1 |
gezelter |
507 |
/* |
2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Acknowledgement of the program authors must be made in any |
10 |
|
|
* publication of scientific results based in part on use of the |
11 |
|
|
* program. An acceptable form of acknowledgement is citation of |
12 |
|
|
* the article in which the program was described (Matthew |
13 |
|
|
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
|
|
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
|
|
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
|
|
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
|
|
* |
18 |
|
|
* 2. Redistributions of source code must retain the above copyright |
19 |
|
|
* notice, this list of conditions and the following disclaimer. |
20 |
|
|
* |
21 |
|
|
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
|
|
* notice, this list of conditions and the following disclaimer in the |
23 |
|
|
* documentation and/or other materials provided with the |
24 |
|
|
* distribution. |
25 |
|
|
* |
26 |
|
|
* This software is provided "AS IS," without a warranty of any |
27 |
|
|
* kind. All express or implied conditions, representations and |
28 |
|
|
* warranties, including any implied warranty of merchantability, |
29 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
30 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
31 |
|
|
* be liable for any damages suffered by licensee as a result of |
32 |
|
|
* using, modifying or distributing the software or its |
33 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
34 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
35 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
36 |
|
|
* damages, however caused and regardless of the theory of liability, |
37 |
|
|
* arising out of the use of or inability to use software, even if the |
38 |
|
|
* University of Notre Dame has been advised of the possibility of |
39 |
|
|
* such damages. |
40 |
|
|
*/ |
41 |
|
|
|
42 |
gezelter |
2 |
#include <math.h> |
43 |
|
|
#include <iostream> |
44 |
|
|
|
45 |
|
|
#ifdef IS_MPI |
46 |
|
|
#include <mpi.h> |
47 |
|
|
#endif //is_mpi |
48 |
|
|
|
49 |
tim |
3 |
#include "brains/Thermo.hpp" |
50 |
gezelter |
246 |
#include "primitives/Molecule.hpp" |
51 |
tim |
3 |
#include "utils/simError.h" |
52 |
gezelter |
246 |
#include "utils/OOPSEConstant.hpp" |
53 |
gezelter |
2 |
|
54 |
gezelter |
246 |
namespace oopse { |
55 |
gezelter |
2 |
|
56 |
gezelter |
507 |
double Thermo::getKinetic() { |
57 |
gezelter |
246 |
SimInfo::MoleculeIterator miter; |
58 |
|
|
std::vector<StuntDouble*>::iterator iiter; |
59 |
|
|
Molecule* mol; |
60 |
|
|
StuntDouble* integrableObject; |
61 |
|
|
Vector3d vel; |
62 |
|
|
Vector3d angMom; |
63 |
|
|
Mat3x3d I; |
64 |
|
|
int i; |
65 |
|
|
int j; |
66 |
|
|
int k; |
67 |
|
|
double kinetic = 0.0; |
68 |
|
|
double kinetic_global = 0.0; |
69 |
|
|
|
70 |
|
|
for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { |
71 |
gezelter |
507 |
for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; |
72 |
|
|
integrableObject = mol->nextIntegrableObject(iiter)) { |
73 |
gezelter |
2 |
|
74 |
gezelter |
507 |
double mass = integrableObject->getMass(); |
75 |
|
|
Vector3d vel = integrableObject->getVel(); |
76 |
gezelter |
2 |
|
77 |
gezelter |
507 |
kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
78 |
gezelter |
2 |
|
79 |
gezelter |
507 |
if (integrableObject->isDirectional()) { |
80 |
|
|
angMom = integrableObject->getJ(); |
81 |
|
|
I = integrableObject->getI(); |
82 |
gezelter |
2 |
|
83 |
gezelter |
507 |
if (integrableObject->isLinear()) { |
84 |
|
|
i = integrableObject->linearAxis(); |
85 |
|
|
j = (i + 1) % 3; |
86 |
|
|
k = (i + 2) % 3; |
87 |
|
|
kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); |
88 |
|
|
} else { |
89 |
|
|
kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) |
90 |
|
|
+ angMom[2]*angMom[2]/I(2, 2); |
91 |
|
|
} |
92 |
|
|
} |
93 |
gezelter |
246 |
|
94 |
gezelter |
507 |
} |
95 |
gezelter |
246 |
} |
96 |
|
|
|
97 |
|
|
#ifdef IS_MPI |
98 |
gezelter |
2 |
|
99 |
gezelter |
246 |
MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_DOUBLE, MPI_SUM, |
100 |
|
|
MPI_COMM_WORLD); |
101 |
|
|
kinetic = kinetic_global; |
102 |
gezelter |
2 |
|
103 |
gezelter |
246 |
#endif //is_mpi |
104 |
gezelter |
2 |
|
105 |
gezelter |
246 |
kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert; |
106 |
gezelter |
2 |
|
107 |
gezelter |
246 |
return kinetic; |
108 |
gezelter |
507 |
} |
109 |
gezelter |
2 |
|
110 |
gezelter |
507 |
double Thermo::getPotential() { |
111 |
gezelter |
246 |
double potential = 0.0; |
112 |
|
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
113 |
|
|
double potential_local = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] + |
114 |
gezelter |
507 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; |
115 |
gezelter |
2 |
|
116 |
gezelter |
246 |
// Get total potential for entire system from MPI. |
117 |
gezelter |
2 |
|
118 |
gezelter |
246 |
#ifdef IS_MPI |
119 |
gezelter |
2 |
|
120 |
gezelter |
246 |
MPI_Allreduce(&potential_local, &potential, 1, MPI_DOUBLE, MPI_SUM, |
121 |
|
|
MPI_COMM_WORLD); |
122 |
gezelter |
2 |
|
123 |
gezelter |
246 |
#else |
124 |
gezelter |
2 |
|
125 |
gezelter |
246 |
potential = potential_local; |
126 |
gezelter |
2 |
|
127 |
|
|
#endif // is_mpi |
128 |
|
|
|
129 |
gezelter |
246 |
return potential; |
130 |
gezelter |
507 |
} |
131 |
gezelter |
2 |
|
132 |
gezelter |
507 |
double Thermo::getTotalE() { |
133 |
gezelter |
246 |
double total; |
134 |
gezelter |
2 |
|
135 |
gezelter |
246 |
total = this->getKinetic() + this->getPotential(); |
136 |
|
|
return total; |
137 |
gezelter |
507 |
} |
138 |
gezelter |
2 |
|
139 |
gezelter |
507 |
double Thermo::getTemperature() { |
140 |
gezelter |
246 |
|
141 |
|
|
double temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb ); |
142 |
|
|
return temperature; |
143 |
gezelter |
507 |
} |
144 |
gezelter |
2 |
|
145 |
gezelter |
507 |
double Thermo::getVolume() { |
146 |
gezelter |
246 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
147 |
|
|
return curSnapshot->getVolume(); |
148 |
gezelter |
507 |
} |
149 |
gezelter |
2 |
|
150 |
gezelter |
507 |
double Thermo::getPressure() { |
151 |
gezelter |
2 |
|
152 |
gezelter |
246 |
// Relies on the calculation of the full molecular pressure tensor |
153 |
gezelter |
2 |
|
154 |
|
|
|
155 |
gezelter |
246 |
Mat3x3d tensor; |
156 |
|
|
double pressure; |
157 |
gezelter |
2 |
|
158 |
gezelter |
246 |
tensor = getPressureTensor(); |
159 |
gezelter |
2 |
|
160 |
gezelter |
246 |
pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; |
161 |
gezelter |
2 |
|
162 |
gezelter |
246 |
return pressure; |
163 |
gezelter |
507 |
} |
164 |
gezelter |
2 |
|
165 |
gezelter |
507 |
Mat3x3d Thermo::getPressureTensor() { |
166 |
gezelter |
246 |
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
167 |
|
|
// routine derived via viral theorem description in: |
168 |
|
|
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
169 |
|
|
Mat3x3d pressureTensor; |
170 |
|
|
Mat3x3d p_local(0.0); |
171 |
|
|
Mat3x3d p_global(0.0); |
172 |
gezelter |
2 |
|
173 |
gezelter |
246 |
SimInfo::MoleculeIterator i; |
174 |
|
|
std::vector<StuntDouble*>::iterator j; |
175 |
|
|
Molecule* mol; |
176 |
|
|
StuntDouble* integrableObject; |
177 |
|
|
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
178 |
gezelter |
507 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
179 |
|
|
integrableObject = mol->nextIntegrableObject(j)) { |
180 |
gezelter |
2 |
|
181 |
gezelter |
507 |
double mass = integrableObject->getMass(); |
182 |
|
|
Vector3d vcom = integrableObject->getVel(); |
183 |
|
|
p_local += mass * outProduct(vcom, vcom); |
184 |
|
|
} |
185 |
gezelter |
246 |
} |
186 |
gezelter |
2 |
|
187 |
|
|
#ifdef IS_MPI |
188 |
gezelter |
246 |
MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
189 |
gezelter |
2 |
#else |
190 |
gezelter |
246 |
p_global = p_local; |
191 |
gezelter |
2 |
#endif // is_mpi |
192 |
|
|
|
193 |
gezelter |
246 |
double volume = this->getVolume(); |
194 |
|
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
195 |
|
|
Mat3x3d tau = curSnapshot->statData.getTau(); |
196 |
gezelter |
2 |
|
197 |
gezelter |
246 |
pressureTensor = (p_global + OOPSEConstant::energyConvert* tau)/volume; |
198 |
gezelter |
2 |
|
199 |
gezelter |
246 |
return pressureTensor; |
200 |
gezelter |
507 |
} |
201 |
gezelter |
2 |
|
202 |
gezelter |
507 |
void Thermo::saveStat(){ |
203 |
gezelter |
246 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
204 |
|
|
Stats& stat = currSnapshot->statData; |
205 |
gezelter |
2 |
|
206 |
gezelter |
246 |
stat[Stats::KINETIC_ENERGY] = getKinetic(); |
207 |
|
|
stat[Stats::POTENTIAL_ENERGY] = getPotential(); |
208 |
|
|
stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY] + stat[Stats::POTENTIAL_ENERGY] ; |
209 |
|
|
stat[Stats::TEMPERATURE] = getTemperature(); |
210 |
|
|
stat[Stats::PRESSURE] = getPressure(); |
211 |
|
|
stat[Stats::VOLUME] = getVolume(); |
212 |
gezelter |
2 |
|
213 |
gezelter |
246 |
/**@todo need refactorying*/ |
214 |
|
|
//Conserved Quantity is set by integrator and time is set by setTime |
215 |
gezelter |
2 |
|
216 |
gezelter |
507 |
} |
217 |
gezelter |
2 |
|
218 |
gezelter |
246 |
} //end namespace oopse |