1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <math.h> |
44 |
#include <iostream> |
45 |
|
46 |
#ifdef IS_MPI |
47 |
#include <mpi.h> |
48 |
#endif //is_mpi |
49 |
|
50 |
#include "brains/Thermo.hpp" |
51 |
#include "primitives/Molecule.hpp" |
52 |
#include "utils/simError.h" |
53 |
#include "utils/PhysicalConstants.hpp" |
54 |
#include "types/MultipoleAdapter.hpp" |
55 |
|
56 |
namespace OpenMD { |
57 |
|
58 |
RealType Thermo::getKinetic() { |
59 |
SimInfo::MoleculeIterator miter; |
60 |
std::vector<StuntDouble*>::iterator iiter; |
61 |
Molecule* mol; |
62 |
StuntDouble* integrableObject; |
63 |
Vector3d vel; |
64 |
Vector3d angMom; |
65 |
Mat3x3d I; |
66 |
int i; |
67 |
int j; |
68 |
int k; |
69 |
RealType mass; |
70 |
RealType kinetic = 0.0; |
71 |
RealType kinetic_global = 0.0; |
72 |
|
73 |
for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { |
74 |
for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; |
75 |
integrableObject = mol->nextIntegrableObject(iiter)) { |
76 |
|
77 |
mass = integrableObject->getMass(); |
78 |
vel = integrableObject->getVel(); |
79 |
|
80 |
kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
81 |
|
82 |
if (integrableObject->isDirectional()) { |
83 |
angMom = integrableObject->getJ(); |
84 |
I = integrableObject->getI(); |
85 |
|
86 |
if (integrableObject->isLinear()) { |
87 |
i = integrableObject->linearAxis(); |
88 |
j = (i + 1) % 3; |
89 |
k = (i + 2) % 3; |
90 |
kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); |
91 |
} else { |
92 |
kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) |
93 |
+ angMom[2]*angMom[2]/I(2, 2); |
94 |
} |
95 |
} |
96 |
|
97 |
} |
98 |
} |
99 |
|
100 |
#ifdef IS_MPI |
101 |
|
102 |
MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, |
103 |
MPI_COMM_WORLD); |
104 |
kinetic = kinetic_global; |
105 |
|
106 |
#endif //is_mpi |
107 |
|
108 |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
109 |
|
110 |
return kinetic; |
111 |
} |
112 |
|
113 |
RealType Thermo::getPotential() { |
114 |
RealType potential = 0.0; |
115 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
116 |
RealType shortRangePot_local = curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; |
117 |
|
118 |
// Get total potential for entire system from MPI. |
119 |
|
120 |
#ifdef IS_MPI |
121 |
|
122 |
MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM, |
123 |
MPI_COMM_WORLD); |
124 |
potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
125 |
|
126 |
#else |
127 |
|
128 |
potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
129 |
|
130 |
#endif // is_mpi |
131 |
|
132 |
return potential; |
133 |
} |
134 |
|
135 |
RealType Thermo::getTotalE() { |
136 |
RealType total; |
137 |
|
138 |
total = this->getKinetic() + this->getPotential(); |
139 |
return total; |
140 |
} |
141 |
|
142 |
RealType Thermo::getTemperature() { |
143 |
|
144 |
RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb ); |
145 |
return temperature; |
146 |
} |
147 |
|
148 |
RealType Thermo::getElectronicTemperature() { |
149 |
SimInfo::MoleculeIterator miter; |
150 |
std::vector<Atom*>::iterator iiter; |
151 |
Molecule* mol; |
152 |
Atom* atom; |
153 |
RealType cvel; |
154 |
RealType cmass; |
155 |
RealType kinetic = 0.0; |
156 |
RealType kinetic_global = 0.0; |
157 |
|
158 |
for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { |
159 |
for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL; |
160 |
atom = mol->nextFluctuatingCharge(iiter)) { |
161 |
cmass = atom->getChargeMass(); |
162 |
cvel = atom->getFlucQVel(); |
163 |
|
164 |
kinetic += cmass * cvel * cvel; |
165 |
|
166 |
} |
167 |
} |
168 |
|
169 |
#ifdef IS_MPI |
170 |
|
171 |
MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, |
172 |
MPI_COMM_WORLD); |
173 |
kinetic = kinetic_global; |
174 |
|
175 |
#endif //is_mpi |
176 |
|
177 |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
178 |
return ( 2.0 * kinetic) / (info_->getNFluctuatingCharges()* PhysicalConstants::kb ); |
179 |
} |
180 |
|
181 |
|
182 |
|
183 |
|
184 |
RealType Thermo::getVolume() { |
185 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
186 |
return curSnapshot->getVolume(); |
187 |
} |
188 |
|
189 |
RealType Thermo::getPressure() { |
190 |
|
191 |
// Relies on the calculation of the full molecular pressure tensor |
192 |
|
193 |
|
194 |
Mat3x3d tensor; |
195 |
RealType pressure; |
196 |
|
197 |
tensor = getPressureTensor(); |
198 |
|
199 |
pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; |
200 |
|
201 |
return pressure; |
202 |
} |
203 |
|
204 |
RealType Thermo::getPressure(int direction) { |
205 |
|
206 |
// Relies on the calculation of the full molecular pressure tensor |
207 |
|
208 |
|
209 |
Mat3x3d tensor; |
210 |
RealType pressure; |
211 |
|
212 |
tensor = getPressureTensor(); |
213 |
|
214 |
pressure = PhysicalConstants::pressureConvert * tensor(direction, direction); |
215 |
|
216 |
return pressure; |
217 |
} |
218 |
|
219 |
Mat3x3d Thermo::getPressureTensor() { |
220 |
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
221 |
// routine derived via viral theorem description in: |
222 |
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
223 |
Mat3x3d pressureTensor; |
224 |
Mat3x3d p_local(0.0); |
225 |
Mat3x3d p_global(0.0); |
226 |
|
227 |
SimInfo::MoleculeIterator i; |
228 |
std::vector<StuntDouble*>::iterator j; |
229 |
Molecule* mol; |
230 |
StuntDouble* integrableObject; |
231 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
232 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
233 |
integrableObject = mol->nextIntegrableObject(j)) { |
234 |
|
235 |
RealType mass = integrableObject->getMass(); |
236 |
Vector3d vcom = integrableObject->getVel(); |
237 |
p_local += mass * outProduct(vcom, vcom); |
238 |
} |
239 |
} |
240 |
|
241 |
#ifdef IS_MPI |
242 |
MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
243 |
#else |
244 |
p_global = p_local; |
245 |
#endif // is_mpi |
246 |
|
247 |
RealType volume = this->getVolume(); |
248 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
249 |
Mat3x3d stressTensor = curSnapshot->getStressTensor(); |
250 |
|
251 |
pressureTensor = (p_global + |
252 |
PhysicalConstants::energyConvert * stressTensor)/volume; |
253 |
|
254 |
return pressureTensor; |
255 |
} |
256 |
|
257 |
|
258 |
void Thermo::saveStat(){ |
259 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
260 |
Stats& stat = currSnapshot->statData; |
261 |
|
262 |
stat[Stats::KINETIC_ENERGY] = getKinetic(); |
263 |
stat[Stats::POTENTIAL_ENERGY] = getPotential(); |
264 |
stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY] + stat[Stats::POTENTIAL_ENERGY] ; |
265 |
stat[Stats::TEMPERATURE] = getTemperature(); |
266 |
stat[Stats::PRESSURE] = getPressure(); |
267 |
stat[Stats::VOLUME] = getVolume(); |
268 |
|
269 |
Mat3x3d tensor =getPressureTensor(); |
270 |
stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0); |
271 |
stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1); |
272 |
stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2); |
273 |
stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0); |
274 |
stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1); |
275 |
stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2); |
276 |
stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0); |
277 |
stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1); |
278 |
stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2); |
279 |
|
280 |
// grab the simulation box dipole moment if specified |
281 |
if (info_->getCalcBoxDipole()){ |
282 |
Vector3d totalDipole = getBoxDipole(); |
283 |
stat[Stats::BOX_DIPOLE_X] = totalDipole(0); |
284 |
stat[Stats::BOX_DIPOLE_Y] = totalDipole(1); |
285 |
stat[Stats::BOX_DIPOLE_Z] = totalDipole(2); |
286 |
} |
287 |
|
288 |
Globals* simParams = info_->getSimParams(); |
289 |
// grab the heat flux if desired |
290 |
if (simParams->havePrintHeatFlux()) { |
291 |
if (simParams->getPrintHeatFlux()){ |
292 |
Vector3d heatFlux = getHeatFlux(); |
293 |
stat[Stats::HEATFLUX_X] = heatFlux(0); |
294 |
stat[Stats::HEATFLUX_Y] = heatFlux(1); |
295 |
stat[Stats::HEATFLUX_Z] = heatFlux(2); |
296 |
} |
297 |
} |
298 |
|
299 |
if (simParams->haveTaggedAtomPair() && |
300 |
simParams->havePrintTaggedPairDistance()) { |
301 |
if ( simParams->getPrintTaggedPairDistance()) { |
302 |
|
303 |
std::pair<int, int> tap = simParams->getTaggedAtomPair(); |
304 |
Vector3d pos1, pos2, rab; |
305 |
|
306 |
#ifdef IS_MPI |
307 |
std::cerr << "tap = " << tap.first << " " << tap.second << std::endl; |
308 |
|
309 |
int mol1 = info_->getGlobalMolMembership(tap.first); |
310 |
int mol2 = info_->getGlobalMolMembership(tap.second); |
311 |
std::cerr << "mols = " << mol1 << " " << mol2 << std::endl; |
312 |
|
313 |
int proc1 = info_->getMolToProc(mol1); |
314 |
int proc2 = info_->getMolToProc(mol2); |
315 |
|
316 |
std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl; |
317 |
|
318 |
RealType data[3]; |
319 |
if (proc1 == worldRank) { |
320 |
StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); |
321 |
std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl; |
322 |
pos1 = sd1->getPos(); |
323 |
data[0] = pos1.x(); |
324 |
data[1] = pos1.y(); |
325 |
data[2] = pos1.z(); |
326 |
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
327 |
} else { |
328 |
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
329 |
pos1 = Vector3d(data); |
330 |
} |
331 |
|
332 |
|
333 |
if (proc2 == worldRank) { |
334 |
StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); |
335 |
std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl; |
336 |
pos2 = sd2->getPos(); |
337 |
data[0] = pos2.x(); |
338 |
data[1] = pos2.y(); |
339 |
data[2] = pos2.z(); |
340 |
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
341 |
} else { |
342 |
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
343 |
pos2 = Vector3d(data); |
344 |
} |
345 |
#else |
346 |
StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first); |
347 |
StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); |
348 |
pos1 = at1->getPos(); |
349 |
pos2 = at2->getPos(); |
350 |
#endif |
351 |
rab = pos2 - pos1; |
352 |
currSnapshot->wrapVector(rab); |
353 |
stat[Stats::TAGGED_PAIR_DISTANCE] = rab.length(); |
354 |
} |
355 |
} |
356 |
|
357 |
/**@todo need refactorying*/ |
358 |
//Conserved Quantity is set by integrator and time is set by setTime |
359 |
|
360 |
} |
361 |
|
362 |
|
363 |
Vector3d Thermo::getBoxDipole() { |
364 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
365 |
SimInfo::MoleculeIterator miter; |
366 |
std::vector<Atom*>::iterator aiter; |
367 |
Molecule* mol; |
368 |
Atom* atom; |
369 |
RealType charge; |
370 |
RealType moment(0.0); |
371 |
Vector3d ri(0.0); |
372 |
Vector3d dipoleVector(0.0); |
373 |
Vector3d nPos(0.0); |
374 |
Vector3d pPos(0.0); |
375 |
RealType nChg(0.0); |
376 |
RealType pChg(0.0); |
377 |
int nCount = 0; |
378 |
int pCount = 0; |
379 |
|
380 |
RealType chargeToC = 1.60217733e-19; |
381 |
RealType angstromToM = 1.0e-10; |
382 |
RealType debyeToCm = 3.33564095198e-30; |
383 |
|
384 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
385 |
mol = info_->nextMolecule(miter)) { |
386 |
|
387 |
for (atom = mol->beginAtom(aiter); atom != NULL; |
388 |
atom = mol->nextAtom(aiter)) { |
389 |
|
390 |
if (atom->isCharge() ) { |
391 |
charge = 0.0; |
392 |
GenericData* data = atom->getAtomType()->getPropertyByName("Charge"); |
393 |
if (data != NULL) { |
394 |
|
395 |
charge = (dynamic_cast<DoubleGenericData*>(data))->getData(); |
396 |
charge *= chargeToC; |
397 |
|
398 |
ri = atom->getPos(); |
399 |
currSnapshot->wrapVector(ri); |
400 |
ri *= angstromToM; |
401 |
|
402 |
if (charge < 0.0) { |
403 |
nPos += ri; |
404 |
nChg -= charge; |
405 |
nCount++; |
406 |
} else if (charge > 0.0) { |
407 |
pPos += ri; |
408 |
pChg += charge; |
409 |
pCount++; |
410 |
} |
411 |
} |
412 |
} |
413 |
|
414 |
MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType()); |
415 |
if (ma.isDipole() ) { |
416 |
Vector3d u_i = atom->getElectroFrame().getColumn(2); |
417 |
moment = ma.getDipoleMoment(); |
418 |
moment *= debyeToCm; |
419 |
dipoleVector += u_i * moment; |
420 |
} |
421 |
} |
422 |
} |
423 |
|
424 |
|
425 |
#ifdef IS_MPI |
426 |
RealType pChg_global, nChg_global; |
427 |
int pCount_global, nCount_global; |
428 |
Vector3d pPos_global, nPos_global, dipVec_global; |
429 |
|
430 |
MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM, |
431 |
MPI_COMM_WORLD); |
432 |
pChg = pChg_global; |
433 |
MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM, |
434 |
MPI_COMM_WORLD); |
435 |
nChg = nChg_global; |
436 |
MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM, |
437 |
MPI_COMM_WORLD); |
438 |
pCount = pCount_global; |
439 |
MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM, |
440 |
MPI_COMM_WORLD); |
441 |
nCount = nCount_global; |
442 |
MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3, |
443 |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
444 |
pPos = pPos_global; |
445 |
MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3, |
446 |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
447 |
nPos = nPos_global; |
448 |
MPI_Allreduce(dipoleVector.getArrayPointer(), |
449 |
dipVec_global.getArrayPointer(), 3, |
450 |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
451 |
dipoleVector = dipVec_global; |
452 |
#endif //is_mpi |
453 |
|
454 |
// first load the accumulated dipole moment (if dipoles were present) |
455 |
Vector3d boxDipole = dipoleVector; |
456 |
// now include the dipole moment due to charges |
457 |
// use the lesser of the positive and negative charge totals |
458 |
RealType chg_value = nChg <= pChg ? nChg : pChg; |
459 |
|
460 |
// find the average positions |
461 |
if (pCount > 0 && nCount > 0 ) { |
462 |
pPos /= pCount; |
463 |
nPos /= nCount; |
464 |
} |
465 |
|
466 |
// dipole is from the negative to the positive (physics notation) |
467 |
boxDipole += (pPos - nPos) * chg_value; |
468 |
|
469 |
return boxDipole; |
470 |
} |
471 |
|
472 |
// Returns the Heat Flux Vector for the system |
473 |
Vector3d Thermo::getHeatFlux(){ |
474 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
475 |
SimInfo::MoleculeIterator miter; |
476 |
std::vector<StuntDouble*>::iterator iiter; |
477 |
Molecule* mol; |
478 |
StuntDouble* integrableObject; |
479 |
RigidBody::AtomIterator ai; |
480 |
Atom* atom; |
481 |
Vector3d vel; |
482 |
Vector3d angMom; |
483 |
Mat3x3d I; |
484 |
int i; |
485 |
int j; |
486 |
int k; |
487 |
RealType mass; |
488 |
|
489 |
Vector3d x_a; |
490 |
RealType kinetic; |
491 |
RealType potential; |
492 |
RealType eatom; |
493 |
RealType AvgE_a_ = 0; |
494 |
// Convective portion of the heat flux |
495 |
Vector3d heatFluxJc = V3Zero; |
496 |
|
497 |
/* Calculate convective portion of the heat flux */ |
498 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
499 |
mol = info_->nextMolecule(miter)) { |
500 |
|
501 |
for (integrableObject = mol->beginIntegrableObject(iiter); |
502 |
integrableObject != NULL; |
503 |
integrableObject = mol->nextIntegrableObject(iiter)) { |
504 |
|
505 |
mass = integrableObject->getMass(); |
506 |
vel = integrableObject->getVel(); |
507 |
|
508 |
kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
509 |
|
510 |
if (integrableObject->isDirectional()) { |
511 |
angMom = integrableObject->getJ(); |
512 |
I = integrableObject->getI(); |
513 |
|
514 |
if (integrableObject->isLinear()) { |
515 |
i = integrableObject->linearAxis(); |
516 |
j = (i + 1) % 3; |
517 |
k = (i + 2) % 3; |
518 |
kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); |
519 |
} else { |
520 |
kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) |
521 |
+ angMom[2]*angMom[2]/I(2, 2); |
522 |
} |
523 |
} |
524 |
|
525 |
potential = 0.0; |
526 |
|
527 |
if (integrableObject->isRigidBody()) { |
528 |
RigidBody* rb = dynamic_cast<RigidBody*>(integrableObject); |
529 |
for (atom = rb->beginAtom(ai); atom != NULL; |
530 |
atom = rb->nextAtom(ai)) { |
531 |
potential += atom->getParticlePot(); |
532 |
} |
533 |
} else { |
534 |
potential = integrableObject->getParticlePot(); |
535 |
cerr << "ppot = " << potential << "\n"; |
536 |
} |
537 |
|
538 |
potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 |
539 |
// The potential may not be a 1/2 factor |
540 |
eatom = (kinetic + potential)/2.0; // amu A^2/fs^2 |
541 |
heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 |
542 |
heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 |
543 |
heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 |
544 |
} |
545 |
} |
546 |
|
547 |
std::cerr << "Heat flux heatFluxJc is: " << heatFluxJc << std::endl; |
548 |
|
549 |
/* The J_v vector is reduced in fortan so everyone has the global |
550 |
* Jv. Jc is computed over the local atoms and must be reduced |
551 |
* among all processors. |
552 |
*/ |
553 |
#ifdef IS_MPI |
554 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE, |
555 |
MPI::SUM); |
556 |
#endif |
557 |
|
558 |
// (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 |
559 |
|
560 |
Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() * |
561 |
PhysicalConstants::energyConvert; |
562 |
|
563 |
std::cerr << "Heat flux Jc is: " << heatFluxJc << std::endl; |
564 |
std::cerr << "Heat flux Jv is: " << heatFluxJv << std::endl; |
565 |
|
566 |
// Correct for the fact the flux is 1/V (Jc + Jv) |
567 |
return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3 |
568 |
} |
569 |
} //end namespace OpenMD |