ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
(Generate patch)

Comparing:
trunk/src/brains/Thermo.cpp (file contents), Revision 541 by tim, Sun May 22 21:05:15 2005 UTC vs.
branches/development/src/brains/Thermo.cpp (file contents), Revision 1503 by gezelter, Sat Oct 2 19:54:41 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   #include <math.h>
# Line 49 | Line 49
49   #include "brains/Thermo.hpp"
50   #include "primitives/Molecule.hpp"
51   #include "utils/simError.h"
52 < #include "utils/OOPSEConstant.hpp"
52 > #include "utils/PhysicalConstants.hpp"
53  
54 < namespace oopse {
54 > namespace OpenMD {
55  
56 <  double Thermo::getKinetic() {
56 >  RealType Thermo::getKinetic() {
57      SimInfo::MoleculeIterator miter;
58      std::vector<StuntDouble*>::iterator iiter;
59      Molecule* mol;
# Line 64 | Line 64 | namespace oopse {
64      int i;
65      int j;
66      int k;
67 <    double kinetic = 0.0;
68 <    double kinetic_global = 0.0;
67 >    RealType mass;
68 >    RealType kinetic = 0.0;
69 >    RealType kinetic_global = 0.0;
70      
71      for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
72        for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
73             integrableObject = mol->nextIntegrableObject(iiter)) {
74 <
75 <        double mass = integrableObject->getMass();
76 <        Vector3d vel = integrableObject->getVel();
77 <
74 >        
75 >        mass = integrableObject->getMass();
76 >        vel = integrableObject->getVel();
77 >        
78          kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
79 <
79 >        
80          if (integrableObject->isDirectional()) {
81            angMom = integrableObject->getJ();
82            I = integrableObject->getI();
# Line 96 | Line 97 | namespace oopse {
97      
98   #ifdef IS_MPI
99  
100 <    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_DOUBLE, MPI_SUM,
100 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
101                    MPI_COMM_WORLD);
102      kinetic = kinetic_global;
103  
104   #endif //is_mpi
105  
106 <    kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert;
106 >    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
107  
108      return kinetic;
109    }
110  
111 <  double Thermo::getPotential() {
112 <    double potential = 0.0;
111 >  RealType Thermo::getPotential() {
112 >    RealType potential = 0.0;
113      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
114 <    double potential_local = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] +
114 <      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
114 >    RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
115  
116      // Get total potential for entire system from MPI.
117  
118   #ifdef IS_MPI
119  
120 <    MPI_Allreduce(&potential_local, &potential, 1, MPI_DOUBLE, MPI_SUM,
120 >    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
121                    MPI_COMM_WORLD);
122 +    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
123  
124   #else
125  
126 <    potential = potential_local;
126 >    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
127  
128   #endif // is_mpi
129  
130      return potential;
131    }
132  
133 <  double Thermo::getTotalE() {
134 <    double total;
133 >  RealType Thermo::getTotalE() {
134 >    RealType total;
135  
136      total = this->getKinetic() + this->getPotential();
137      return total;
138    }
139  
140 <  double Thermo::getTemperature() {
140 >  RealType Thermo::getTemperature() {
141      
142 <    double temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb );
142 >    RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
143      return temperature;
144    }
145  
146 <  double Thermo::getVolume() {
146 >  RealType Thermo::getVolume() {
147      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
148      return curSnapshot->getVolume();
149    }
150  
151 <  double Thermo::getPressure() {
151 >  RealType Thermo::getPressure() {
152  
153      // Relies on the calculation of the full molecular pressure tensor
154  
155  
156      Mat3x3d tensor;
157 <    double pressure;
157 >    RealType pressure;
158  
159      tensor = getPressureTensor();
160  
161 <    pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
161 >    pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
162  
163      return pressure;
164    }
165  
166 <  double Thermo::getPressure(int direction) {
166 >  RealType Thermo::getPressure(int direction) {
167  
168      // Relies on the calculation of the full molecular pressure tensor
169  
170            
171      Mat3x3d tensor;
172 <    double pressure;
172 >    RealType pressure;
173  
174      tensor = getPressureTensor();
175  
176 <    pressure = OOPSEConstant::pressureConvert * tensor(direction, direction);
176 >    pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
177  
178      return pressure;
179    }
180  
180
181
181    Mat3x3d Thermo::getPressureTensor() {
182      // returns pressure tensor in units amu*fs^-2*Ang^-1
183      // routine derived via viral theorem description in:
# Line 195 | Line 194 | namespace oopse {
194        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
195             integrableObject = mol->nextIntegrableObject(j)) {
196  
197 <        double mass = integrableObject->getMass();
197 >        RealType mass = integrableObject->getMass();
198          Vector3d vcom = integrableObject->getVel();
199          p_local += mass * outProduct(vcom, vcom);        
200        }
201      }
202      
203   #ifdef IS_MPI
204 <    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
204 >    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
205   #else
206      p_global = p_local;
207   #endif // is_mpi
208  
209 <    double volume = this->getVolume();
209 >    RealType volume = this->getVolume();
210      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
211      Mat3x3d tau = curSnapshot->statData.getTau();
212  
213 <    pressureTensor =  (p_global + OOPSEConstant::energyConvert* tau)/volume;
214 <
213 >    pressureTensor =  (p_global + PhysicalConstants::energyConvert* tau)/volume;
214 >    
215      return pressureTensor;
216    }
217  
218 +
219    void Thermo::saveStat(){
220      Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
221      Stats& stat = currSnapshot->statData;
# Line 228 | Line 228 | namespace oopse {
228      stat[Stats::VOLUME] = getVolume();      
229  
230      Mat3x3d tensor =getPressureTensor();
231 <    stat[Stats::PRESSURE_TENSOR_X] = tensor(0, 0);      
232 <    stat[Stats::PRESSURE_TENSOR_Y] = tensor(1, 1);      
233 <    stat[Stats::PRESSURE_TENSOR_Z] = tensor(2, 2);      
231 >    stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);      
232 >    stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);      
233 >    stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);      
234 >    stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);      
235 >    stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);      
236 >    stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);      
237 >    stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);      
238 >    stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);      
239 >    stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);      
240  
241 +    // grab the simulation box dipole moment if specified
242 +    if (info_->getCalcBoxDipole()){
243 +      Vector3d totalDipole = getBoxDipole();
244 +      stat[Stats::BOX_DIPOLE_X] = totalDipole(0);
245 +      stat[Stats::BOX_DIPOLE_Y] = totalDipole(1);
246 +      stat[Stats::BOX_DIPOLE_Z] = totalDipole(2);
247 +    }
248  
249 +    Globals* simParams = info_->getSimParams();
250 +
251 +    if (simParams->haveTaggedAtomPair() &&
252 +        simParams->havePrintTaggedPairDistance()) {
253 +      if ( simParams->getPrintTaggedPairDistance()) {
254 +        
255 +        std::pair<int, int> tap = simParams->getTaggedAtomPair();
256 +        Vector3d pos1, pos2, rab;
257 +
258 + #ifdef IS_MPI        
259 +        std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl;
260 +
261 +        int mol1 = info_->getGlobalMolMembership(tap.first);
262 +        int mol2 = info_->getGlobalMolMembership(tap.second);
263 +        std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
264 +
265 +        int proc1 = info_->getMolToProc(mol1);
266 +        int proc2 = info_->getMolToProc(mol2);
267 +
268 +        std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
269 +
270 +        RealType data[3];
271 +        if (proc1 == worldRank) {
272 +          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
273 +          std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
274 +          pos1 = sd1->getPos();
275 +          data[0] = pos1.x();
276 +          data[1] = pos1.y();
277 +          data[2] = pos1.z();          
278 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
279 +        } else {
280 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
281 +          pos1 = Vector3d(data);
282 +        }
283 +
284 +
285 +        if (proc2 == worldRank) {
286 +          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
287 +          std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
288 +          pos2 = sd2->getPos();
289 +          data[0] = pos2.x();
290 +          data[1] = pos2.y();
291 +          data[2] = pos2.z();          
292 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
293 +        } else {
294 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
295 +          pos2 = Vector3d(data);
296 +        }
297 + #else
298 +        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
299 +        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
300 +        pos1 = at1->getPos();
301 +        pos2 = at2->getPos();
302 + #endif        
303 +        rab = pos2 - pos1;
304 +        currSnapshot->wrapVector(rab);
305 +        stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length();
306 +      }
307 +    }
308 +      
309      /**@todo need refactorying*/
310      //Conserved Quantity is set by integrator and time is set by setTime
311      
312    }
313  
314 < } //end namespace oopse
314 >
315 >  Vector3d Thermo::getBoxDipole() {
316 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
317 >    SimInfo::MoleculeIterator miter;
318 >    std::vector<Atom*>::iterator aiter;
319 >    Molecule* mol;
320 >    Atom* atom;
321 >    RealType charge;
322 >    RealType moment(0.0);
323 >    Vector3d ri(0.0);
324 >    Vector3d dipoleVector(0.0);
325 >    Vector3d nPos(0.0);
326 >    Vector3d pPos(0.0);
327 >    RealType nChg(0.0);
328 >    RealType pChg(0.0);
329 >    int nCount = 0;
330 >    int pCount = 0;
331 >
332 >    RealType chargeToC = 1.60217733e-19;
333 >    RealType angstromToM = 1.0e-10;
334 >    RealType debyeToCm = 3.33564095198e-30;
335 >    
336 >    for (mol = info_->beginMolecule(miter); mol != NULL;
337 >         mol = info_->nextMolecule(miter)) {
338 >
339 >      for (atom = mol->beginAtom(aiter); atom != NULL;
340 >           atom = mol->nextAtom(aiter)) {
341 >        
342 >        if (atom->isCharge() ) {
343 >          charge = 0.0;
344 >          GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
345 >          if (data != NULL) {
346 >
347 >            charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
348 >            charge *= chargeToC;
349 >
350 >            ri = atom->getPos();
351 >            currSnapshot->wrapVector(ri);
352 >            ri *= angstromToM;
353 >
354 >            if (charge < 0.0) {
355 >              nPos += ri;
356 >              nChg -= charge;
357 >              nCount++;
358 >            } else if (charge > 0.0) {
359 >              pPos += ri;
360 >              pChg += charge;
361 >              pCount++;
362 >            }                      
363 >          }
364 >        }
365 >        
366 >        if (atom->isDipole() ) {
367 >          Vector3d u_i = atom->getElectroFrame().getColumn(2);
368 >          GenericData* data = dynamic_cast<DirectionalAtomType*>(atom->getAtomType())->getPropertyByName("Dipole");
369 >          if (data != NULL) {
370 >            moment = (dynamic_cast<DoubleGenericData*>(data))->getData();
371 >            
372 >            moment *= debyeToCm;
373 >            dipoleVector += u_i * moment;
374 >          }
375 >        }
376 >      }
377 >    }
378 >    
379 >                      
380 > #ifdef IS_MPI
381 >    RealType pChg_global, nChg_global;
382 >    int pCount_global, nCount_global;
383 >    Vector3d pPos_global, nPos_global, dipVec_global;
384 >
385 >    MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
386 >                  MPI_COMM_WORLD);
387 >    pChg = pChg_global;
388 >    MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
389 >                  MPI_COMM_WORLD);
390 >    nChg = nChg_global;
391 >    MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
392 >                  MPI_COMM_WORLD);
393 >    pCount = pCount_global;
394 >    MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
395 >                  MPI_COMM_WORLD);
396 >    nCount = nCount_global;
397 >    MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
398 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
399 >    pPos = pPos_global;
400 >    MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
401 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
402 >    nPos = nPos_global;
403 >    MPI_Allreduce(dipoleVector.getArrayPointer(),
404 >                  dipVec_global.getArrayPointer(), 3,
405 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
406 >    dipoleVector = dipVec_global;
407 > #endif //is_mpi
408 >
409 >    // first load the accumulated dipole moment (if dipoles were present)
410 >    Vector3d boxDipole = dipoleVector;
411 >    // now include the dipole moment due to charges
412 >    // use the lesser of the positive and negative charge totals
413 >    RealType chg_value = nChg <= pChg ? nChg : pChg;
414 >      
415 >    // find the average positions
416 >    if (pCount > 0 && nCount > 0 ) {
417 >      pPos /= pCount;
418 >      nPos /= nCount;
419 >    }
420 >
421 >    // dipole is from the negative to the positive (physics notation)
422 >    boxDipole += (pPos - nPos) * chg_value;
423 >
424 >    return boxDipole;
425 >  }
426 > } //end namespace OpenMD

Comparing:
trunk/src/brains/Thermo.cpp (property svn:keywords), Revision 541 by tim, Sun May 22 21:05:15 2005 UTC vs.
branches/development/src/brains/Thermo.cpp (property svn:keywords), Revision 1503 by gezelter, Sat Oct 2 19:54:41 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines