1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <math.h> |
44 |
#include <iostream> |
45 |
|
46 |
#ifdef IS_MPI |
47 |
#include <mpi.h> |
48 |
#endif //is_mpi |
49 |
|
50 |
#include "brains/Thermo.hpp" |
51 |
#include "primitives/Molecule.hpp" |
52 |
#include "utils/simError.h" |
53 |
#include "utils/PhysicalConstants.hpp" |
54 |
#include "types/FixedChargeAdapter.hpp" |
55 |
#include "types/FluctuatingChargeAdapter.hpp" |
56 |
#include "types/MultipoleAdapter.hpp" |
57 |
#include "math/ConvexHull.hpp" |
58 |
#include "math/AlphaHull.hpp" |
59 |
|
60 |
using namespace std; |
61 |
namespace OpenMD { |
62 |
|
63 |
RealType Thermo::getTranslationalKinetic() { |
64 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
65 |
|
66 |
if (!snap->hasTranslationalKineticEnergy) { |
67 |
SimInfo::MoleculeIterator miter; |
68 |
vector<StuntDouble*>::iterator iiter; |
69 |
Molecule* mol; |
70 |
StuntDouble* sd; |
71 |
Vector3d vel; |
72 |
RealType mass; |
73 |
RealType kinetic(0.0); |
74 |
|
75 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
76 |
mol = info_->nextMolecule(miter)) { |
77 |
|
78 |
for (sd = mol->beginIntegrableObject(iiter); sd != NULL; |
79 |
sd = mol->nextIntegrableObject(iiter)) { |
80 |
|
81 |
mass = sd->getMass(); |
82 |
vel = sd->getVel(); |
83 |
|
84 |
kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
85 |
|
86 |
} |
87 |
} |
88 |
|
89 |
#ifdef IS_MPI |
90 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, |
91 |
MPI::SUM); |
92 |
#endif |
93 |
|
94 |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
95 |
|
96 |
|
97 |
snap->setTranslationalKineticEnergy(kinetic); |
98 |
} |
99 |
return snap->getTranslationalKineticEnergy(); |
100 |
} |
101 |
|
102 |
RealType Thermo::getRotationalKinetic() { |
103 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
104 |
|
105 |
if (!snap->hasRotationalKineticEnergy) { |
106 |
SimInfo::MoleculeIterator miter; |
107 |
vector<StuntDouble*>::iterator iiter; |
108 |
Molecule* mol; |
109 |
StuntDouble* sd; |
110 |
Vector3d angMom; |
111 |
Mat3x3d I; |
112 |
int i, j, k; |
113 |
RealType kinetic(0.0); |
114 |
|
115 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
116 |
mol = info_->nextMolecule(miter)) { |
117 |
|
118 |
for (sd = mol->beginIntegrableObject(iiter); sd != NULL; |
119 |
sd = mol->nextIntegrableObject(iiter)) { |
120 |
|
121 |
if (sd->isDirectional()) { |
122 |
angMom = sd->getJ(); |
123 |
I = sd->getI(); |
124 |
|
125 |
if (sd->isLinear()) { |
126 |
i = sd->linearAxis(); |
127 |
j = (i + 1) % 3; |
128 |
k = (i + 2) % 3; |
129 |
kinetic += angMom[j] * angMom[j] / I(j, j) |
130 |
+ angMom[k] * angMom[k] / I(k, k); |
131 |
} else { |
132 |
kinetic += angMom[0]*angMom[0]/I(0, 0) |
133 |
+ angMom[1]*angMom[1]/I(1, 1) |
134 |
+ angMom[2]*angMom[2]/I(2, 2); |
135 |
} |
136 |
} |
137 |
} |
138 |
} |
139 |
|
140 |
#ifdef IS_MPI |
141 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, |
142 |
MPI::SUM); |
143 |
#endif |
144 |
|
145 |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
146 |
|
147 |
snap->setRotationalKineticEnergy(kinetic); |
148 |
} |
149 |
return snap->getRotationalKineticEnergy(); |
150 |
} |
151 |
|
152 |
|
153 |
|
154 |
RealType Thermo::getKinetic() { |
155 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
156 |
|
157 |
if (!snap->hasKineticEnergy) { |
158 |
RealType ke = getTranslationalKinetic() + getRotationalKinetic(); |
159 |
snap->setKineticEnergy(ke); |
160 |
} |
161 |
return snap->getKineticEnergy(); |
162 |
} |
163 |
|
164 |
RealType Thermo::getPotential() { |
165 |
|
166 |
// ForceManager computes the potential and stores it in the |
167 |
// Snapshot. All we have to do is report it. |
168 |
|
169 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
170 |
return snap->getPotentialEnergy(); |
171 |
} |
172 |
|
173 |
RealType Thermo::getTotalEnergy() { |
174 |
|
175 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
176 |
|
177 |
if (!snap->hasTotalEnergy) { |
178 |
snap->setTotalEnergy(this->getKinetic() + this->getPotential()); |
179 |
} |
180 |
|
181 |
return snap->getTotalEnergy(); |
182 |
} |
183 |
|
184 |
RealType Thermo::getTemperature() { |
185 |
|
186 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
187 |
|
188 |
if (!snap->hasTemperature) { |
189 |
|
190 |
RealType temperature = ( 2.0 * this->getKinetic() ) |
191 |
/ (info_->getNdf()* PhysicalConstants::kb ); |
192 |
|
193 |
snap->setTemperature(temperature); |
194 |
} |
195 |
|
196 |
return snap->getTemperature(); |
197 |
} |
198 |
|
199 |
RealType Thermo::getElectronicTemperature() { |
200 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
201 |
|
202 |
if (!snap->hasElectronicTemperature) { |
203 |
|
204 |
SimInfo::MoleculeIterator miter; |
205 |
vector<Atom*>::iterator iiter; |
206 |
Molecule* mol; |
207 |
Atom* atom; |
208 |
RealType cvel; |
209 |
RealType cmass; |
210 |
RealType kinetic(0.0); |
211 |
RealType eTemp; |
212 |
|
213 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
214 |
mol = info_->nextMolecule(miter)) { |
215 |
|
216 |
for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL; |
217 |
atom = mol->nextFluctuatingCharge(iiter)) { |
218 |
|
219 |
cmass = atom->getChargeMass(); |
220 |
cvel = atom->getFlucQVel(); |
221 |
|
222 |
kinetic += cmass * cvel * cvel; |
223 |
|
224 |
} |
225 |
} |
226 |
|
227 |
#ifdef IS_MPI |
228 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, |
229 |
MPI::SUM); |
230 |
#endif |
231 |
|
232 |
kinetic *= 0.5; |
233 |
eTemp = (2.0 * kinetic) / |
234 |
(info_->getNFluctuatingCharges() * PhysicalConstants::kb ); |
235 |
|
236 |
snap->setElectronicTemperature(eTemp); |
237 |
} |
238 |
|
239 |
return snap->getElectronicTemperature(); |
240 |
} |
241 |
|
242 |
|
243 |
RealType Thermo::getVolume() { |
244 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
245 |
return snap->getVolume(); |
246 |
} |
247 |
|
248 |
RealType Thermo::getPressure() { |
249 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
250 |
|
251 |
if (!snap->hasPressure) { |
252 |
// Relies on the calculation of the full molecular pressure tensor |
253 |
|
254 |
Mat3x3d tensor; |
255 |
RealType pressure; |
256 |
|
257 |
tensor = getPressureTensor(); |
258 |
|
259 |
pressure = PhysicalConstants::pressureConvert * |
260 |
(tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; |
261 |
|
262 |
snap->setPressure(pressure); |
263 |
} |
264 |
|
265 |
return snap->getPressure(); |
266 |
} |
267 |
|
268 |
Mat3x3d Thermo::getPressureTensor() { |
269 |
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
270 |
// routine derived via viral theorem description in: |
271 |
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
272 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
273 |
|
274 |
if (!snap->hasPressureTensor) { |
275 |
|
276 |
Mat3x3d pressureTensor; |
277 |
Mat3x3d p_tens(0.0); |
278 |
RealType mass; |
279 |
Vector3d vcom; |
280 |
|
281 |
SimInfo::MoleculeIterator i; |
282 |
vector<StuntDouble*>::iterator j; |
283 |
Molecule* mol; |
284 |
StuntDouble* sd; |
285 |
for (mol = info_->beginMolecule(i); mol != NULL; |
286 |
mol = info_->nextMolecule(i)) { |
287 |
|
288 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
289 |
sd = mol->nextIntegrableObject(j)) { |
290 |
|
291 |
mass = sd->getMass(); |
292 |
vcom = sd->getVel(); |
293 |
p_tens += mass * outProduct(vcom, vcom); |
294 |
} |
295 |
} |
296 |
|
297 |
#ifdef IS_MPI |
298 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9, |
299 |
MPI::REALTYPE, MPI::SUM); |
300 |
#endif |
301 |
|
302 |
RealType volume = this->getVolume(); |
303 |
Mat3x3d stressTensor = snap->getStressTensor(); |
304 |
|
305 |
pressureTensor = (p_tens + |
306 |
PhysicalConstants::energyConvert * stressTensor)/volume; |
307 |
|
308 |
snap->setPressureTensor(pressureTensor); |
309 |
} |
310 |
return snap->getPressureTensor(); |
311 |
} |
312 |
|
313 |
|
314 |
|
315 |
|
316 |
Vector3d Thermo::getSystemDipole() { |
317 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
318 |
|
319 |
if (!snap->hasSystemDipole) { |
320 |
SimInfo::MoleculeIterator miter; |
321 |
vector<Atom*>::iterator aiter; |
322 |
Molecule* mol; |
323 |
Atom* atom; |
324 |
RealType charge; |
325 |
RealType moment(0.0); |
326 |
Vector3d ri(0.0); |
327 |
Vector3d dipoleVector(0.0); |
328 |
Vector3d nPos(0.0); |
329 |
Vector3d pPos(0.0); |
330 |
RealType nChg(0.0); |
331 |
RealType pChg(0.0); |
332 |
int nCount = 0; |
333 |
int pCount = 0; |
334 |
|
335 |
RealType chargeToC = 1.60217733e-19; |
336 |
RealType angstromToM = 1.0e-10; |
337 |
RealType debyeToCm = 3.33564095198e-30; |
338 |
|
339 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
340 |
mol = info_->nextMolecule(miter)) { |
341 |
|
342 |
for (atom = mol->beginAtom(aiter); atom != NULL; |
343 |
atom = mol->nextAtom(aiter)) { |
344 |
|
345 |
charge = 0.0; |
346 |
|
347 |
FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType()); |
348 |
if ( fca.isFixedCharge() ) { |
349 |
charge = fca.getCharge(); |
350 |
} |
351 |
|
352 |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType()); |
353 |
if ( fqa.isFluctuatingCharge() ) { |
354 |
charge += atom->getFlucQPos(); |
355 |
} |
356 |
|
357 |
charge *= chargeToC; |
358 |
|
359 |
ri = atom->getPos(); |
360 |
snap->wrapVector(ri); |
361 |
ri *= angstromToM; |
362 |
|
363 |
if (charge < 0.0) { |
364 |
nPos += ri; |
365 |
nChg -= charge; |
366 |
nCount++; |
367 |
} else if (charge > 0.0) { |
368 |
pPos += ri; |
369 |
pChg += charge; |
370 |
pCount++; |
371 |
} |
372 |
|
373 |
MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType()); |
374 |
if (ma.isDipole() ) { |
375 |
Vector3d u_i = atom->getElectroFrame().getColumn(2); |
376 |
moment = ma.getDipoleMoment(); |
377 |
moment *= debyeToCm; |
378 |
dipoleVector += u_i * moment; |
379 |
} |
380 |
} |
381 |
} |
382 |
|
383 |
|
384 |
#ifdef IS_MPI |
385 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE, |
386 |
MPI::SUM); |
387 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE, |
388 |
MPI::SUM); |
389 |
|
390 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER, |
391 |
MPI::SUM); |
392 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER, |
393 |
MPI::SUM); |
394 |
|
395 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3, |
396 |
MPI::REALTYPE, MPI::SUM); |
397 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3, |
398 |
MPI::REALTYPE, MPI::SUM); |
399 |
|
400 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(), |
401 |
3, MPI::REALTYPE, MPI::SUM); |
402 |
#endif |
403 |
|
404 |
// first load the accumulated dipole moment (if dipoles were present) |
405 |
Vector3d boxDipole = dipoleVector; |
406 |
// now include the dipole moment due to charges |
407 |
// use the lesser of the positive and negative charge totals |
408 |
RealType chg_value = nChg <= pChg ? nChg : pChg; |
409 |
|
410 |
// find the average positions |
411 |
if (pCount > 0 && nCount > 0 ) { |
412 |
pPos /= pCount; |
413 |
nPos /= nCount; |
414 |
} |
415 |
|
416 |
// dipole is from the negative to the positive (physics notation) |
417 |
boxDipole += (pPos - nPos) * chg_value; |
418 |
snap->setSystemDipole(boxDipole); |
419 |
} |
420 |
|
421 |
return snap->getSystemDipole(); |
422 |
} |
423 |
|
424 |
// Returns the Heat Flux Vector for the system |
425 |
Vector3d Thermo::getHeatFlux(){ |
426 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
427 |
SimInfo::MoleculeIterator miter; |
428 |
vector<StuntDouble*>::iterator iiter; |
429 |
Molecule* mol; |
430 |
StuntDouble* sd; |
431 |
RigidBody::AtomIterator ai; |
432 |
Atom* atom; |
433 |
Vector3d vel; |
434 |
Vector3d angMom; |
435 |
Mat3x3d I; |
436 |
int i; |
437 |
int j; |
438 |
int k; |
439 |
RealType mass; |
440 |
|
441 |
Vector3d x_a; |
442 |
RealType kinetic; |
443 |
RealType potential; |
444 |
RealType eatom; |
445 |
RealType AvgE_a_ = 0; |
446 |
// Convective portion of the heat flux |
447 |
Vector3d heatFluxJc = V3Zero; |
448 |
|
449 |
/* Calculate convective portion of the heat flux */ |
450 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
451 |
mol = info_->nextMolecule(miter)) { |
452 |
|
453 |
for (sd = mol->beginIntegrableObject(iiter); |
454 |
sd != NULL; |
455 |
sd = mol->nextIntegrableObject(iiter)) { |
456 |
|
457 |
mass = sd->getMass(); |
458 |
vel = sd->getVel(); |
459 |
|
460 |
kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
461 |
|
462 |
if (sd->isDirectional()) { |
463 |
angMom = sd->getJ(); |
464 |
I = sd->getI(); |
465 |
|
466 |
if (sd->isLinear()) { |
467 |
i = sd->linearAxis(); |
468 |
j = (i + 1) % 3; |
469 |
k = (i + 2) % 3; |
470 |
kinetic += angMom[j] * angMom[j] / I(j, j) |
471 |
+ angMom[k] * angMom[k] / I(k, k); |
472 |
} else { |
473 |
kinetic += angMom[0]*angMom[0]/I(0, 0) |
474 |
+ angMom[1]*angMom[1]/I(1, 1) |
475 |
+ angMom[2]*angMom[2]/I(2, 2); |
476 |
} |
477 |
} |
478 |
|
479 |
potential = 0.0; |
480 |
|
481 |
if (sd->isRigidBody()) { |
482 |
RigidBody* rb = dynamic_cast<RigidBody*>(sd); |
483 |
for (atom = rb->beginAtom(ai); atom != NULL; |
484 |
atom = rb->nextAtom(ai)) { |
485 |
potential += atom->getParticlePot(); |
486 |
} |
487 |
} else { |
488 |
potential = sd->getParticlePot(); |
489 |
} |
490 |
|
491 |
potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 |
492 |
// The potential may not be a 1/2 factor |
493 |
eatom = (kinetic + potential)/2.0; // amu A^2/fs^2 |
494 |
heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 |
495 |
heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 |
496 |
heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 |
497 |
} |
498 |
} |
499 |
|
500 |
/* The J_v vector is reduced in the forceManager so everyone has |
501 |
* the global Jv. Jc is computed over the local atoms and must be |
502 |
* reduced among all processors. |
503 |
*/ |
504 |
#ifdef IS_MPI |
505 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE, |
506 |
MPI::SUM); |
507 |
#endif |
508 |
|
509 |
// (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 |
510 |
|
511 |
Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() * |
512 |
PhysicalConstants::energyConvert; |
513 |
|
514 |
// Correct for the fact the flux is 1/V (Jc + Jv) |
515 |
return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3 |
516 |
} |
517 |
|
518 |
|
519 |
Vector3d Thermo::getComVel(){ |
520 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
521 |
|
522 |
if (!snap->hasCOMvel) { |
523 |
|
524 |
SimInfo::MoleculeIterator i; |
525 |
Molecule* mol; |
526 |
|
527 |
Vector3d comVel(0.0); |
528 |
RealType totalMass(0.0); |
529 |
|
530 |
for (mol = info_->beginMolecule(i); mol != NULL; |
531 |
mol = info_->nextMolecule(i)) { |
532 |
RealType mass = mol->getMass(); |
533 |
totalMass += mass; |
534 |
comVel += mass * mol->getComVel(); |
535 |
} |
536 |
|
537 |
#ifdef IS_MPI |
538 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, |
539 |
MPI::SUM); |
540 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3, |
541 |
MPI::REALTYPE, MPI::SUM); |
542 |
#endif |
543 |
|
544 |
comVel /= totalMass; |
545 |
snap->setCOMvel(comVel); |
546 |
} |
547 |
return snap->getCOMvel(); |
548 |
} |
549 |
|
550 |
Vector3d Thermo::getCom(){ |
551 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
552 |
|
553 |
if (!snap->hasCOM) { |
554 |
|
555 |
SimInfo::MoleculeIterator i; |
556 |
Molecule* mol; |
557 |
|
558 |
Vector3d com(0.0); |
559 |
RealType totalMass(0.0); |
560 |
|
561 |
for (mol = info_->beginMolecule(i); mol != NULL; |
562 |
mol = info_->nextMolecule(i)) { |
563 |
RealType mass = mol->getMass(); |
564 |
totalMass += mass; |
565 |
com += mass * mol->getCom(); |
566 |
} |
567 |
|
568 |
#ifdef IS_MPI |
569 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, |
570 |
MPI::SUM); |
571 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3, |
572 |
MPI::REALTYPE, MPI::SUM); |
573 |
#endif |
574 |
|
575 |
com /= totalMass; |
576 |
snap->setCOM(com); |
577 |
} |
578 |
return snap->getCOM(); |
579 |
} |
580 |
|
581 |
/** |
582 |
* Returns center of mass and center of mass velocity in one |
583 |
* function call. |
584 |
*/ |
585 |
void Thermo::getComAll(Vector3d &com, Vector3d &comVel){ |
586 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
587 |
|
588 |
if (!(snap->hasCOM && snap->hasCOMvel)) { |
589 |
|
590 |
SimInfo::MoleculeIterator i; |
591 |
Molecule* mol; |
592 |
|
593 |
RealType totalMass(0.0); |
594 |
|
595 |
com = 0.0; |
596 |
comVel = 0.0; |
597 |
|
598 |
for (mol = info_->beginMolecule(i); mol != NULL; |
599 |
mol = info_->nextMolecule(i)) { |
600 |
RealType mass = mol->getMass(); |
601 |
totalMass += mass; |
602 |
com += mass * mol->getCom(); |
603 |
comVel += mass * mol->getComVel(); |
604 |
} |
605 |
|
606 |
#ifdef IS_MPI |
607 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, |
608 |
MPI::SUM); |
609 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3, |
610 |
MPI::REALTYPE, MPI::SUM); |
611 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3, |
612 |
MPI::REALTYPE, MPI::SUM); |
613 |
#endif |
614 |
|
615 |
com /= totalMass; |
616 |
comVel /= totalMass; |
617 |
snap->setCOM(com); |
618 |
snap->setCOMvel(comVel); |
619 |
} |
620 |
com = snap->getCOM(); |
621 |
comVel = snap->getCOMvel(); |
622 |
return; |
623 |
} |
624 |
|
625 |
/** |
626 |
* Return intertia tensor for entire system and angular momentum |
627 |
* Vector. |
628 |
* |
629 |
* |
630 |
* |
631 |
* [ Ixx -Ixy -Ixz ] |
632 |
* I =| -Iyx Iyy -Iyz | |
633 |
* [ -Izx -Iyz Izz ] |
634 |
*/ |
635 |
void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor, |
636 |
Vector3d &angularMomentum){ |
637 |
|
638 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
639 |
|
640 |
if (!(snap->hasInertiaTensor && snap->hasCOMw)) { |
641 |
|
642 |
RealType xx = 0.0; |
643 |
RealType yy = 0.0; |
644 |
RealType zz = 0.0; |
645 |
RealType xy = 0.0; |
646 |
RealType xz = 0.0; |
647 |
RealType yz = 0.0; |
648 |
Vector3d com(0.0); |
649 |
Vector3d comVel(0.0); |
650 |
|
651 |
getComAll(com, comVel); |
652 |
|
653 |
SimInfo::MoleculeIterator i; |
654 |
Molecule* mol; |
655 |
|
656 |
Vector3d thisq(0.0); |
657 |
Vector3d thisv(0.0); |
658 |
|
659 |
RealType thisMass = 0.0; |
660 |
|
661 |
for (mol = info_->beginMolecule(i); mol != NULL; |
662 |
mol = info_->nextMolecule(i)) { |
663 |
|
664 |
thisq = mol->getCom()-com; |
665 |
thisv = mol->getComVel()-comVel; |
666 |
thisMass = mol->getMass(); |
667 |
// Compute moment of intertia coefficients. |
668 |
xx += thisq[0]*thisq[0]*thisMass; |
669 |
yy += thisq[1]*thisq[1]*thisMass; |
670 |
zz += thisq[2]*thisq[2]*thisMass; |
671 |
|
672 |
// compute products of intertia |
673 |
xy += thisq[0]*thisq[1]*thisMass; |
674 |
xz += thisq[0]*thisq[2]*thisMass; |
675 |
yz += thisq[1]*thisq[2]*thisMass; |
676 |
|
677 |
angularMomentum += cross( thisq, thisv ) * thisMass; |
678 |
} |
679 |
|
680 |
inertiaTensor(0,0) = yy + zz; |
681 |
inertiaTensor(0,1) = -xy; |
682 |
inertiaTensor(0,2) = -xz; |
683 |
inertiaTensor(1,0) = -xy; |
684 |
inertiaTensor(1,1) = xx + zz; |
685 |
inertiaTensor(1,2) = -yz; |
686 |
inertiaTensor(2,0) = -xz; |
687 |
inertiaTensor(2,1) = -yz; |
688 |
inertiaTensor(2,2) = xx + yy; |
689 |
|
690 |
#ifdef IS_MPI |
691 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(), |
692 |
9, MPI::REALTYPE, MPI::SUM); |
693 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, |
694 |
angularMomentum.getArrayPointer(), 3, |
695 |
MPI::REALTYPE, MPI::SUM); |
696 |
#endif |
697 |
|
698 |
snap->setCOMw(angularMomentum); |
699 |
snap->setInertiaTensor(inertiaTensor); |
700 |
} |
701 |
|
702 |
angularMomentum = snap->getCOMw(); |
703 |
inertiaTensor = snap->getInertiaTensor(); |
704 |
|
705 |
return; |
706 |
} |
707 |
|
708 |
// Returns the angular momentum of the system |
709 |
Vector3d Thermo::getAngularMomentum(){ |
710 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
711 |
|
712 |
if (!snap->hasCOMw) { |
713 |
|
714 |
Vector3d com(0.0); |
715 |
Vector3d comVel(0.0); |
716 |
Vector3d angularMomentum(0.0); |
717 |
|
718 |
getComAll(com, comVel); |
719 |
|
720 |
SimInfo::MoleculeIterator i; |
721 |
Molecule* mol; |
722 |
|
723 |
Vector3d thisr(0.0); |
724 |
Vector3d thisp(0.0); |
725 |
|
726 |
RealType thisMass; |
727 |
|
728 |
for (mol = info_->beginMolecule(i); mol != NULL; |
729 |
mol = info_->nextMolecule(i)) { |
730 |
thisMass = mol->getMass(); |
731 |
thisr = mol->getCom() - com; |
732 |
thisp = (mol->getComVel() - comVel) * thisMass; |
733 |
|
734 |
angularMomentum += cross( thisr, thisp ); |
735 |
} |
736 |
|
737 |
#ifdef IS_MPI |
738 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, |
739 |
angularMomentum.getArrayPointer(), 3, |
740 |
MPI::REALTYPE, MPI::SUM); |
741 |
#endif |
742 |
|
743 |
snap->setCOMw(angularMomentum); |
744 |
} |
745 |
|
746 |
return snap->getCOMw(); |
747 |
} |
748 |
|
749 |
|
750 |
/** |
751 |
* Returns the Volume of the system based on a ellipsoid with |
752 |
* semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
753 |
* where R_i are related to the principle inertia moments |
754 |
* R_i = sqrt(C*I_i/N), this reduces to |
755 |
* V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). |
756 |
* See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
757 |
*/ |
758 |
RealType Thermo::getGyrationalVolume(){ |
759 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
760 |
|
761 |
if (!snap->hasGyrationalVolume) { |
762 |
|
763 |
Mat3x3d intTensor; |
764 |
RealType det; |
765 |
Vector3d dummyAngMom; |
766 |
RealType sysconstants; |
767 |
RealType geomCnst; |
768 |
RealType volume; |
769 |
|
770 |
geomCnst = 3.0/2.0; |
771 |
/* Get the inertial tensor and angular momentum for free*/ |
772 |
getInertiaTensor(intTensor, dummyAngMom); |
773 |
|
774 |
det = intTensor.determinant(); |
775 |
sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects()); |
776 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
777 |
|
778 |
snap->setGyrationalVolume(volume); |
779 |
} |
780 |
return snap->getGyrationalVolume(); |
781 |
} |
782 |
|
783 |
void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){ |
784 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
785 |
|
786 |
if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) { |
787 |
|
788 |
Mat3x3d intTensor; |
789 |
Vector3d dummyAngMom; |
790 |
RealType sysconstants; |
791 |
RealType geomCnst; |
792 |
|
793 |
geomCnst = 3.0/2.0; |
794 |
/* Get the inertia tensor and angular momentum for free*/ |
795 |
this->getInertiaTensor(intTensor, dummyAngMom); |
796 |
|
797 |
detI = intTensor.determinant(); |
798 |
sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects()); |
799 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
800 |
snap->setGyrationalVolume(volume); |
801 |
} else { |
802 |
volume = snap->getGyrationalVolume(); |
803 |
detI = snap->getInertiaTensor().determinant(); |
804 |
} |
805 |
return; |
806 |
} |
807 |
|
808 |
RealType Thermo::getTaggedAtomPairDistance(){ |
809 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
810 |
Globals* simParams = info_->getSimParams(); |
811 |
|
812 |
if (simParams->haveTaggedAtomPair() && |
813 |
simParams->havePrintTaggedPairDistance()) { |
814 |
if ( simParams->getPrintTaggedPairDistance()) { |
815 |
|
816 |
pair<int, int> tap = simParams->getTaggedAtomPair(); |
817 |
Vector3d pos1, pos2, rab; |
818 |
|
819 |
#ifdef IS_MPI |
820 |
int mol1 = info_->getGlobalMolMembership(tap.first); |
821 |
int mol2 = info_->getGlobalMolMembership(tap.second); |
822 |
|
823 |
int proc1 = info_->getMolToProc(mol1); |
824 |
int proc2 = info_->getMolToProc(mol2); |
825 |
|
826 |
RealType data[3]; |
827 |
if (proc1 == worldRank) { |
828 |
StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); |
829 |
pos1 = sd1->getPos(); |
830 |
data[0] = pos1.x(); |
831 |
data[1] = pos1.y(); |
832 |
data[2] = pos1.z(); |
833 |
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
834 |
} else { |
835 |
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
836 |
pos1 = Vector3d(data); |
837 |
} |
838 |
|
839 |
if (proc2 == worldRank) { |
840 |
StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); |
841 |
pos2 = sd2->getPos(); |
842 |
data[0] = pos2.x(); |
843 |
data[1] = pos2.y(); |
844 |
data[2] = pos2.z(); |
845 |
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
846 |
} else { |
847 |
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
848 |
pos2 = Vector3d(data); |
849 |
} |
850 |
#else |
851 |
StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first); |
852 |
StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); |
853 |
pos1 = at1->getPos(); |
854 |
pos2 = at2->getPos(); |
855 |
#endif |
856 |
rab = pos2 - pos1; |
857 |
currSnapshot->wrapVector(rab); |
858 |
return rab.length(); |
859 |
} |
860 |
return 0.0; |
861 |
} |
862 |
return 0.0; |
863 |
} |
864 |
|
865 |
RealType Thermo::getHullVolume(){ |
866 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
867 |
|
868 |
if (!snap->hasHullVolume) { |
869 |
|
870 |
Hull* surfaceMesh_; |
871 |
|
872 |
Globals* simParams = info_->getSimParams(); |
873 |
const std::string ht = simParams->getHULL_Method(); |
874 |
|
875 |
if (ht == "Convex") { |
876 |
surfaceMesh_ = new ConvexHull(); |
877 |
} else if (ht == "AlphaShape") { |
878 |
surfaceMesh_ = new AlphaHull(simParams->getAlpha()); |
879 |
} else { |
880 |
return 0.0; |
881 |
} |
882 |
|
883 |
// Build a vector of stunt doubles to determine if they are |
884 |
// surface atoms |
885 |
std::vector<StuntDouble*> localSites_; |
886 |
Molecule* mol; |
887 |
StuntDouble* sd; |
888 |
SimInfo::MoleculeIterator i; |
889 |
Molecule::IntegrableObjectIterator j; |
890 |
|
891 |
for (mol = info_->beginMolecule(i); mol != NULL; |
892 |
mol = info_->nextMolecule(i)) { |
893 |
for (sd = mol->beginIntegrableObject(j); |
894 |
sd != NULL; |
895 |
sd = mol->nextIntegrableObject(j)) { |
896 |
localSites_.push_back(sd); |
897 |
} |
898 |
} |
899 |
|
900 |
// Compute surface Mesh |
901 |
surfaceMesh_->computeHull(localSites_); |
902 |
snap->setHullVolume(surfaceMesh_->getVolume()); |
903 |
} |
904 |
return snap->getHullVolume(); |
905 |
} |
906 |
} |