ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
Revision: 1787
Committed: Wed Aug 29 18:13:11 2012 UTC (12 years, 8 months ago) by gezelter
File size: 27791 byte(s)
Log Message:
Massive multipole rewrite

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 246 */
42    
43 gezelter 2 #include <math.h>
44     #include <iostream>
45    
46     #ifdef IS_MPI
47     #include <mpi.h>
48     #endif //is_mpi
49    
50 tim 3 #include "brains/Thermo.hpp"
51 gezelter 246 #include "primitives/Molecule.hpp"
52 tim 3 #include "utils/simError.h"
53 gezelter 1390 #include "utils/PhysicalConstants.hpp"
54 gezelter 1764 #include "types/FixedChargeAdapter.hpp"
55     #include "types/FluctuatingChargeAdapter.hpp"
56 gezelter 1710 #include "types/MultipoleAdapter.hpp"
57 gezelter 1767 #ifdef HAVE_QHULL
58 gezelter 1764 #include "math/ConvexHull.hpp"
59     #include "math/AlphaHull.hpp"
60 gezelter 1767 #endif
61 gezelter 2
62 gezelter 1764 using namespace std;
63 gezelter 1390 namespace OpenMD {
64 gezelter 2
65 gezelter 1764 RealType Thermo::getTranslationalKinetic() {
66     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
67    
68     if (!snap->hasTranslationalKineticEnergy) {
69     SimInfo::MoleculeIterator miter;
70     vector<StuntDouble*>::iterator iiter;
71     Molecule* mol;
72     StuntDouble* sd;
73     Vector3d vel;
74     RealType mass;
75     RealType kinetic(0.0);
76    
77     for (mol = info_->beginMolecule(miter); mol != NULL;
78     mol = info_->nextMolecule(miter)) {
79 gezelter 945
80 gezelter 1764 for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
81     sd = mol->nextIntegrableObject(iiter)) {
82    
83     mass = sd->getMass();
84     vel = sd->getVel();
85    
86     kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
87    
88     }
89     }
90    
91     #ifdef IS_MPI
92     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
93     MPI::SUM);
94     #endif
95    
96     kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
97    
98    
99     snap->setTranslationalKineticEnergy(kinetic);
100     }
101     return snap->getTranslationalKineticEnergy();
102     }
103    
104     RealType Thermo::getRotationalKinetic() {
105     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
106    
107     if (!snap->hasRotationalKineticEnergy) {
108     SimInfo::MoleculeIterator miter;
109     vector<StuntDouble*>::iterator iiter;
110     Molecule* mol;
111     StuntDouble* sd;
112     Vector3d angMom;
113     Mat3x3d I;
114     int i, j, k;
115     RealType kinetic(0.0);
116    
117     for (mol = info_->beginMolecule(miter); mol != NULL;
118     mol = info_->nextMolecule(miter)) {
119 gezelter 945
120 gezelter 1764 for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
121     sd = mol->nextIntegrableObject(iiter)) {
122    
123     if (sd->isDirectional()) {
124     angMom = sd->getJ();
125     I = sd->getI();
126 gezelter 246
127 gezelter 1764 if (sd->isLinear()) {
128     i = sd->linearAxis();
129     j = (i + 1) % 3;
130     k = (i + 2) % 3;
131     kinetic += angMom[j] * angMom[j] / I(j, j)
132     + angMom[k] * angMom[k] / I(k, k);
133     } else {
134     kinetic += angMom[0]*angMom[0]/I(0, 0)
135     + angMom[1]*angMom[1]/I(1, 1)
136     + angMom[2]*angMom[2]/I(2, 2);
137     }
138     }
139     }
140 gezelter 507 }
141 gezelter 1764
142     #ifdef IS_MPI
143     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
144     MPI::SUM);
145     #endif
146    
147     kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
148    
149     snap->setRotationalKineticEnergy(kinetic);
150 gezelter 246 }
151 gezelter 1764 return snap->getRotationalKineticEnergy();
152     }
153 gezelter 2
154 gezelter 1764
155 gezelter 2
156 gezelter 1764 RealType Thermo::getKinetic() {
157     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
158 gezelter 2
159 gezelter 1764 if (!snap->hasKineticEnergy) {
160     RealType ke = getTranslationalKinetic() + getRotationalKinetic();
161     snap->setKineticEnergy(ke);
162     }
163     return snap->getKineticEnergy();
164 gezelter 507 }
165 gezelter 2
166 tim 963 RealType Thermo::getPotential() {
167 gezelter 1760
168 gezelter 1764 // ForceManager computes the potential and stores it in the
169     // Snapshot. All we have to do is report it.
170    
171     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
172     return snap->getPotentialEnergy();
173 gezelter 507 }
174 gezelter 2
175 gezelter 1764 RealType Thermo::getTotalEnergy() {
176 gezelter 2
177 gezelter 1764 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
178    
179     if (!snap->hasTotalEnergy) {
180     snap->setTotalEnergy(this->getKinetic() + this->getPotential());
181     }
182    
183     return snap->getTotalEnergy();
184 gezelter 507 }
185 gezelter 2
186 tim 963 RealType Thermo::getTemperature() {
187 gezelter 1764
188     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
189    
190     if (!snap->hasTemperature) {
191    
192     RealType temperature = ( 2.0 * this->getKinetic() )
193     / (info_->getNdf()* PhysicalConstants::kb );
194    
195     snap->setTemperature(temperature);
196     }
197 gezelter 246
198 gezelter 1764 return snap->getTemperature();
199 gezelter 507 }
200 gezelter 2
201 gezelter 1715 RealType Thermo::getElectronicTemperature() {
202 gezelter 1764 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
203    
204     if (!snap->hasElectronicTemperature) {
205    
206     SimInfo::MoleculeIterator miter;
207     vector<Atom*>::iterator iiter;
208     Molecule* mol;
209     Atom* atom;
210     RealType cvel;
211     RealType cmass;
212     RealType kinetic(0.0);
213     RealType eTemp;
214    
215     for (mol = info_->beginMolecule(miter); mol != NULL;
216     mol = info_->nextMolecule(miter)) {
217 gezelter 1715
218 gezelter 1764 for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
219     atom = mol->nextFluctuatingCharge(iiter)) {
220    
221     cmass = atom->getChargeMass();
222     cvel = atom->getFlucQVel();
223    
224     kinetic += cmass * cvel * cvel;
225    
226     }
227 gezelter 1715 }
228    
229     #ifdef IS_MPI
230 gezelter 1764 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
231     MPI::SUM);
232     #endif
233 gezelter 1715
234 gezelter 1764 kinetic *= 0.5;
235     eTemp = (2.0 * kinetic) /
236     (info_->getNFluctuatingCharges() * PhysicalConstants::kb );
237    
238     snap->setElectronicTemperature(eTemp);
239     }
240 gezelter 1715
241 gezelter 1764 return snap->getElectronicTemperature();
242 gezelter 1715 }
243    
244    
245 tim 963 RealType Thermo::getVolume() {
246 gezelter 1764 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
247     return snap->getVolume();
248 gezelter 507 }
249 gezelter 2
250 tim 963 RealType Thermo::getPressure() {
251 gezelter 1764 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
252 gezelter 2
253 gezelter 1764 if (!snap->hasPressure) {
254     // Relies on the calculation of the full molecular pressure tensor
255    
256     Mat3x3d tensor;
257     RealType pressure;
258    
259     tensor = getPressureTensor();
260    
261     pressure = PhysicalConstants::pressureConvert *
262     (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
263    
264     snap->setPressure(pressure);
265     }
266    
267     return snap->getPressure();
268 gezelter 507 }
269 gezelter 2
270 gezelter 507 Mat3x3d Thermo::getPressureTensor() {
271 gezelter 246 // returns pressure tensor in units amu*fs^-2*Ang^-1
272     // routine derived via viral theorem description in:
273     // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
274 gezelter 1764 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
275 gezelter 2
276 gezelter 1764 if (!snap->hasPressureTensor) {
277 gezelter 2
278 gezelter 1764 Mat3x3d pressureTensor;
279     Mat3x3d p_tens(0.0);
280     RealType mass;
281     Vector3d vcom;
282    
283     SimInfo::MoleculeIterator i;
284     vector<StuntDouble*>::iterator j;
285     Molecule* mol;
286     StuntDouble* sd;
287     for (mol = info_->beginMolecule(i); mol != NULL;
288     mol = info_->nextMolecule(i)) {
289    
290     for (sd = mol->beginIntegrableObject(j); sd != NULL;
291     sd = mol->nextIntegrableObject(j)) {
292    
293     mass = sd->getMass();
294     vcom = sd->getVel();
295     p_tens += mass * outProduct(vcom, vcom);
296     }
297 gezelter 507 }
298 gezelter 1764
299     #ifdef IS_MPI
300     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9,
301     MPI::REALTYPE, MPI::SUM);
302     #endif
303    
304     RealType volume = this->getVolume();
305     Mat3x3d stressTensor = snap->getStressTensor();
306    
307     pressureTensor = (p_tens +
308     PhysicalConstants::energyConvert * stressTensor)/volume;
309    
310     snap->setPressureTensor(pressureTensor);
311 gezelter 246 }
312 gezelter 1764 return snap->getPressureTensor();
313 gezelter 507 }
314 gezelter 2
315 chrisfen 998
316 gezelter 2
317 tim 541
318 gezelter 1764 Vector3d Thermo::getSystemDipole() {
319     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
320 tim 541
321 gezelter 1764 if (!snap->hasSystemDipole) {
322     SimInfo::MoleculeIterator miter;
323     vector<Atom*>::iterator aiter;
324     Molecule* mol;
325     Atom* atom;
326     RealType charge;
327     RealType moment(0.0);
328     Vector3d ri(0.0);
329     Vector3d dipoleVector(0.0);
330     Vector3d nPos(0.0);
331     Vector3d pPos(0.0);
332     RealType nChg(0.0);
333     RealType pChg(0.0);
334     int nCount = 0;
335     int pCount = 0;
336 gezelter 1291
337 gezelter 1764 RealType chargeToC = 1.60217733e-19;
338     RealType angstromToM = 1.0e-10;
339     RealType debyeToCm = 3.33564095198e-30;
340    
341     for (mol = info_->beginMolecule(miter); mol != NULL;
342     mol = info_->nextMolecule(miter)) {
343 gezelter 1503
344 gezelter 1764 for (atom = mol->beginAtom(aiter); atom != NULL;
345     atom = mol->nextAtom(aiter)) {
346    
347 gezelter 1503 charge = 0.0;
348 gezelter 1764
349     FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
350     if ( fca.isFixedCharge() ) {
351     charge = fca.getCharge();
352 gezelter 1503 }
353 gezelter 1764
354     FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
355     if ( fqa.isFluctuatingCharge() ) {
356     charge += atom->getFlucQPos();
357     }
358    
359     charge *= chargeToC;
360    
361     ri = atom->getPos();
362     snap->wrapVector(ri);
363     ri *= angstromToM;
364    
365     if (charge < 0.0) {
366     nPos += ri;
367     nChg -= charge;
368     nCount++;
369     } else if (charge > 0.0) {
370     pPos += ri;
371     pChg += charge;
372     pCount++;
373     }
374    
375 gezelter 1787 if (atom->isDipole()) {
376     dipoleVector += atom->getDipole() * debyeToCm;
377 gezelter 1764 }
378 gezelter 1503 }
379     }
380 gezelter 1764
381    
382 gezelter 1503 #ifdef IS_MPI
383 gezelter 1764 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE,
384     MPI::SUM);
385     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE,
386     MPI::SUM);
387 gezelter 1503
388 gezelter 1764 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER,
389     MPI::SUM);
390     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER,
391     MPI::SUM);
392 gezelter 1503
393 gezelter 1764 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3,
394     MPI::REALTYPE, MPI::SUM);
395     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3,
396     MPI::REALTYPE, MPI::SUM);
397    
398     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(),
399     3, MPI::REALTYPE, MPI::SUM);
400     #endif
401    
402     // first load the accumulated dipole moment (if dipoles were present)
403     Vector3d boxDipole = dipoleVector;
404     // now include the dipole moment due to charges
405     // use the lesser of the positive and negative charge totals
406     RealType chg_value = nChg <= pChg ? nChg : pChg;
407    
408     // find the average positions
409     if (pCount > 0 && nCount > 0 ) {
410     pPos /= pCount;
411     nPos /= nCount;
412     }
413    
414     // dipole is from the negative to the positive (physics notation)
415     boxDipole += (pPos - nPos) * chg_value;
416     snap->setSystemDipole(boxDipole);
417 gezelter 1503 }
418    
419 gezelter 1764 return snap->getSystemDipole();
420 gezelter 1503 }
421 gezelter 1723
422     // Returns the Heat Flux Vector for the system
423     Vector3d Thermo::getHeatFlux(){
424     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
425     SimInfo::MoleculeIterator miter;
426 gezelter 1764 vector<StuntDouble*>::iterator iiter;
427 gezelter 1723 Molecule* mol;
428 gezelter 1764 StuntDouble* sd;
429 gezelter 1723 RigidBody::AtomIterator ai;
430     Atom* atom;
431     Vector3d vel;
432     Vector3d angMom;
433     Mat3x3d I;
434     int i;
435     int j;
436     int k;
437     RealType mass;
438    
439     Vector3d x_a;
440     RealType kinetic;
441     RealType potential;
442     RealType eatom;
443     RealType AvgE_a_ = 0;
444     // Convective portion of the heat flux
445     Vector3d heatFluxJc = V3Zero;
446    
447     /* Calculate convective portion of the heat flux */
448     for (mol = info_->beginMolecule(miter); mol != NULL;
449     mol = info_->nextMolecule(miter)) {
450    
451 gezelter 1764 for (sd = mol->beginIntegrableObject(iiter);
452     sd != NULL;
453     sd = mol->nextIntegrableObject(iiter)) {
454 gezelter 1723
455 gezelter 1764 mass = sd->getMass();
456     vel = sd->getVel();
457 gezelter 1723
458     kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
459    
460 gezelter 1764 if (sd->isDirectional()) {
461     angMom = sd->getJ();
462     I = sd->getI();
463 gezelter 1723
464 gezelter 1764 if (sd->isLinear()) {
465     i = sd->linearAxis();
466 gezelter 1723 j = (i + 1) % 3;
467     k = (i + 2) % 3;
468 gezelter 1764 kinetic += angMom[j] * angMom[j] / I(j, j)
469     + angMom[k] * angMom[k] / I(k, k);
470 gezelter 1723 } else {
471 gezelter 1764 kinetic += angMom[0]*angMom[0]/I(0, 0)
472     + angMom[1]*angMom[1]/I(1, 1)
473 gezelter 1723 + angMom[2]*angMom[2]/I(2, 2);
474     }
475     }
476    
477     potential = 0.0;
478    
479 gezelter 1764 if (sd->isRigidBody()) {
480     RigidBody* rb = dynamic_cast<RigidBody*>(sd);
481 gezelter 1723 for (atom = rb->beginAtom(ai); atom != NULL;
482     atom = rb->nextAtom(ai)) {
483     potential += atom->getParticlePot();
484     }
485     } else {
486 gezelter 1764 potential = sd->getParticlePot();
487 gezelter 1723 }
488    
489     potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
490     // The potential may not be a 1/2 factor
491     eatom = (kinetic + potential)/2.0; // amu A^2/fs^2
492     heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
493     heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
494     heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
495     }
496     }
497    
498 gezelter 1764 /* The J_v vector is reduced in the forceManager so everyone has
499     * the global Jv. Jc is computed over the local atoms and must be
500     * reduced among all processors.
501 gezelter 1723 */
502     #ifdef IS_MPI
503     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,
504     MPI::SUM);
505     #endif
506    
507     // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
508    
509     Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
510     PhysicalConstants::energyConvert;
511 gezelter 1764
512 gezelter 1723 // Correct for the fact the flux is 1/V (Jc + Jv)
513     return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
514     }
515 gezelter 1764
516    
517     Vector3d Thermo::getComVel(){
518     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
519    
520     if (!snap->hasCOMvel) {
521    
522     SimInfo::MoleculeIterator i;
523     Molecule* mol;
524    
525     Vector3d comVel(0.0);
526     RealType totalMass(0.0);
527    
528     for (mol = info_->beginMolecule(i); mol != NULL;
529     mol = info_->nextMolecule(i)) {
530     RealType mass = mol->getMass();
531     totalMass += mass;
532     comVel += mass * mol->getComVel();
533     }
534    
535     #ifdef IS_MPI
536     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
537     MPI::SUM);
538     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
539     MPI::REALTYPE, MPI::SUM);
540     #endif
541    
542     comVel /= totalMass;
543     snap->setCOMvel(comVel);
544     }
545     return snap->getCOMvel();
546     }
547    
548     Vector3d Thermo::getCom(){
549     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
550    
551     if (!snap->hasCOM) {
552    
553     SimInfo::MoleculeIterator i;
554     Molecule* mol;
555    
556     Vector3d com(0.0);
557     RealType totalMass(0.0);
558    
559     for (mol = info_->beginMolecule(i); mol != NULL;
560     mol = info_->nextMolecule(i)) {
561     RealType mass = mol->getMass();
562     totalMass += mass;
563     com += mass * mol->getCom();
564     }
565    
566     #ifdef IS_MPI
567     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
568     MPI::SUM);
569     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
570     MPI::REALTYPE, MPI::SUM);
571     #endif
572    
573     com /= totalMass;
574     snap->setCOM(com);
575     }
576     return snap->getCOM();
577     }
578    
579     /**
580     * Returns center of mass and center of mass velocity in one
581     * function call.
582     */
583     void Thermo::getComAll(Vector3d &com, Vector3d &comVel){
584     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
585    
586     if (!(snap->hasCOM && snap->hasCOMvel)) {
587    
588     SimInfo::MoleculeIterator i;
589     Molecule* mol;
590    
591     RealType totalMass(0.0);
592    
593     com = 0.0;
594     comVel = 0.0;
595    
596     for (mol = info_->beginMolecule(i); mol != NULL;
597     mol = info_->nextMolecule(i)) {
598     RealType mass = mol->getMass();
599     totalMass += mass;
600     com += mass * mol->getCom();
601     comVel += mass * mol->getComVel();
602     }
603    
604     #ifdef IS_MPI
605     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
606     MPI::SUM);
607     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
608     MPI::REALTYPE, MPI::SUM);
609     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
610     MPI::REALTYPE, MPI::SUM);
611     #endif
612    
613     com /= totalMass;
614     comVel /= totalMass;
615     snap->setCOM(com);
616     snap->setCOMvel(comVel);
617     }
618     com = snap->getCOM();
619     comVel = snap->getCOMvel();
620     return;
621     }
622    
623     /**
624     * Return intertia tensor for entire system and angular momentum
625     * Vector.
626     *
627     *
628     *
629     * [ Ixx -Ixy -Ixz ]
630     * I =| -Iyx Iyy -Iyz |
631     * [ -Izx -Iyz Izz ]
632     */
633     void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,
634     Vector3d &angularMomentum){
635    
636     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
637    
638     if (!(snap->hasInertiaTensor && snap->hasCOMw)) {
639    
640     RealType xx = 0.0;
641     RealType yy = 0.0;
642     RealType zz = 0.0;
643     RealType xy = 0.0;
644     RealType xz = 0.0;
645     RealType yz = 0.0;
646     Vector3d com(0.0);
647     Vector3d comVel(0.0);
648    
649     getComAll(com, comVel);
650    
651     SimInfo::MoleculeIterator i;
652     Molecule* mol;
653    
654     Vector3d thisq(0.0);
655     Vector3d thisv(0.0);
656    
657     RealType thisMass = 0.0;
658    
659     for (mol = info_->beginMolecule(i); mol != NULL;
660     mol = info_->nextMolecule(i)) {
661    
662     thisq = mol->getCom()-com;
663     thisv = mol->getComVel()-comVel;
664     thisMass = mol->getMass();
665     // Compute moment of intertia coefficients.
666     xx += thisq[0]*thisq[0]*thisMass;
667     yy += thisq[1]*thisq[1]*thisMass;
668     zz += thisq[2]*thisq[2]*thisMass;
669    
670     // compute products of intertia
671     xy += thisq[0]*thisq[1]*thisMass;
672     xz += thisq[0]*thisq[2]*thisMass;
673     yz += thisq[1]*thisq[2]*thisMass;
674    
675     angularMomentum += cross( thisq, thisv ) * thisMass;
676     }
677    
678     inertiaTensor(0,0) = yy + zz;
679     inertiaTensor(0,1) = -xy;
680     inertiaTensor(0,2) = -xz;
681     inertiaTensor(1,0) = -xy;
682     inertiaTensor(1,1) = xx + zz;
683     inertiaTensor(1,2) = -yz;
684     inertiaTensor(2,0) = -xz;
685     inertiaTensor(2,1) = -yz;
686     inertiaTensor(2,2) = xx + yy;
687    
688     #ifdef IS_MPI
689     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(),
690     9, MPI::REALTYPE, MPI::SUM);
691     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
692     angularMomentum.getArrayPointer(), 3,
693     MPI::REALTYPE, MPI::SUM);
694     #endif
695    
696     snap->setCOMw(angularMomentum);
697     snap->setInertiaTensor(inertiaTensor);
698     }
699    
700     angularMomentum = snap->getCOMw();
701     inertiaTensor = snap->getInertiaTensor();
702    
703     return;
704     }
705    
706     // Returns the angular momentum of the system
707     Vector3d Thermo::getAngularMomentum(){
708     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
709    
710     if (!snap->hasCOMw) {
711    
712     Vector3d com(0.0);
713     Vector3d comVel(0.0);
714     Vector3d angularMomentum(0.0);
715    
716     getComAll(com, comVel);
717    
718     SimInfo::MoleculeIterator i;
719     Molecule* mol;
720    
721     Vector3d thisr(0.0);
722     Vector3d thisp(0.0);
723    
724     RealType thisMass;
725    
726     for (mol = info_->beginMolecule(i); mol != NULL;
727     mol = info_->nextMolecule(i)) {
728     thisMass = mol->getMass();
729     thisr = mol->getCom() - com;
730     thisp = (mol->getComVel() - comVel) * thisMass;
731    
732     angularMomentum += cross( thisr, thisp );
733     }
734    
735     #ifdef IS_MPI
736     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
737     angularMomentum.getArrayPointer(), 3,
738     MPI::REALTYPE, MPI::SUM);
739     #endif
740    
741     snap->setCOMw(angularMomentum);
742     }
743    
744     return snap->getCOMw();
745     }
746    
747    
748     /**
749     * Returns the Volume of the system based on a ellipsoid with
750     * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
751     * where R_i are related to the principle inertia moments
752     * R_i = sqrt(C*I_i/N), this reduces to
753     * V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).
754     * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
755     */
756     RealType Thermo::getGyrationalVolume(){
757     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
758    
759     if (!snap->hasGyrationalVolume) {
760    
761     Mat3x3d intTensor;
762     RealType det;
763     Vector3d dummyAngMom;
764     RealType sysconstants;
765     RealType geomCnst;
766     RealType volume;
767    
768     geomCnst = 3.0/2.0;
769     /* Get the inertial tensor and angular momentum for free*/
770     getInertiaTensor(intTensor, dummyAngMom);
771    
772     det = intTensor.determinant();
773     sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects());
774     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
775    
776     snap->setGyrationalVolume(volume);
777     }
778     return snap->getGyrationalVolume();
779     }
780    
781     void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){
782     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
783    
784     if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) {
785    
786     Mat3x3d intTensor;
787     Vector3d dummyAngMom;
788     RealType sysconstants;
789     RealType geomCnst;
790    
791     geomCnst = 3.0/2.0;
792     /* Get the inertia tensor and angular momentum for free*/
793     this->getInertiaTensor(intTensor, dummyAngMom);
794    
795     detI = intTensor.determinant();
796     sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects());
797     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
798     snap->setGyrationalVolume(volume);
799     } else {
800     volume = snap->getGyrationalVolume();
801     detI = snap->getInertiaTensor().determinant();
802     }
803     return;
804     }
805    
806     RealType Thermo::getTaggedAtomPairDistance(){
807     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
808     Globals* simParams = info_->getSimParams();
809    
810     if (simParams->haveTaggedAtomPair() &&
811     simParams->havePrintTaggedPairDistance()) {
812     if ( simParams->getPrintTaggedPairDistance()) {
813    
814     pair<int, int> tap = simParams->getTaggedAtomPair();
815     Vector3d pos1, pos2, rab;
816    
817     #ifdef IS_MPI
818     int mol1 = info_->getGlobalMolMembership(tap.first);
819     int mol2 = info_->getGlobalMolMembership(tap.second);
820    
821     int proc1 = info_->getMolToProc(mol1);
822     int proc2 = info_->getMolToProc(mol2);
823    
824     RealType data[3];
825     if (proc1 == worldRank) {
826     StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
827     pos1 = sd1->getPos();
828     data[0] = pos1.x();
829     data[1] = pos1.y();
830     data[2] = pos1.z();
831     MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
832     } else {
833     MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
834     pos1 = Vector3d(data);
835     }
836    
837     if (proc2 == worldRank) {
838     StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
839     pos2 = sd2->getPos();
840     data[0] = pos2.x();
841     data[1] = pos2.y();
842     data[2] = pos2.z();
843     MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
844     } else {
845     MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
846     pos2 = Vector3d(data);
847     }
848     #else
849     StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
850     StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
851     pos1 = at1->getPos();
852     pos2 = at2->getPos();
853     #endif
854     rab = pos2 - pos1;
855     currSnapshot->wrapVector(rab);
856     return rab.length();
857     }
858     return 0.0;
859     }
860     return 0.0;
861     }
862    
863     RealType Thermo::getHullVolume(){
864     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
865 gezelter 1767
866     #ifdef HAVE_QHULL
867 gezelter 1764 if (!snap->hasHullVolume) {
868     Hull* surfaceMesh_;
869    
870     Globals* simParams = info_->getSimParams();
871     const std::string ht = simParams->getHULL_Method();
872    
873     if (ht == "Convex") {
874     surfaceMesh_ = new ConvexHull();
875     } else if (ht == "AlphaShape") {
876     surfaceMesh_ = new AlphaHull(simParams->getAlpha());
877     } else {
878     return 0.0;
879     }
880    
881     // Build a vector of stunt doubles to determine if they are
882     // surface atoms
883     std::vector<StuntDouble*> localSites_;
884     Molecule* mol;
885     StuntDouble* sd;
886     SimInfo::MoleculeIterator i;
887     Molecule::IntegrableObjectIterator j;
888    
889     for (mol = info_->beginMolecule(i); mol != NULL;
890     mol = info_->nextMolecule(i)) {
891     for (sd = mol->beginIntegrableObject(j);
892     sd != NULL;
893     sd = mol->nextIntegrableObject(j)) {
894     localSites_.push_back(sd);
895     }
896     }
897    
898     // Compute surface Mesh
899     surfaceMesh_->computeHull(localSites_);
900     snap->setHullVolume(surfaceMesh_->getVolume());
901     }
902     return snap->getHullVolume();
903 gezelter 1767 #else
904     return 0.0;
905     #endif
906     }
907 gezelter 1764 }

Properties

Name Value
svn:keywords Author Id Revision Date