ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
Revision: 998
Committed: Mon Jul 3 13:18:43 2006 UTC (18 years, 10 months ago) by chrisfen
Original Path: trunk/src/brains/Thermo.cpp
File size: 7684 byte(s)
Log Message:
Added simulation box dipole moment accumulation for the purposes of calculating dielectric constants

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42 gezelter 2 #include <math.h>
43     #include <iostream>
44    
45     #ifdef IS_MPI
46     #include <mpi.h>
47     #endif //is_mpi
48    
49 tim 3 #include "brains/Thermo.hpp"
50 gezelter 246 #include "primitives/Molecule.hpp"
51 tim 3 #include "utils/simError.h"
52 gezelter 246 #include "utils/OOPSEConstant.hpp"
53 gezelter 2
54 gezelter 246 namespace oopse {
55 gezelter 2
56 tim 963 RealType Thermo::getKinetic() {
57 gezelter 246 SimInfo::MoleculeIterator miter;
58     std::vector<StuntDouble*>::iterator iiter;
59     Molecule* mol;
60     StuntDouble* integrableObject;
61     Vector3d vel;
62     Vector3d angMom;
63     Mat3x3d I;
64     int i;
65     int j;
66     int k;
67 chrisfen 998 RealType mass;
68 tim 963 RealType kinetic = 0.0;
69     RealType kinetic_global = 0.0;
70 gezelter 246
71     for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
72 gezelter 507 for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
73     integrableObject = mol->nextIntegrableObject(iiter)) {
74 gezelter 945
75 chrisfen 998 mass = integrableObject->getMass();
76     vel = integrableObject->getVel();
77 gezelter 945
78 gezelter 507 kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
79 gezelter 945
80 gezelter 507 if (integrableObject->isDirectional()) {
81     angMom = integrableObject->getJ();
82     I = integrableObject->getI();
83 gezelter 2
84 gezelter 507 if (integrableObject->isLinear()) {
85     i = integrableObject->linearAxis();
86     j = (i + 1) % 3;
87     k = (i + 2) % 3;
88     kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
89     } else {
90     kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
91     + angMom[2]*angMom[2]/I(2, 2);
92     }
93     }
94 gezelter 246
95 gezelter 507 }
96 gezelter 246 }
97    
98     #ifdef IS_MPI
99 gezelter 2
100 tim 963 MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
101 gezelter 246 MPI_COMM_WORLD);
102     kinetic = kinetic_global;
103 gezelter 2
104 gezelter 246 #endif //is_mpi
105 gezelter 2
106 gezelter 246 kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert;
107 gezelter 2
108 gezelter 246 return kinetic;
109 gezelter 507 }
110 gezelter 2
111 tim 963 RealType Thermo::getPotential() {
112     RealType potential = 0.0;
113 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
114 tim 963 RealType shortRangePot_local = curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
115 gezelter 2
116 gezelter 246 // Get total potential for entire system from MPI.
117 gezelter 2
118 gezelter 246 #ifdef IS_MPI
119 gezelter 2
120 tim 963 MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
121 gezelter 246 MPI_COMM_WORLD);
122 tim 833 potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
123 gezelter 2
124 gezelter 246 #else
125 gezelter 2
126 tim 833 potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
127 gezelter 2
128     #endif // is_mpi
129    
130 gezelter 246 return potential;
131 gezelter 507 }
132 gezelter 2
133 tim 963 RealType Thermo::getTotalE() {
134     RealType total;
135 gezelter 2
136 gezelter 246 total = this->getKinetic() + this->getPotential();
137     return total;
138 gezelter 507 }
139 gezelter 2
140 tim 963 RealType Thermo::getTemperature() {
141 gezelter 246
142 tim 963 RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb );
143 gezelter 246 return temperature;
144 gezelter 507 }
145 gezelter 2
146 tim 963 RealType Thermo::getVolume() {
147 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
148     return curSnapshot->getVolume();
149 gezelter 507 }
150 gezelter 2
151 tim 963 RealType Thermo::getPressure() {
152 gezelter 2
153 gezelter 246 // Relies on the calculation of the full molecular pressure tensor
154 gezelter 2
155    
156 gezelter 246 Mat3x3d tensor;
157 tim 963 RealType pressure;
158 gezelter 2
159 gezelter 246 tensor = getPressureTensor();
160 gezelter 2
161 gezelter 246 pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
162 gezelter 2
163 gezelter 246 return pressure;
164 gezelter 507 }
165 gezelter 2
166 tim 963 RealType Thermo::getPressure(int direction) {
167 tim 538
168     // Relies on the calculation of the full molecular pressure tensor
169    
170    
171     Mat3x3d tensor;
172 tim 963 RealType pressure;
173 tim 538
174     tensor = getPressureTensor();
175    
176     pressure = OOPSEConstant::pressureConvert * tensor(direction, direction);
177    
178     return pressure;
179     }
180    
181 gezelter 507 Mat3x3d Thermo::getPressureTensor() {
182 gezelter 246 // returns pressure tensor in units amu*fs^-2*Ang^-1
183     // routine derived via viral theorem description in:
184     // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
185     Mat3x3d pressureTensor;
186     Mat3x3d p_local(0.0);
187     Mat3x3d p_global(0.0);
188 gezelter 2
189 gezelter 246 SimInfo::MoleculeIterator i;
190     std::vector<StuntDouble*>::iterator j;
191     Molecule* mol;
192     StuntDouble* integrableObject;
193     for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
194 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
195     integrableObject = mol->nextIntegrableObject(j)) {
196 gezelter 2
197 tim 963 RealType mass = integrableObject->getMass();
198 gezelter 507 Vector3d vcom = integrableObject->getVel();
199     p_local += mass * outProduct(vcom, vcom);
200     }
201 gezelter 246 }
202 gezelter 2
203     #ifdef IS_MPI
204 tim 963 MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
205 gezelter 2 #else
206 gezelter 246 p_global = p_local;
207 gezelter 2 #endif // is_mpi
208    
209 tim 963 RealType volume = this->getVolume();
210 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
211     Mat3x3d tau = curSnapshot->statData.getTau();
212 chrisfen 998
213 gezelter 246 pressureTensor = (p_global + OOPSEConstant::energyConvert* tau)/volume;
214 chrisfen 998
215 gezelter 246 return pressureTensor;
216 gezelter 507 }
217 gezelter 2
218 chrisfen 998
219 gezelter 507 void Thermo::saveStat(){
220 gezelter 246 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
221     Stats& stat = currSnapshot->statData;
222 gezelter 2
223 gezelter 246 stat[Stats::KINETIC_ENERGY] = getKinetic();
224     stat[Stats::POTENTIAL_ENERGY] = getPotential();
225     stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY] + stat[Stats::POTENTIAL_ENERGY] ;
226     stat[Stats::TEMPERATURE] = getTemperature();
227     stat[Stats::PRESSURE] = getPressure();
228     stat[Stats::VOLUME] = getVolume();
229 gezelter 2
230 tim 541 Mat3x3d tensor =getPressureTensor();
231     stat[Stats::PRESSURE_TENSOR_X] = tensor(0, 0);
232     stat[Stats::PRESSURE_TENSOR_Y] = tensor(1, 1);
233     stat[Stats::PRESSURE_TENSOR_Z] = tensor(2, 2);
234    
235    
236 gezelter 246 /**@todo need refactorying*/
237     //Conserved Quantity is set by integrator and time is set by setTime
238 gezelter 2
239 gezelter 507 }
240 gezelter 2
241 gezelter 246 } //end namespace oopse