (mol = info_->beginMolecule(i); mol != NULL;
601 mol = info_->nextMolecule(i)) {
602 RealType mass = mol->getMass();
603 totalMass += mass;
604 com += mass * mol->getCom();
605 comVel += mass * mol->getComVel();
606 }
607
608 #ifdef IS_MPI
609 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
610 MPI::SUM);
611 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
612 MPI::REALTYPE, MPI::SUM);
613 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
614 MPI::REALTYPE, MPI::SUM);
615 #endif
616
617 com /= totalMass;
618 comVel /= totalMass;
619 snap->setCOM(com);
620 snap->setCOMvel(comVel);
621 }
622 com = snap->getCOM();
623 comVel = snap->getCOMvel();
624 return;
625 }
626
627 /**
628 * Return intertia tensor for entire system and angular momentum
629 * Vector.
630 *
631 *
632 *
633 * [ Ixx -Ixy -Ixz ]
634 * I =| -Iyx Iyy -Iyz |
635 * [ -Izx -Iyz Izz ]
636 */
637 void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,
638 Vector3d &angularMomentum){
639
640 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
641
642 if (!(snap->hasInertiaTensor && snap->hasCOMw)) {
643
644 RealType xx = 0.0;
645 RealType yy = 0.0;
646 RealType zz = 0.0;
647 RealType xy = 0.0;
648 RealType xz = 0.0;
649 RealType yz = 0.0;
650 Vector3d com(0.0);
651 Vector3d comVel(0.0);
652
653 getComAll(com, comVel);
654
655 SimInfo::MoleculeIterator i;
656 Molecule* mol;
657
658 Vector3d thisq(0.0);
659 Vector3d thisv(0.0);
660
661 RealType thisMass = 0.0;
662
663 for (mol = info_->beginMolecule(i); mol != NULL;
664 mol = info_->nextMolecule(i)) {
665
666 thisq = mol->getCom()-com;
667 thisv = mol->getComVel()-comVel;
668 thisMass = mol->getMass();
669 // Compute moment of intertia coefficients.
670 xx += thisq[0]*thisq[0]*thisMass;
671 yy += thisq[1]*thisq[1]*thisMass;
672 zz += thisq[2]*thisq[2]*thisMass;
673
674 // compute products of intertia
675 xy += thisq[0]*thisq[1]*thisMass;
676 xz += thisq[0]*thisq[2]*thisMass;
677 yz += thisq[1]*thisq[2]*thisMass;
678
679 angularMomentum += cross( thisq, thisv ) * thisMass;
680 }
681
682 inertiaTensor(0,0) = yy + zz;
683 inertiaTensor(0,1) = -xy;
684 inertiaTensor(0,2) = -xz;
685 inertiaTensor(1,0) = -xy;
686 inertiaTensor(1,1) = xx + zz;
687 inertiaTensor(1,2) = -yz;
688 inertiaTensor(2,0) = -xz;
689 inertiaTensor(2,1) = -yz;
690 inertiaTensor(2,2) = xx + yy;
691
692 #ifdef IS_MPI
693 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(),
694 9, MPI::REALTYPE, MPI::SUM);
695 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
696 angularMomentum.getArrayPointer(), 3,
697 MPI::REALTYPE, MPI::SUM);
698 #endif
699
700 snap->setCOMw(angularMomentum);
701 snap->setInertiaTensor(inertiaTensor);
702 }
703
704 angularMomentum = snap->getCOMw();
705 inertiaTensor = snap->getInertiaTensor();
706
707 return;
708 }
709
710 // Returns the angular momentum of the system
711 Vector3d Thermo::getAngularMomentum(){
712 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
713
714 if (!snap->hasCOMw) {
715
716 Vector3d com(0.0);
717 Vector3d comVel(0.0);
718 Vector3d angularMomentum(0.0);
719
720 getComAll(com, comVel);
721
722 SimInfo::MoleculeIterator i;
723 Molecule* mol;
724
725 Vector3d thisr(0.0);
726 Vector3d thisp(0.0);
727
728 RealType thisMass;
729
730 for (mol = info_->beginMolecule(i); mol != NULL;
731 mol = info_->nextMolecule(i)) {
732 thisMass = mol->getMass();
733 thisr = mol->getCom() - com;
734 thisp = (mol->getComVel() - comVel) * thisMass;
735
736 angularMomentum += cross( thisr, thisp );
737 }
738
739 #ifdef IS_MPI
740 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
741 angularMomentum.getArrayPointer(), 3,
742 MPI::REALTYPE, MPI::SUM);
743 #endif
744
745 snap->setCOMw(angularMomentum);
746 }
747
748 return snap->getCOMw();
749 }
750
751
752 /**
753 * Returns the Volume of the system based on a ellipsoid with
754 * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
755 * where R_i are related to the principle inertia moments
756 * R_i = sqrt(C*I_i/N), this reduces to
757 * V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).
758 * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
759 */
760 RealType Thermo::getGyrationalVolume(){
761 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
762
763 if (!snap->hasGyrationalVolume) {
764
765 Mat3x3d intTensor;
766 RealType det;
767 Vector3d dummyAngMom;
768 RealType sysconstants;
769 RealType geomCnst;
770 RealType volume;
771
772 geomCnst = 3.0/2.0;
773 /* Get the inertial tensor and angular momentum for free*/
774 getInertiaTensor(intTensor, dummyAngMom);
775
776 det = intTensor.determinant();
777 sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects());
778 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
779
780 snap->setGyrationalVolume(volume);
781 }
782 return snap->getGyrationalVolume();
783 }
784
785 void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){
786 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
787
788 if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) {
789
790 Mat3x3d intTensor;
791 Vector3d dummyAngMom;
792 RealType sysconstants;
793 RealType geomCnst;
794
795 geomCnst = 3.0/2.0;
796 /* Get the inertia tensor and angular momentum for free*/
797 this->getInertiaTensor(intTensor, dummyAngMom);
798
799 detI = intTensor.determinant();
800 sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects());
801 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
802 snap->setGyrationalVolume(volume);
803 } else {
804 volume = snap->getGyrationalVolume();
805 detI = snap->getInertiaTensor().determinant();
806 }
807 return;
808 }
809
810 RealType Thermo::getTaggedAtomPairDistance(){
811 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
812 Globals* simParams = info_->getSimParams();
813
814 if (simParams->haveTaggedAtomPair() &&
815 simParams->havePrintTaggedPairDistance()) {
816 if ( simParams->getPrintTaggedPairDistance()) {
817
818 pair<int, int> tap = simParams->getTaggedAtomPair();
819 Vector3d pos1, pos2, rab;
820
821 #ifdef IS_MPI
822 int mol1 = info_->getGlobalMolMembership(tap.first);
823 int mol2 = info_->getGlobalMolMembership(tap.second);
824
825 int proc1 = info_->getMolToProc(mol1);
826 int proc2 = info_->getMolToProc(mol2);
827
828 RealType data[3];
829 if (proc1 == worldRank) {
830 StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
831 pos1 = sd1->getPos();
832 data[0] = pos1.x();
833 data[1] = pos1.y();
834 data[2] = pos1.z();
835 MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
836 } else {
837 MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
838 pos1 = Vector3d(data);
839 }
840
841 if (proc2 == worldRank) {
842 StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
843 pos2 = sd2->getPos();
844 data[0] = pos2.x();
845 data[1] = pos2.y();
846 data[2] = pos2.z();
847 MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
848 } else {
849 MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
850 pos2 = Vector3d(data);
851 }
852 #else
853 StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
854 StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
855 pos1 = at1->getPos();
856 pos2 = at2->getPos();
857 #endif
858 rab = pos2 - pos1;
859 currSnapshot->wrapVector(rab);
860 return rab.length();
861 }
862 return 0.0;
863 }
864 return 0.0;
865 }
866
867 RealType Thermo::getHullVolume(){
868 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
869
870 #ifdef HAVE_QHULL
871 if (!snap->hasHullVolume) {
872 Hull* surfaceMesh_;
873
874 Globals* simParams = info_->getSimParams();
875 const std::string ht = simParams->getHULL_Method();
876
877 if (ht == "Convex") {
878 surfaceMesh_ = new ConvexHull();
879 } else if (ht == "AlphaShape") {
880 surfaceMesh_ = new AlphaHull(simParams->getAlpha());
881 } else {
882 return 0.0;
883 }
884
885 // Build a vector of stunt doubles to determine if they are
886 // surface atoms
887 std::vector<StuntDouble*> localSites_;
888 Molecule* mol;
889 StuntDouble* sd;
890 SimInfo::MoleculeIterator i;
891 Molecule::IntegrableObjectIterator j;
892
893 for (mol = info_->beginMolecule(i); mol != NULL;
894 mol = info_->nextMolecule(i)) {
895 for (sd = mol->beginIntegrableObject(j);
896 sd != NULL;
897 sd = mol->nextIntegrableObject(j)) {
898 localSites_.push_back(sd);
899 }
900 }
901
902 // Compute surface Mesh
903 surfaceMesh_->computeHull(localSites_);
904 snap->setHullVolume(surfaceMesh_->getVolume());
905 }
906 return snap->getHullVolume();
907 #else
908 return 0.0;
909 #endif
910 }
911 }

Properties

Name Value
svn:keywords Author Id Revision Date