ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
Revision: 1723
Committed: Thu May 24 20:59:54 2012 UTC (12 years, 11 months ago) by gezelter
File size: 18900 byte(s)
Log Message:
Bug fixes for heat flux import

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <math.h>
44 #include <iostream>
45
46 #ifdef IS_MPI
47 #include <mpi.h>
48 #endif //is_mpi
49
50 #include "brains/Thermo.hpp"
51 #include "primitives/Molecule.hpp"
52 #include "utils/simError.h"
53 #include "utils/PhysicalConstants.hpp"
54 #include "types/MultipoleAdapter.hpp"
55
56 namespace OpenMD {
57
58 RealType Thermo::getKinetic() {
59 SimInfo::MoleculeIterator miter;
60 std::vector<StuntDouble*>::iterator iiter;
61 Molecule* mol;
62 StuntDouble* integrableObject;
63 Vector3d vel;
64 Vector3d angMom;
65 Mat3x3d I;
66 int i;
67 int j;
68 int k;
69 RealType mass;
70 RealType kinetic = 0.0;
71 RealType kinetic_global = 0.0;
72
73 for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
74 for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
75 integrableObject = mol->nextIntegrableObject(iiter)) {
76
77 mass = integrableObject->getMass();
78 vel = integrableObject->getVel();
79
80 kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
81
82 if (integrableObject->isDirectional()) {
83 angMom = integrableObject->getJ();
84 I = integrableObject->getI();
85
86 if (integrableObject->isLinear()) {
87 i = integrableObject->linearAxis();
88 j = (i + 1) % 3;
89 k = (i + 2) % 3;
90 kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
91 } else {
92 kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
93 + angMom[2]*angMom[2]/I(2, 2);
94 }
95 }
96
97 }
98 }
99
100 #ifdef IS_MPI
101
102 MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
103 MPI_COMM_WORLD);
104 kinetic = kinetic_global;
105
106 #endif //is_mpi
107
108 kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
109
110 return kinetic;
111 }
112
113 RealType Thermo::getPotential() {
114 RealType potential = 0.0;
115 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
116 RealType shortRangePot_local = curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
117
118 // Get total potential for entire system from MPI.
119
120 #ifdef IS_MPI
121
122 MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
123 MPI_COMM_WORLD);
124 potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
125
126 #else
127
128 potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
129
130 #endif // is_mpi
131
132 return potential;
133 }
134
135 RealType Thermo::getTotalE() {
136 RealType total;
137
138 total = this->getKinetic() + this->getPotential();
139 return total;
140 }
141
142 RealType Thermo::getTemperature() {
143
144 RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
145 return temperature;
146 }
147
148 RealType Thermo::getElectronicTemperature() {
149 SimInfo::MoleculeIterator miter;
150 std::vector<Atom*>::iterator iiter;
151 Molecule* mol;
152 Atom* atom;
153 RealType cvel;
154 RealType cmass;
155 RealType kinetic = 0.0;
156 RealType kinetic_global = 0.0;
157
158 for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
159 for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
160 atom = mol->nextFluctuatingCharge(iiter)) {
161 cmass = atom->getChargeMass();
162 cvel = atom->getFlucQVel();
163
164 kinetic += cmass * cvel * cvel;
165
166 }
167 }
168
169 #ifdef IS_MPI
170
171 MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
172 MPI_COMM_WORLD);
173 kinetic = kinetic_global;
174
175 #endif //is_mpi
176
177 kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
178 return ( 2.0 * kinetic) / (info_->getNFluctuatingCharges()* PhysicalConstants::kb );
179 }
180
181
182
183
184 RealType Thermo::getVolume() {
185 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
186 return curSnapshot->getVolume();
187 }
188
189 RealType Thermo::getPressure() {
190
191 // Relies on the calculation of the full molecular pressure tensor
192
193
194 Mat3x3d tensor;
195 RealType pressure;
196
197 tensor = getPressureTensor();
198
199 pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
200
201 return pressure;
202 }
203
204 RealType Thermo::getPressure(int direction) {
205
206 // Relies on the calculation of the full molecular pressure tensor
207
208
209 Mat3x3d tensor;
210 RealType pressure;
211
212 tensor = getPressureTensor();
213
214 pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
215
216 return pressure;
217 }
218
219 Mat3x3d Thermo::getPressureTensor() {
220 // returns pressure tensor in units amu*fs^-2*Ang^-1
221 // routine derived via viral theorem description in:
222 // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
223 Mat3x3d pressureTensor;
224 Mat3x3d p_local(0.0);
225 Mat3x3d p_global(0.0);
226
227 SimInfo::MoleculeIterator i;
228 std::vector<StuntDouble*>::iterator j;
229 Molecule* mol;
230 StuntDouble* integrableObject;
231 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
232 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
233 integrableObject = mol->nextIntegrableObject(j)) {
234
235 RealType mass = integrableObject->getMass();
236 Vector3d vcom = integrableObject->getVel();
237 p_local += mass * outProduct(vcom, vcom);
238 }
239 }
240
241 #ifdef IS_MPI
242 MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
243 #else
244 p_global = p_local;
245 #endif // is_mpi
246
247 RealType volume = this->getVolume();
248 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
249 Mat3x3d stressTensor = curSnapshot->getStressTensor();
250
251 pressureTensor = (p_global +
252 PhysicalConstants::energyConvert * stressTensor)/volume;
253
254 return pressureTensor;
255 }
256
257
258 void Thermo::saveStat(){
259 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
260 Stats& stat = currSnapshot->statData;
261
262 stat[Stats::KINETIC_ENERGY] = getKinetic();
263 stat[Stats::POTENTIAL_ENERGY] = getPotential();
264 stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY] + stat[Stats::POTENTIAL_ENERGY] ;
265 stat[Stats::TEMPERATURE] = getTemperature();
266 stat[Stats::PRESSURE] = getPressure();
267 stat[Stats::VOLUME] = getVolume();
268
269 Mat3x3d tensor =getPressureTensor();
270 stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);
271 stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);
272 stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);
273 stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);
274 stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);
275 stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);
276 stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);
277 stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);
278 stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);
279
280 // grab the simulation box dipole moment if specified
281 if (info_->getCalcBoxDipole()){
282 Vector3d totalDipole = getBoxDipole();
283 stat[Stats::BOX_DIPOLE_X] = totalDipole(0);
284 stat[Stats::BOX_DIPOLE_Y] = totalDipole(1);
285 stat[Stats::BOX_DIPOLE_Z] = totalDipole(2);
286 }
287
288 Globals* simParams = info_->getSimParams();
289 // grab the heat flux if desired
290 if (simParams->havePrintHeatFlux()) {
291 if (simParams->getPrintHeatFlux()){
292 Vector3d heatFlux = getHeatFlux();
293 stat[Stats::HEATFLUX_X] = heatFlux(0);
294 stat[Stats::HEATFLUX_Y] = heatFlux(1);
295 stat[Stats::HEATFLUX_Z] = heatFlux(2);
296 }
297 }
298
299 if (simParams->haveTaggedAtomPair() &&
300 simParams->havePrintTaggedPairDistance()) {
301 if ( simParams->getPrintTaggedPairDistance()) {
302
303 std::pair<int, int> tap = simParams->getTaggedAtomPair();
304 Vector3d pos1, pos2, rab;
305
306 #ifdef IS_MPI
307 std::cerr << "tap = " << tap.first << " " << tap.second << std::endl;
308
309 int mol1 = info_->getGlobalMolMembership(tap.first);
310 int mol2 = info_->getGlobalMolMembership(tap.second);
311 std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
312
313 int proc1 = info_->getMolToProc(mol1);
314 int proc2 = info_->getMolToProc(mol2);
315
316 std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
317
318 RealType data[3];
319 if (proc1 == worldRank) {
320 StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
321 std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
322 pos1 = sd1->getPos();
323 data[0] = pos1.x();
324 data[1] = pos1.y();
325 data[2] = pos1.z();
326 MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
327 } else {
328 MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
329 pos1 = Vector3d(data);
330 }
331
332
333 if (proc2 == worldRank) {
334 StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
335 std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
336 pos2 = sd2->getPos();
337 data[0] = pos2.x();
338 data[1] = pos2.y();
339 data[2] = pos2.z();
340 MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
341 } else {
342 MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
343 pos2 = Vector3d(data);
344 }
345 #else
346 StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
347 StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
348 pos1 = at1->getPos();
349 pos2 = at2->getPos();
350 #endif
351 rab = pos2 - pos1;
352 currSnapshot->wrapVector(rab);
353 stat[Stats::TAGGED_PAIR_DISTANCE] = rab.length();
354 }
355 }
356
357 /**@todo need refactorying*/
358 //Conserved Quantity is set by integrator and time is set by setTime
359
360 }
361
362
363 Vector3d Thermo::getBoxDipole() {
364 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
365 SimInfo::MoleculeIterator miter;
366 std::vector<Atom*>::iterator aiter;
367 Molecule* mol;
368 Atom* atom;
369 RealType charge;
370 RealType moment(0.0);
371 Vector3d ri(0.0);
372 Vector3d dipoleVector(0.0);
373 Vector3d nPos(0.0);
374 Vector3d pPos(0.0);
375 RealType nChg(0.0);
376 RealType pChg(0.0);
377 int nCount = 0;
378 int pCount = 0;
379
380 RealType chargeToC = 1.60217733e-19;
381 RealType angstromToM = 1.0e-10;
382 RealType debyeToCm = 3.33564095198e-30;
383
384 for (mol = info_->beginMolecule(miter); mol != NULL;
385 mol = info_->nextMolecule(miter)) {
386
387 for (atom = mol->beginAtom(aiter); atom != NULL;
388 atom = mol->nextAtom(aiter)) {
389
390 if (atom->isCharge() ) {
391 charge = 0.0;
392 GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
393 if (data != NULL) {
394
395 charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
396 charge *= chargeToC;
397
398 ri = atom->getPos();
399 currSnapshot->wrapVector(ri);
400 ri *= angstromToM;
401
402 if (charge < 0.0) {
403 nPos += ri;
404 nChg -= charge;
405 nCount++;
406 } else if (charge > 0.0) {
407 pPos += ri;
408 pChg += charge;
409 pCount++;
410 }
411 }
412 }
413
414 MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
415 if (ma.isDipole() ) {
416 Vector3d u_i = atom->getElectroFrame().getColumn(2);
417 moment = ma.getDipoleMoment();
418 moment *= debyeToCm;
419 dipoleVector += u_i * moment;
420 }
421 }
422 }
423
424
425 #ifdef IS_MPI
426 RealType pChg_global, nChg_global;
427 int pCount_global, nCount_global;
428 Vector3d pPos_global, nPos_global, dipVec_global;
429
430 MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
431 MPI_COMM_WORLD);
432 pChg = pChg_global;
433 MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
434 MPI_COMM_WORLD);
435 nChg = nChg_global;
436 MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
437 MPI_COMM_WORLD);
438 pCount = pCount_global;
439 MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
440 MPI_COMM_WORLD);
441 nCount = nCount_global;
442 MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
443 MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
444 pPos = pPos_global;
445 MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
446 MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
447 nPos = nPos_global;
448 MPI_Allreduce(dipoleVector.getArrayPointer(),
449 dipVec_global.getArrayPointer(), 3,
450 MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
451 dipoleVector = dipVec_global;
452 #endif //is_mpi
453
454 // first load the accumulated dipole moment (if dipoles were present)
455 Vector3d boxDipole = dipoleVector;
456 // now include the dipole moment due to charges
457 // use the lesser of the positive and negative charge totals
458 RealType chg_value = nChg <= pChg ? nChg : pChg;
459
460 // find the average positions
461 if (pCount > 0 && nCount > 0 ) {
462 pPos /= pCount;
463 nPos /= nCount;
464 }
465
466 // dipole is from the negative to the positive (physics notation)
467 boxDipole += (pPos - nPos) * chg_value;
468
469 return boxDipole;
470 }
471
472 // Returns the Heat Flux Vector for the system
473 Vector3d Thermo::getHeatFlux(){
474 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
475 SimInfo::MoleculeIterator miter;
476 std::vector<StuntDouble*>::iterator iiter;
477 Molecule* mol;
478 StuntDouble* integrableObject;
479 RigidBody::AtomIterator ai;
480 Atom* atom;
481 Vector3d vel;
482 Vector3d angMom;
483 Mat3x3d I;
484 int i;
485 int j;
486 int k;
487 RealType mass;
488
489 Vector3d x_a;
490 RealType kinetic;
491 RealType potential;
492 RealType eatom;
493 RealType AvgE_a_ = 0;
494 // Convective portion of the heat flux
495 Vector3d heatFluxJc = V3Zero;
496
497 /* Calculate convective portion of the heat flux */
498 for (mol = info_->beginMolecule(miter); mol != NULL;
499 mol = info_->nextMolecule(miter)) {
500
501 for (integrableObject = mol->beginIntegrableObject(iiter);
502 integrableObject != NULL;
503 integrableObject = mol->nextIntegrableObject(iiter)) {
504
505 mass = integrableObject->getMass();
506 vel = integrableObject->getVel();
507
508 kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
509
510 if (integrableObject->isDirectional()) {
511 angMom = integrableObject->getJ();
512 I = integrableObject->getI();
513
514 if (integrableObject->isLinear()) {
515 i = integrableObject->linearAxis();
516 j = (i + 1) % 3;
517 k = (i + 2) % 3;
518 kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
519 } else {
520 kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
521 + angMom[2]*angMom[2]/I(2, 2);
522 }
523 }
524
525 potential = 0.0;
526
527 if (integrableObject->isRigidBody()) {
528 RigidBody* rb = dynamic_cast<RigidBody*>(integrableObject);
529 for (atom = rb->beginAtom(ai); atom != NULL;
530 atom = rb->nextAtom(ai)) {
531 potential += atom->getParticlePot();
532 }
533 } else {
534 potential = integrableObject->getParticlePot();
535 cerr << "ppot = " << potential << "\n";
536 }
537
538 potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
539 // The potential may not be a 1/2 factor
540 eatom = (kinetic + potential)/2.0; // amu A^2/fs^2
541 heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
542 heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
543 heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
544 }
545 }
546
547 std::cerr << "Heat flux heatFluxJc is: " << heatFluxJc << std::endl;
548
549 /* The J_v vector is reduced in fortan so everyone has the global
550 * Jv. Jc is computed over the local atoms and must be reduced
551 * among all processors.
552 */
553 #ifdef IS_MPI
554 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,
555 MPI::SUM);
556 #endif
557
558 // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
559
560 Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
561 PhysicalConstants::energyConvert;
562
563 std::cerr << "Heat flux Jc is: " << heatFluxJc << std::endl;
564 std::cerr << "Heat flux Jv is: " << heatFluxJv << std::endl;
565
566 // Correct for the fact the flux is 1/V (Jc + Jv)
567 return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
568 }
569 } //end namespace OpenMD

Properties

Name Value
svn:keywords Author Id Revision Date