1 |
gezelter |
507 |
/* |
2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
10 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
gezelter |
1390 |
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
gezelter |
1665 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
gezelter |
246 |
*/ |
42 |
|
|
|
43 |
gezelter |
2 |
#include <math.h> |
44 |
|
|
#include <iostream> |
45 |
|
|
|
46 |
|
|
#ifdef IS_MPI |
47 |
|
|
#include <mpi.h> |
48 |
|
|
#endif //is_mpi |
49 |
|
|
|
50 |
tim |
3 |
#include "brains/Thermo.hpp" |
51 |
gezelter |
246 |
#include "primitives/Molecule.hpp" |
52 |
tim |
3 |
#include "utils/simError.h" |
53 |
gezelter |
1390 |
#include "utils/PhysicalConstants.hpp" |
54 |
gezelter |
1764 |
#include "types/FixedChargeAdapter.hpp" |
55 |
|
|
#include "types/FluctuatingChargeAdapter.hpp" |
56 |
gezelter |
1710 |
#include "types/MultipoleAdapter.hpp" |
57 |
gezelter |
1767 |
#ifdef HAVE_QHULL |
58 |
gezelter |
1764 |
#include "math/ConvexHull.hpp" |
59 |
|
|
#include "math/AlphaHull.hpp" |
60 |
gezelter |
1767 |
#endif |
61 |
gezelter |
2 |
|
62 |
gezelter |
1764 |
using namespace std; |
63 |
gezelter |
1390 |
namespace OpenMD { |
64 |
gezelter |
2 |
|
65 |
gezelter |
1764 |
RealType Thermo::getTranslationalKinetic() { |
66 |
|
|
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
67 |
|
|
|
68 |
|
|
if (!snap->hasTranslationalKineticEnergy) { |
69 |
|
|
SimInfo::MoleculeIterator miter; |
70 |
|
|
vector<StuntDouble*>::iterator iiter; |
71 |
|
|
Molecule* mol; |
72 |
|
|
StuntDouble* sd; |
73 |
|
|
Vector3d vel; |
74 |
|
|
RealType mass; |
75 |
|
|
RealType kinetic(0.0); |
76 |
|
|
|
77 |
|
|
for (mol = info_->beginMolecule(miter); mol != NULL; |
78 |
|
|
mol = info_->nextMolecule(miter)) { |
79 |
gezelter |
945 |
|
80 |
gezelter |
1764 |
for (sd = mol->beginIntegrableObject(iiter); sd != NULL; |
81 |
|
|
sd = mol->nextIntegrableObject(iiter)) { |
82 |
|
|
|
83 |
|
|
mass = sd->getMass(); |
84 |
|
|
vel = sd->getVel(); |
85 |
|
|
|
86 |
|
|
kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
87 |
|
|
|
88 |
|
|
} |
89 |
|
|
} |
90 |
|
|
|
91 |
|
|
#ifdef IS_MPI |
92 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, |
93 |
|
|
MPI::SUM); |
94 |
|
|
#endif |
95 |
|
|
|
96 |
|
|
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
97 |
|
|
|
98 |
|
|
|
99 |
|
|
snap->setTranslationalKineticEnergy(kinetic); |
100 |
|
|
} |
101 |
|
|
return snap->getTranslationalKineticEnergy(); |
102 |
|
|
} |
103 |
|
|
|
104 |
|
|
RealType Thermo::getRotationalKinetic() { |
105 |
|
|
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
106 |
|
|
|
107 |
|
|
if (!snap->hasRotationalKineticEnergy) { |
108 |
|
|
SimInfo::MoleculeIterator miter; |
109 |
|
|
vector<StuntDouble*>::iterator iiter; |
110 |
|
|
Molecule* mol; |
111 |
|
|
StuntDouble* sd; |
112 |
|
|
Vector3d angMom; |
113 |
|
|
Mat3x3d I; |
114 |
|
|
int i, j, k; |
115 |
|
|
RealType kinetic(0.0); |
116 |
|
|
|
117 |
|
|
for (mol = info_->beginMolecule(miter); mol != NULL; |
118 |
|
|
mol = info_->nextMolecule(miter)) { |
119 |
gezelter |
945 |
|
120 |
gezelter |
1764 |
for (sd = mol->beginIntegrableObject(iiter); sd != NULL; |
121 |
|
|
sd = mol->nextIntegrableObject(iiter)) { |
122 |
|
|
|
123 |
|
|
if (sd->isDirectional()) { |
124 |
|
|
angMom = sd->getJ(); |
125 |
|
|
I = sd->getI(); |
126 |
gezelter |
246 |
|
127 |
gezelter |
1764 |
if (sd->isLinear()) { |
128 |
|
|
i = sd->linearAxis(); |
129 |
|
|
j = (i + 1) % 3; |
130 |
|
|
k = (i + 2) % 3; |
131 |
|
|
kinetic += angMom[j] * angMom[j] / I(j, j) |
132 |
|
|
+ angMom[k] * angMom[k] / I(k, k); |
133 |
|
|
} else { |
134 |
|
|
kinetic += angMom[0]*angMom[0]/I(0, 0) |
135 |
|
|
+ angMom[1]*angMom[1]/I(1, 1) |
136 |
|
|
+ angMom[2]*angMom[2]/I(2, 2); |
137 |
|
|
} |
138 |
|
|
} |
139 |
|
|
} |
140 |
gezelter |
507 |
} |
141 |
gezelter |
1764 |
|
142 |
|
|
#ifdef IS_MPI |
143 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, |
144 |
|
|
MPI::SUM); |
145 |
|
|
#endif |
146 |
|
|
|
147 |
|
|
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
148 |
|
|
|
149 |
|
|
snap->setRotationalKineticEnergy(kinetic); |
150 |
gezelter |
246 |
} |
151 |
gezelter |
1764 |
return snap->getRotationalKineticEnergy(); |
152 |
|
|
} |
153 |
gezelter |
2 |
|
154 |
gezelter |
1764 |
|
155 |
gezelter |
2 |
|
156 |
gezelter |
1764 |
RealType Thermo::getKinetic() { |
157 |
|
|
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
158 |
gezelter |
2 |
|
159 |
gezelter |
1764 |
if (!snap->hasKineticEnergy) { |
160 |
|
|
RealType ke = getTranslationalKinetic() + getRotationalKinetic(); |
161 |
|
|
snap->setKineticEnergy(ke); |
162 |
|
|
} |
163 |
|
|
return snap->getKineticEnergy(); |
164 |
gezelter |
507 |
} |
165 |
gezelter |
2 |
|
166 |
tim |
963 |
RealType Thermo::getPotential() { |
167 |
gezelter |
1760 |
|
168 |
gezelter |
1764 |
// ForceManager computes the potential and stores it in the |
169 |
|
|
// Snapshot. All we have to do is report it. |
170 |
|
|
|
171 |
|
|
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
172 |
|
|
return snap->getPotentialEnergy(); |
173 |
gezelter |
507 |
} |
174 |
gezelter |
2 |
|
175 |
gezelter |
1764 |
RealType Thermo::getTotalEnergy() { |
176 |
gezelter |
2 |
|
177 |
gezelter |
1764 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
178 |
|
|
|
179 |
|
|
if (!snap->hasTotalEnergy) { |
180 |
|
|
snap->setTotalEnergy(this->getKinetic() + this->getPotential()); |
181 |
|
|
} |
182 |
|
|
|
183 |
|
|
return snap->getTotalEnergy(); |
184 |
gezelter |
507 |
} |
185 |
gezelter |
2 |
|
186 |
tim |
963 |
RealType Thermo::getTemperature() { |
187 |
gezelter |
1764 |
|
188 |
|
|
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
189 |
|
|
|
190 |
|
|
if (!snap->hasTemperature) { |
191 |
|
|
|
192 |
|
|
RealType temperature = ( 2.0 * this->getKinetic() ) |
193 |
|
|
/ (info_->getNdf()* PhysicalConstants::kb ); |
194 |
|
|
|
195 |
|
|
snap->setTemperature(temperature); |
196 |
|
|
} |
197 |
gezelter |
246 |
|
198 |
gezelter |
1764 |
return snap->getTemperature(); |
199 |
gezelter |
507 |
} |
200 |
gezelter |
2 |
|
201 |
gezelter |
1715 |
RealType Thermo::getElectronicTemperature() { |
202 |
gezelter |
1764 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
203 |
|
|
|
204 |
|
|
if (!snap->hasElectronicTemperature) { |
205 |
|
|
|
206 |
|
|
SimInfo::MoleculeIterator miter; |
207 |
|
|
vector<Atom*>::iterator iiter; |
208 |
|
|
Molecule* mol; |
209 |
|
|
Atom* atom; |
210 |
|
|
RealType cvel; |
211 |
|
|
RealType cmass; |
212 |
|
|
RealType kinetic(0.0); |
213 |
|
|
RealType eTemp; |
214 |
|
|
|
215 |
|
|
for (mol = info_->beginMolecule(miter); mol != NULL; |
216 |
|
|
mol = info_->nextMolecule(miter)) { |
217 |
gezelter |
1715 |
|
218 |
gezelter |
1764 |
for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL; |
219 |
|
|
atom = mol->nextFluctuatingCharge(iiter)) { |
220 |
|
|
|
221 |
|
|
cmass = atom->getChargeMass(); |
222 |
|
|
cvel = atom->getFlucQVel(); |
223 |
|
|
|
224 |
|
|
kinetic += cmass * cvel * cvel; |
225 |
|
|
|
226 |
|
|
} |
227 |
gezelter |
1715 |
} |
228 |
|
|
|
229 |
|
|
#ifdef IS_MPI |
230 |
gezelter |
1764 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE, |
231 |
|
|
MPI::SUM); |
232 |
|
|
#endif |
233 |
gezelter |
1715 |
|
234 |
gezelter |
1764 |
kinetic *= 0.5; |
235 |
|
|
eTemp = (2.0 * kinetic) / |
236 |
|
|
(info_->getNFluctuatingCharges() * PhysicalConstants::kb ); |
237 |
|
|
|
238 |
|
|
snap->setElectronicTemperature(eTemp); |
239 |
|
|
} |
240 |
gezelter |
1715 |
|
241 |
gezelter |
1764 |
return snap->getElectronicTemperature(); |
242 |
gezelter |
1715 |
} |
243 |
|
|
|
244 |
|
|
|
245 |
tim |
963 |
RealType Thermo::getVolume() { |
246 |
gezelter |
1764 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
247 |
|
|
return snap->getVolume(); |
248 |
gezelter |
507 |
} |
249 |
gezelter |
2 |
|
250 |
tim |
963 |
RealType Thermo::getPressure() { |
251 |
gezelter |
1764 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
252 |
gezelter |
2 |
|
253 |
gezelter |
1764 |
if (!snap->hasPressure) { |
254 |
|
|
// Relies on the calculation of the full molecular pressure tensor |
255 |
|
|
|
256 |
|
|
Mat3x3d tensor; |
257 |
|
|
RealType pressure; |
258 |
|
|
|
259 |
|
|
tensor = getPressureTensor(); |
260 |
|
|
|
261 |
|
|
pressure = PhysicalConstants::pressureConvert * |
262 |
|
|
(tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; |
263 |
|
|
|
264 |
|
|
snap->setPressure(pressure); |
265 |
|
|
} |
266 |
|
|
|
267 |
|
|
return snap->getPressure(); |
268 |
gezelter |
507 |
} |
269 |
gezelter |
2 |
|
270 |
gezelter |
507 |
Mat3x3d Thermo::getPressureTensor() { |
271 |
gezelter |
246 |
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
272 |
|
|
// routine derived via viral theorem description in: |
273 |
|
|
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
274 |
gezelter |
1764 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
275 |
gezelter |
2 |
|
276 |
gezelter |
1764 |
if (!snap->hasPressureTensor) { |
277 |
gezelter |
2 |
|
278 |
gezelter |
1764 |
Mat3x3d pressureTensor; |
279 |
|
|
Mat3x3d p_tens(0.0); |
280 |
|
|
RealType mass; |
281 |
|
|
Vector3d vcom; |
282 |
|
|
|
283 |
|
|
SimInfo::MoleculeIterator i; |
284 |
|
|
vector<StuntDouble*>::iterator j; |
285 |
|
|
Molecule* mol; |
286 |
|
|
StuntDouble* sd; |
287 |
|
|
for (mol = info_->beginMolecule(i); mol != NULL; |
288 |
|
|
mol = info_->nextMolecule(i)) { |
289 |
|
|
|
290 |
|
|
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
291 |
|
|
sd = mol->nextIntegrableObject(j)) { |
292 |
|
|
|
293 |
|
|
mass = sd->getMass(); |
294 |
|
|
vcom = sd->getVel(); |
295 |
|
|
p_tens += mass * outProduct(vcom, vcom); |
296 |
|
|
} |
297 |
gezelter |
507 |
} |
298 |
gezelter |
1764 |
|
299 |
|
|
#ifdef IS_MPI |
300 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9, |
301 |
|
|
MPI::REALTYPE, MPI::SUM); |
302 |
|
|
#endif |
303 |
|
|
|
304 |
|
|
RealType volume = this->getVolume(); |
305 |
|
|
Mat3x3d stressTensor = snap->getStressTensor(); |
306 |
|
|
|
307 |
|
|
pressureTensor = (p_tens + |
308 |
|
|
PhysicalConstants::energyConvert * stressTensor)/volume; |
309 |
|
|
|
310 |
|
|
snap->setPressureTensor(pressureTensor); |
311 |
gezelter |
246 |
} |
312 |
gezelter |
1764 |
return snap->getPressureTensor(); |
313 |
gezelter |
507 |
} |
314 |
gezelter |
2 |
|
315 |
chrisfen |
998 |
|
316 |
gezelter |
2 |
|
317 |
tim |
541 |
|
318 |
gezelter |
1764 |
Vector3d Thermo::getSystemDipole() { |
319 |
|
|
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
320 |
tim |
541 |
|
321 |
gezelter |
1764 |
if (!snap->hasSystemDipole) { |
322 |
|
|
SimInfo::MoleculeIterator miter; |
323 |
|
|
vector<Atom*>::iterator aiter; |
324 |
|
|
Molecule* mol; |
325 |
|
|
Atom* atom; |
326 |
|
|
RealType charge; |
327 |
|
|
RealType moment(0.0); |
328 |
|
|
Vector3d ri(0.0); |
329 |
|
|
Vector3d dipoleVector(0.0); |
330 |
|
|
Vector3d nPos(0.0); |
331 |
|
|
Vector3d pPos(0.0); |
332 |
|
|
RealType nChg(0.0); |
333 |
|
|
RealType pChg(0.0); |
334 |
|
|
int nCount = 0; |
335 |
|
|
int pCount = 0; |
336 |
gezelter |
1291 |
|
337 |
gezelter |
1764 |
RealType chargeToC = 1.60217733e-19; |
338 |
|
|
RealType angstromToM = 1.0e-10; |
339 |
|
|
RealType debyeToCm = 3.33564095198e-30; |
340 |
|
|
|
341 |
|
|
for (mol = info_->beginMolecule(miter); mol != NULL; |
342 |
|
|
mol = info_->nextMolecule(miter)) { |
343 |
gezelter |
1503 |
|
344 |
gezelter |
1764 |
for (atom = mol->beginAtom(aiter); atom != NULL; |
345 |
|
|
atom = mol->nextAtom(aiter)) { |
346 |
|
|
|
347 |
gezelter |
1503 |
charge = 0.0; |
348 |
gezelter |
1764 |
|
349 |
|
|
FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType()); |
350 |
|
|
if ( fca.isFixedCharge() ) { |
351 |
|
|
charge = fca.getCharge(); |
352 |
gezelter |
1503 |
} |
353 |
gezelter |
1764 |
|
354 |
|
|
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType()); |
355 |
|
|
if ( fqa.isFluctuatingCharge() ) { |
356 |
|
|
charge += atom->getFlucQPos(); |
357 |
|
|
} |
358 |
|
|
|
359 |
|
|
charge *= chargeToC; |
360 |
|
|
|
361 |
|
|
ri = atom->getPos(); |
362 |
|
|
snap->wrapVector(ri); |
363 |
|
|
ri *= angstromToM; |
364 |
|
|
|
365 |
|
|
if (charge < 0.0) { |
366 |
|
|
nPos += ri; |
367 |
|
|
nChg -= charge; |
368 |
|
|
nCount++; |
369 |
|
|
} else if (charge > 0.0) { |
370 |
|
|
pPos += ri; |
371 |
|
|
pChg += charge; |
372 |
|
|
pCount++; |
373 |
|
|
} |
374 |
|
|
|
375 |
|
|
MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType()); |
376 |
|
|
if (ma.isDipole() ) { |
377 |
|
|
Vector3d u_i = atom->getElectroFrame().getColumn(2); |
378 |
|
|
moment = ma.getDipoleMoment(); |
379 |
|
|
moment *= debyeToCm; |
380 |
|
|
dipoleVector += u_i * moment; |
381 |
|
|
} |
382 |
gezelter |
1503 |
} |
383 |
|
|
} |
384 |
gezelter |
1764 |
|
385 |
|
|
|
386 |
gezelter |
1503 |
#ifdef IS_MPI |
387 |
gezelter |
1764 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE, |
388 |
|
|
MPI::SUM); |
389 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE, |
390 |
|
|
MPI::SUM); |
391 |
gezelter |
1503 |
|
392 |
gezelter |
1764 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER, |
393 |
|
|
MPI::SUM); |
394 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER, |
395 |
|
|
MPI::SUM); |
396 |
gezelter |
1503 |
|
397 |
gezelter |
1764 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3, |
398 |
|
|
MPI::REALTYPE, MPI::SUM); |
399 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3, |
400 |
|
|
MPI::REALTYPE, MPI::SUM); |
401 |
|
|
|
402 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(), |
403 |
|
|
3, MPI::REALTYPE, MPI::SUM); |
404 |
|
|
#endif |
405 |
|
|
|
406 |
|
|
// first load the accumulated dipole moment (if dipoles were present) |
407 |
|
|
Vector3d boxDipole = dipoleVector; |
408 |
|
|
// now include the dipole moment due to charges |
409 |
|
|
// use the lesser of the positive and negative charge totals |
410 |
|
|
RealType chg_value = nChg <= pChg ? nChg : pChg; |
411 |
|
|
|
412 |
|
|
// find the average positions |
413 |
|
|
if (pCount > 0 && nCount > 0 ) { |
414 |
|
|
pPos /= pCount; |
415 |
|
|
nPos /= nCount; |
416 |
|
|
} |
417 |
|
|
|
418 |
|
|
// dipole is from the negative to the positive (physics notation) |
419 |
|
|
boxDipole += (pPos - nPos) * chg_value; |
420 |
|
|
snap->setSystemDipole(boxDipole); |
421 |
gezelter |
1503 |
} |
422 |
|
|
|
423 |
gezelter |
1764 |
return snap->getSystemDipole(); |
424 |
gezelter |
1503 |
} |
425 |
gezelter |
1723 |
|
426 |
|
|
// Returns the Heat Flux Vector for the system |
427 |
|
|
Vector3d Thermo::getHeatFlux(){ |
428 |
|
|
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
429 |
|
|
SimInfo::MoleculeIterator miter; |
430 |
gezelter |
1764 |
vector<StuntDouble*>::iterator iiter; |
431 |
gezelter |
1723 |
Molecule* mol; |
432 |
gezelter |
1764 |
StuntDouble* sd; |
433 |
gezelter |
1723 |
RigidBody::AtomIterator ai; |
434 |
|
|
Atom* atom; |
435 |
|
|
Vector3d vel; |
436 |
|
|
Vector3d angMom; |
437 |
|
|
Mat3x3d I; |
438 |
|
|
int i; |
439 |
|
|
int j; |
440 |
|
|
int k; |
441 |
|
|
RealType mass; |
442 |
|
|
|
443 |
|
|
Vector3d x_a; |
444 |
|
|
RealType kinetic; |
445 |
|
|
RealType potential; |
446 |
|
|
RealType eatom; |
447 |
|
|
RealType AvgE_a_ = 0; |
448 |
|
|
// Convective portion of the heat flux |
449 |
|
|
Vector3d heatFluxJc = V3Zero; |
450 |
|
|
|
451 |
|
|
/* Calculate convective portion of the heat flux */ |
452 |
|
|
for (mol = info_->beginMolecule(miter); mol != NULL; |
453 |
|
|
mol = info_->nextMolecule(miter)) { |
454 |
|
|
|
455 |
gezelter |
1764 |
for (sd = mol->beginIntegrableObject(iiter); |
456 |
|
|
sd != NULL; |
457 |
|
|
sd = mol->nextIntegrableObject(iiter)) { |
458 |
gezelter |
1723 |
|
459 |
gezelter |
1764 |
mass = sd->getMass(); |
460 |
|
|
vel = sd->getVel(); |
461 |
gezelter |
1723 |
|
462 |
|
|
kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
463 |
|
|
|
464 |
gezelter |
1764 |
if (sd->isDirectional()) { |
465 |
|
|
angMom = sd->getJ(); |
466 |
|
|
I = sd->getI(); |
467 |
gezelter |
1723 |
|
468 |
gezelter |
1764 |
if (sd->isLinear()) { |
469 |
|
|
i = sd->linearAxis(); |
470 |
gezelter |
1723 |
j = (i + 1) % 3; |
471 |
|
|
k = (i + 2) % 3; |
472 |
gezelter |
1764 |
kinetic += angMom[j] * angMom[j] / I(j, j) |
473 |
|
|
+ angMom[k] * angMom[k] / I(k, k); |
474 |
gezelter |
1723 |
} else { |
475 |
gezelter |
1764 |
kinetic += angMom[0]*angMom[0]/I(0, 0) |
476 |
|
|
+ angMom[1]*angMom[1]/I(1, 1) |
477 |
gezelter |
1723 |
+ angMom[2]*angMom[2]/I(2, 2); |
478 |
|
|
} |
479 |
|
|
} |
480 |
|
|
|
481 |
|
|
potential = 0.0; |
482 |
|
|
|
483 |
gezelter |
1764 |
if (sd->isRigidBody()) { |
484 |
|
|
RigidBody* rb = dynamic_cast<RigidBody*>(sd); |
485 |
gezelter |
1723 |
for (atom = rb->beginAtom(ai); atom != NULL; |
486 |
|
|
atom = rb->nextAtom(ai)) { |
487 |
|
|
potential += atom->getParticlePot(); |
488 |
|
|
} |
489 |
|
|
} else { |
490 |
gezelter |
1764 |
potential = sd->getParticlePot(); |
491 |
gezelter |
1723 |
} |
492 |
|
|
|
493 |
|
|
potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 |
494 |
|
|
// The potential may not be a 1/2 factor |
495 |
|
|
eatom = (kinetic + potential)/2.0; // amu A^2/fs^2 |
496 |
|
|
heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 |
497 |
|
|
heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 |
498 |
|
|
heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 |
499 |
|
|
} |
500 |
|
|
} |
501 |
|
|
|
502 |
gezelter |
1764 |
/* The J_v vector is reduced in the forceManager so everyone has |
503 |
|
|
* the global Jv. Jc is computed over the local atoms and must be |
504 |
|
|
* reduced among all processors. |
505 |
gezelter |
1723 |
*/ |
506 |
|
|
#ifdef IS_MPI |
507 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE, |
508 |
|
|
MPI::SUM); |
509 |
|
|
#endif |
510 |
|
|
|
511 |
|
|
// (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 |
512 |
|
|
|
513 |
|
|
Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() * |
514 |
|
|
PhysicalConstants::energyConvert; |
515 |
gezelter |
1764 |
|
516 |
gezelter |
1723 |
// Correct for the fact the flux is 1/V (Jc + Jv) |
517 |
|
|
return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3 |
518 |
|
|
} |
519 |
gezelter |
1764 |
|
520 |
|
|
|
521 |
|
|
Vector3d Thermo::getComVel(){ |
522 |
|
|
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
523 |
|
|
|
524 |
|
|
if (!snap->hasCOMvel) { |
525 |
|
|
|
526 |
|
|
SimInfo::MoleculeIterator i; |
527 |
|
|
Molecule* mol; |
528 |
|
|
|
529 |
|
|
Vector3d comVel(0.0); |
530 |
|
|
RealType totalMass(0.0); |
531 |
|
|
|
532 |
|
|
for (mol = info_->beginMolecule(i); mol != NULL; |
533 |
|
|
mol = info_->nextMolecule(i)) { |
534 |
|
|
RealType mass = mol->getMass(); |
535 |
|
|
totalMass += mass; |
536 |
|
|
comVel += mass * mol->getComVel(); |
537 |
|
|
} |
538 |
|
|
|
539 |
|
|
#ifdef IS_MPI |
540 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, |
541 |
|
|
MPI::SUM); |
542 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3, |
543 |
|
|
MPI::REALTYPE, MPI::SUM); |
544 |
|
|
#endif |
545 |
|
|
|
546 |
|
|
comVel /= totalMass; |
547 |
|
|
snap->setCOMvel(comVel); |
548 |
|
|
} |
549 |
|
|
return snap->getCOMvel(); |
550 |
|
|
} |
551 |
|
|
|
552 |
|
|
Vector3d Thermo::getCom(){ |
553 |
|
|
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
554 |
|
|
|
555 |
|
|
if (!snap->hasCOM) { |
556 |
|
|
|
557 |
|
|
SimInfo::MoleculeIterator i; |
558 |
|
|
Molecule* mol; |
559 |
|
|
|
560 |
|
|
Vector3d com(0.0); |
561 |
|
|
RealType totalMass(0.0); |
562 |
|
|
|
563 |
|
|
for (mol = info_->beginMolecule(i); mol != NULL; |
564 |
|
|
mol = info_->nextMolecule(i)) { |
565 |
|
|
RealType mass = mol->getMass(); |
566 |
|
|
totalMass += mass; |
567 |
|
|
com += mass * mol->getCom(); |
568 |
|
|
} |
569 |
|
|
|
570 |
|
|
#ifdef IS_MPI |
571 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, |
572 |
|
|
MPI::SUM); |
573 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3, |
574 |
|
|
MPI::REALTYPE, MPI::SUM); |
575 |
|
|
#endif |
576 |
|
|
|
577 |
|
|
com /= totalMass; |
578 |
|
|
snap->setCOM(com); |
579 |
|
|
} |
580 |
|
|
return snap->getCOM(); |
581 |
|
|
} |
582 |
|
|
|
583 |
|
|
/** |
584 |
|
|
* Returns center of mass and center of mass velocity in one |
585 |
|
|
* function call. |
586 |
|
|
*/ |
587 |
|
|
void Thermo::getComAll(Vector3d &com, Vector3d &comVel){ |
588 |
|
|
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
589 |
|
|
|
590 |
|
|
if (!(snap->hasCOM && snap->hasCOMvel)) { |
591 |
|
|
|
592 |
|
|
SimInfo::MoleculeIterator i; |
593 |
|
|
Molecule* mol; |
594 |
|
|
|
595 |
|
|
RealType totalMass(0.0); |
596 |
|
|
|
597 |
|
|
com = 0.0; |
598 |
|
|
comVel = 0.0; |
599 |
|
|
|
600 |
|
|
for (mol = info_->beginMolecule(i); mol != NULL; |
601 |
|
|
mol = info_->nextMolecule(i)) { |
602 |
|
|
RealType mass = mol->getMass(); |
603 |
|
|
totalMass += mass; |
604 |
|
|
com += mass * mol->getCom(); |
605 |
|
|
comVel += mass * mol->getComVel(); |
606 |
|
|
} |
607 |
|
|
|
608 |
|
|
#ifdef IS_MPI |
609 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE, |
610 |
|
|
MPI::SUM); |
611 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3, |
612 |
|
|
MPI::REALTYPE, MPI::SUM); |
613 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3, |
614 |
|
|
MPI::REALTYPE, MPI::SUM); |
615 |
|
|
#endif |
616 |
|
|
|
617 |
|
|
com /= totalMass; |
618 |
|
|
comVel /= totalMass; |
619 |
|
|
snap->setCOM(com); |
620 |
|
|
snap->setCOMvel(comVel); |
621 |
|
|
} |
622 |
|
|
com = snap->getCOM(); |
623 |
|
|
comVel = snap->getCOMvel(); |
624 |
|
|
return; |
625 |
|
|
} |
626 |
|
|
|
627 |
|
|
/** |
628 |
|
|
* Return intertia tensor for entire system and angular momentum |
629 |
|
|
* Vector. |
630 |
|
|
* |
631 |
|
|
* |
632 |
|
|
* |
633 |
|
|
* [ Ixx -Ixy -Ixz ] |
634 |
|
|
* I =| -Iyx Iyy -Iyz | |
635 |
|
|
* [ -Izx -Iyz Izz ] |
636 |
|
|
*/ |
637 |
|
|
void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor, |
638 |
|
|
Vector3d &angularMomentum){ |
639 |
|
|
|
640 |
|
|
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
641 |
|
|
|
642 |
|
|
if (!(snap->hasInertiaTensor && snap->hasCOMw)) { |
643 |
|
|
|
644 |
|
|
RealType xx = 0.0; |
645 |
|
|
RealType yy = 0.0; |
646 |
|
|
RealType zz = 0.0; |
647 |
|
|
RealType xy = 0.0; |
648 |
|
|
RealType xz = 0.0; |
649 |
|
|
RealType yz = 0.0; |
650 |
|
|
Vector3d com(0.0); |
651 |
|
|
Vector3d comVel(0.0); |
652 |
|
|
|
653 |
|
|
getComAll(com, comVel); |
654 |
|
|
|
655 |
|
|
SimInfo::MoleculeIterator i; |
656 |
|
|
Molecule* mol; |
657 |
|
|
|
658 |
|
|
Vector3d thisq(0.0); |
659 |
|
|
Vector3d thisv(0.0); |
660 |
|
|
|
661 |
|
|
RealType thisMass = 0.0; |
662 |
|
|
|
663 |
|
|
for (mol = info_->beginMolecule(i); mol != NULL; |
664 |
|
|
mol = info_->nextMolecule(i)) { |
665 |
|
|
|
666 |
|
|
thisq = mol->getCom()-com; |
667 |
|
|
thisv = mol->getComVel()-comVel; |
668 |
|
|
thisMass = mol->getMass(); |
669 |
|
|
// Compute moment of intertia coefficients. |
670 |
|
|
xx += thisq[0]*thisq[0]*thisMass; |
671 |
|
|
yy += thisq[1]*thisq[1]*thisMass; |
672 |
|
|
zz += thisq[2]*thisq[2]*thisMass; |
673 |
|
|
|
674 |
|
|
// compute products of intertia |
675 |
|
|
xy += thisq[0]*thisq[1]*thisMass; |
676 |
|
|
xz += thisq[0]*thisq[2]*thisMass; |
677 |
|
|
yz += thisq[1]*thisq[2]*thisMass; |
678 |
|
|
|
679 |
|
|
angularMomentum += cross( thisq, thisv ) * thisMass; |
680 |
|
|
} |
681 |
|
|
|
682 |
|
|
inertiaTensor(0,0) = yy + zz; |
683 |
|
|
inertiaTensor(0,1) = -xy; |
684 |
|
|
inertiaTensor(0,2) = -xz; |
685 |
|
|
inertiaTensor(1,0) = -xy; |
686 |
|
|
inertiaTensor(1,1) = xx + zz; |
687 |
|
|
inertiaTensor(1,2) = -yz; |
688 |
|
|
inertiaTensor(2,0) = -xz; |
689 |
|
|
inertiaTensor(2,1) = -yz; |
690 |
|
|
inertiaTensor(2,2) = xx + yy; |
691 |
|
|
|
692 |
|
|
#ifdef IS_MPI |
693 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(), |
694 |
|
|
9, MPI::REALTYPE, MPI::SUM); |
695 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, |
696 |
|
|
angularMomentum.getArrayPointer(), 3, |
697 |
|
|
MPI::REALTYPE, MPI::SUM); |
698 |
|
|
#endif |
699 |
|
|
|
700 |
|
|
snap->setCOMw(angularMomentum); |
701 |
|
|
snap->setInertiaTensor(inertiaTensor); |
702 |
|
|
} |
703 |
|
|
|
704 |
|
|
angularMomentum = snap->getCOMw(); |
705 |
|
|
inertiaTensor = snap->getInertiaTensor(); |
706 |
|
|
|
707 |
|
|
return; |
708 |
|
|
} |
709 |
|
|
|
710 |
|
|
// Returns the angular momentum of the system |
711 |
|
|
Vector3d Thermo::getAngularMomentum(){ |
712 |
|
|
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
713 |
|
|
|
714 |
|
|
if (!snap->hasCOMw) { |
715 |
|
|
|
716 |
|
|
Vector3d com(0.0); |
717 |
|
|
Vector3d comVel(0.0); |
718 |
|
|
Vector3d angularMomentum(0.0); |
719 |
|
|
|
720 |
|
|
getComAll(com, comVel); |
721 |
|
|
|
722 |
|
|
SimInfo::MoleculeIterator i; |
723 |
|
|
Molecule* mol; |
724 |
|
|
|
725 |
|
|
Vector3d thisr(0.0); |
726 |
|
|
Vector3d thisp(0.0); |
727 |
|
|
|
728 |
|
|
RealType thisMass; |
729 |
|
|
|
730 |
|
|
for (mol = info_->beginMolecule(i); mol != NULL; |
731 |
|
|
mol = info_->nextMolecule(i)) { |
732 |
|
|
thisMass = mol->getMass(); |
733 |
|
|
thisr = mol->getCom() - com; |
734 |
|
|
thisp = (mol->getComVel() - comVel) * thisMass; |
735 |
|
|
|
736 |
|
|
angularMomentum += cross( thisr, thisp ); |
737 |
|
|
} |
738 |
|
|
|
739 |
|
|
#ifdef IS_MPI |
740 |
|
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, |
741 |
|
|
angularMomentum.getArrayPointer(), 3, |
742 |
|
|
MPI::REALTYPE, MPI::SUM); |
743 |
|
|
#endif |
744 |
|
|
|
745 |
|
|
snap->setCOMw(angularMomentum); |
746 |
|
|
} |
747 |
|
|
|
748 |
|
|
return snap->getCOMw(); |
749 |
|
|
} |
750 |
|
|
|
751 |
|
|
|
752 |
|
|
/** |
753 |
|
|
* Returns the Volume of the system based on a ellipsoid with |
754 |
|
|
* semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
755 |
|
|
* where R_i are related to the principle inertia moments |
756 |
|
|
* R_i = sqrt(C*I_i/N), this reduces to |
757 |
|
|
* V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). |
758 |
|
|
* See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
759 |
|
|
*/ |
760 |
|
|
RealType Thermo::getGyrationalVolume(){ |
761 |
|
|
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
762 |
|
|
|
763 |
|
|
if (!snap->hasGyrationalVolume) { |
764 |
|
|
|
765 |
|
|
Mat3x3d intTensor; |
766 |
|
|
RealType det; |
767 |
|
|
Vector3d dummyAngMom; |
768 |
|
|
RealType sysconstants; |
769 |
|
|
RealType geomCnst; |
770 |
|
|
RealType volume; |
771 |
|
|
|
772 |
|
|
geomCnst = 3.0/2.0; |
773 |
|
|
/* Get the inertial tensor and angular momentum for free*/ |
774 |
|
|
getInertiaTensor(intTensor, dummyAngMom); |
775 |
|
|
|
776 |
|
|
det = intTensor.determinant(); |
777 |
|
|
sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects()); |
778 |
|
|
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
779 |
|
|
|
780 |
|
|
snap->setGyrationalVolume(volume); |
781 |
|
|
} |
782 |
|
|
return snap->getGyrationalVolume(); |
783 |
|
|
} |
784 |
|
|
|
785 |
|
|
void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){ |
786 |
|
|
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
787 |
|
|
|
788 |
|
|
if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) { |
789 |
|
|
|
790 |
|
|
Mat3x3d intTensor; |
791 |
|
|
Vector3d dummyAngMom; |
792 |
|
|
RealType sysconstants; |
793 |
|
|
RealType geomCnst; |
794 |
|
|
|
795 |
|
|
geomCnst = 3.0/2.0; |
796 |
|
|
/* Get the inertia tensor and angular momentum for free*/ |
797 |
|
|
this->getInertiaTensor(intTensor, dummyAngMom); |
798 |
|
|
|
799 |
|
|
detI = intTensor.determinant(); |
800 |
|
|
sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects()); |
801 |
|
|
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
802 |
|
|
snap->setGyrationalVolume(volume); |
803 |
|
|
} else { |
804 |
|
|
volume = snap->getGyrationalVolume(); |
805 |
|
|
detI = snap->getInertiaTensor().determinant(); |
806 |
|
|
} |
807 |
|
|
return; |
808 |
|
|
} |
809 |
|
|
|
810 |
|
|
RealType Thermo::getTaggedAtomPairDistance(){ |
811 |
|
|
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
812 |
|
|
Globals* simParams = info_->getSimParams(); |
813 |
|
|
|
814 |
|
|
if (simParams->haveTaggedAtomPair() && |
815 |
|
|
simParams->havePrintTaggedPairDistance()) { |
816 |
|
|
if ( simParams->getPrintTaggedPairDistance()) { |
817 |
|
|
|
818 |
|
|
pair<int, int> tap = simParams->getTaggedAtomPair(); |
819 |
|
|
Vector3d pos1, pos2, rab; |
820 |
|
|
|
821 |
|
|
#ifdef IS_MPI |
822 |
|
|
int mol1 = info_->getGlobalMolMembership(tap.first); |
823 |
|
|
int mol2 = info_->getGlobalMolMembership(tap.second); |
824 |
|
|
|
825 |
|
|
int proc1 = info_->getMolToProc(mol1); |
826 |
|
|
int proc2 = info_->getMolToProc(mol2); |
827 |
|
|
|
828 |
|
|
RealType data[3]; |
829 |
|
|
if (proc1 == worldRank) { |
830 |
|
|
StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); |
831 |
|
|
pos1 = sd1->getPos(); |
832 |
|
|
data[0] = pos1.x(); |
833 |
|
|
data[1] = pos1.y(); |
834 |
|
|
data[2] = pos1.z(); |
835 |
|
|
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
836 |
|
|
} else { |
837 |
|
|
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
838 |
|
|
pos1 = Vector3d(data); |
839 |
|
|
} |
840 |
|
|
|
841 |
|
|
if (proc2 == worldRank) { |
842 |
|
|
StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); |
843 |
|
|
pos2 = sd2->getPos(); |
844 |
|
|
data[0] = pos2.x(); |
845 |
|
|
data[1] = pos2.y(); |
846 |
|
|
data[2] = pos2.z(); |
847 |
|
|
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
848 |
|
|
} else { |
849 |
|
|
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
850 |
|
|
pos2 = Vector3d(data); |
851 |
|
|
} |
852 |
|
|
#else |
853 |
|
|
StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first); |
854 |
|
|
StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); |
855 |
|
|
pos1 = at1->getPos(); |
856 |
|
|
pos2 = at2->getPos(); |
857 |
|
|
#endif |
858 |
|
|
rab = pos2 - pos1; |
859 |
|
|
currSnapshot->wrapVector(rab); |
860 |
|
|
return rab.length(); |
861 |
|
|
} |
862 |
|
|
return 0.0; |
863 |
|
|
} |
864 |
|
|
return 0.0; |
865 |
|
|
} |
866 |
|
|
|
867 |
|
|
RealType Thermo::getHullVolume(){ |
868 |
|
|
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
869 |
gezelter |
1767 |
|
870 |
|
|
#ifdef HAVE_QHULL |
871 |
gezelter |
1764 |
if (!snap->hasHullVolume) { |
872 |
|
|
Hull* surfaceMesh_; |
873 |
|
|
|
874 |
|
|
Globals* simParams = info_->getSimParams(); |
875 |
|
|
const std::string ht = simParams->getHULL_Method(); |
876 |
|
|
|
877 |
|
|
if (ht == "Convex") { |
878 |
|
|
surfaceMesh_ = new ConvexHull(); |
879 |
|
|
} else if (ht == "AlphaShape") { |
880 |
|
|
surfaceMesh_ = new AlphaHull(simParams->getAlpha()); |
881 |
|
|
} else { |
882 |
|
|
return 0.0; |
883 |
|
|
} |
884 |
|
|
|
885 |
|
|
// Build a vector of stunt doubles to determine if they are |
886 |
|
|
// surface atoms |
887 |
|
|
std::vector<StuntDouble*> localSites_; |
888 |
|
|
Molecule* mol; |
889 |
|
|
StuntDouble* sd; |
890 |
|
|
SimInfo::MoleculeIterator i; |
891 |
|
|
Molecule::IntegrableObjectIterator j; |
892 |
|
|
|
893 |
|
|
for (mol = info_->beginMolecule(i); mol != NULL; |
894 |
|
|
mol = info_->nextMolecule(i)) { |
895 |
|
|
for (sd = mol->beginIntegrableObject(j); |
896 |
|
|
sd != NULL; |
897 |
|
|
sd = mol->nextIntegrableObject(j)) { |
898 |
|
|
localSites_.push_back(sd); |
899 |
|
|
} |
900 |
|
|
} |
901 |
|
|
|
902 |
|
|
// Compute surface Mesh |
903 |
|
|
surfaceMesh_->computeHull(localSites_); |
904 |
|
|
snap->setHullVolume(surfaceMesh_->getVolume()); |
905 |
|
|
} |
906 |
|
|
return snap->getHullVolume(); |
907 |
gezelter |
1767 |
#else |
908 |
|
|
return 0.0; |
909 |
|
|
#endif |
910 |
|
|
} |
911 |
gezelter |
1764 |
} |