ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
Revision: 1723
Committed: Thu May 24 20:59:54 2012 UTC (12 years, 11 months ago) by gezelter
File size: 18900 byte(s)
Log Message:
Bug fixes for heat flux import

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 246 */
42    
43 gezelter 2 #include <math.h>
44     #include <iostream>
45    
46     #ifdef IS_MPI
47     #include <mpi.h>
48     #endif //is_mpi
49    
50 tim 3 #include "brains/Thermo.hpp"
51 gezelter 246 #include "primitives/Molecule.hpp"
52 tim 3 #include "utils/simError.h"
53 gezelter 1390 #include "utils/PhysicalConstants.hpp"
54 gezelter 1710 #include "types/MultipoleAdapter.hpp"
55 gezelter 2
56 gezelter 1390 namespace OpenMD {
57 gezelter 2
58 tim 963 RealType Thermo::getKinetic() {
59 gezelter 246 SimInfo::MoleculeIterator miter;
60     std::vector<StuntDouble*>::iterator iiter;
61     Molecule* mol;
62     StuntDouble* integrableObject;
63     Vector3d vel;
64     Vector3d angMom;
65     Mat3x3d I;
66     int i;
67     int j;
68     int k;
69 chrisfen 998 RealType mass;
70 tim 963 RealType kinetic = 0.0;
71     RealType kinetic_global = 0.0;
72 gezelter 246
73     for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
74 gezelter 507 for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
75     integrableObject = mol->nextIntegrableObject(iiter)) {
76 gezelter 945
77 chrisfen 998 mass = integrableObject->getMass();
78     vel = integrableObject->getVel();
79 gezelter 945
80 gezelter 507 kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
81 gezelter 945
82 gezelter 507 if (integrableObject->isDirectional()) {
83     angMom = integrableObject->getJ();
84     I = integrableObject->getI();
85 gezelter 2
86 gezelter 507 if (integrableObject->isLinear()) {
87     i = integrableObject->linearAxis();
88     j = (i + 1) % 3;
89     k = (i + 2) % 3;
90     kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
91     } else {
92     kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
93     + angMom[2]*angMom[2]/I(2, 2);
94     }
95     }
96 gezelter 246
97 gezelter 507 }
98 gezelter 246 }
99    
100     #ifdef IS_MPI
101 gezelter 2
102 tim 963 MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
103 gezelter 246 MPI_COMM_WORLD);
104     kinetic = kinetic_global;
105 gezelter 2
106 gezelter 246 #endif //is_mpi
107 gezelter 2
108 gezelter 1390 kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
109 gezelter 2
110 gezelter 246 return kinetic;
111 gezelter 507 }
112 gezelter 2
113 tim 963 RealType Thermo::getPotential() {
114     RealType potential = 0.0;
115 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
116 tim 963 RealType shortRangePot_local = curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
117 gezelter 2
118 gezelter 246 // Get total potential for entire system from MPI.
119 gezelter 2
120 gezelter 246 #ifdef IS_MPI
121 gezelter 2
122 tim 963 MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
123 gezelter 246 MPI_COMM_WORLD);
124 tim 833 potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
125 gezelter 2
126 gezelter 246 #else
127 gezelter 2
128 tim 833 potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
129 gezelter 2
130     #endif // is_mpi
131    
132 gezelter 246 return potential;
133 gezelter 507 }
134 gezelter 2
135 tim 963 RealType Thermo::getTotalE() {
136     RealType total;
137 gezelter 2
138 gezelter 246 total = this->getKinetic() + this->getPotential();
139     return total;
140 gezelter 507 }
141 gezelter 2
142 tim 963 RealType Thermo::getTemperature() {
143 gezelter 246
144 gezelter 1390 RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
145 gezelter 246 return temperature;
146 gezelter 507 }
147 gezelter 2
148 gezelter 1715 RealType Thermo::getElectronicTemperature() {
149     SimInfo::MoleculeIterator miter;
150     std::vector<Atom*>::iterator iiter;
151     Molecule* mol;
152     Atom* atom;
153     RealType cvel;
154     RealType cmass;
155     RealType kinetic = 0.0;
156     RealType kinetic_global = 0.0;
157    
158     for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
159     for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
160     atom = mol->nextFluctuatingCharge(iiter)) {
161     cmass = atom->getChargeMass();
162     cvel = atom->getFlucQVel();
163    
164     kinetic += cmass * cvel * cvel;
165    
166     }
167     }
168    
169     #ifdef IS_MPI
170    
171     MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
172     MPI_COMM_WORLD);
173     kinetic = kinetic_global;
174    
175     #endif //is_mpi
176    
177     kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
178     return ( 2.0 * kinetic) / (info_->getNFluctuatingCharges()* PhysicalConstants::kb );
179     }
180    
181    
182    
183    
184 tim 963 RealType Thermo::getVolume() {
185 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
186     return curSnapshot->getVolume();
187 gezelter 507 }
188 gezelter 2
189 tim 963 RealType Thermo::getPressure() {
190 gezelter 2
191 gezelter 246 // Relies on the calculation of the full molecular pressure tensor
192 gezelter 2
193    
194 gezelter 246 Mat3x3d tensor;
195 tim 963 RealType pressure;
196 gezelter 2
197 gezelter 246 tensor = getPressureTensor();
198 gezelter 2
199 gezelter 1390 pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
200 gezelter 2
201 gezelter 246 return pressure;
202 gezelter 507 }
203 gezelter 2
204 tim 963 RealType Thermo::getPressure(int direction) {
205 tim 538
206     // Relies on the calculation of the full molecular pressure tensor
207    
208    
209     Mat3x3d tensor;
210 tim 963 RealType pressure;
211 tim 538
212     tensor = getPressureTensor();
213    
214 gezelter 1390 pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
215 tim 538
216     return pressure;
217     }
218    
219 gezelter 507 Mat3x3d Thermo::getPressureTensor() {
220 gezelter 246 // returns pressure tensor in units amu*fs^-2*Ang^-1
221     // routine derived via viral theorem description in:
222     // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
223     Mat3x3d pressureTensor;
224     Mat3x3d p_local(0.0);
225     Mat3x3d p_global(0.0);
226 gezelter 2
227 gezelter 246 SimInfo::MoleculeIterator i;
228     std::vector<StuntDouble*>::iterator j;
229     Molecule* mol;
230     StuntDouble* integrableObject;
231     for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
232 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
233     integrableObject = mol->nextIntegrableObject(j)) {
234 gezelter 2
235 tim 963 RealType mass = integrableObject->getMass();
236 gezelter 507 Vector3d vcom = integrableObject->getVel();
237     p_local += mass * outProduct(vcom, vcom);
238     }
239 gezelter 246 }
240 gezelter 2
241     #ifdef IS_MPI
242 tim 963 MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
243 gezelter 2 #else
244 gezelter 246 p_global = p_local;
245 gezelter 2 #endif // is_mpi
246    
247 tim 963 RealType volume = this->getVolume();
248 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
249 gezelter 1723 Mat3x3d stressTensor = curSnapshot->getStressTensor();
250 gezelter 1126
251 gezelter 1723 pressureTensor = (p_global +
252     PhysicalConstants::energyConvert * stressTensor)/volume;
253 chrisfen 998
254 gezelter 246 return pressureTensor;
255 gezelter 507 }
256 gezelter 2
257 chrisfen 998
258 gezelter 507 void Thermo::saveStat(){
259 gezelter 246 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
260     Stats& stat = currSnapshot->statData;
261 gezelter 2
262 gezelter 246 stat[Stats::KINETIC_ENERGY] = getKinetic();
263     stat[Stats::POTENTIAL_ENERGY] = getPotential();
264     stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY] + stat[Stats::POTENTIAL_ENERGY] ;
265     stat[Stats::TEMPERATURE] = getTemperature();
266     stat[Stats::PRESSURE] = getPressure();
267     stat[Stats::VOLUME] = getVolume();
268 gezelter 2
269 tim 541 Mat3x3d tensor =getPressureTensor();
270 gezelter 1126 stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);
271     stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);
272     stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);
273     stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);
274     stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);
275     stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);
276     stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);
277     stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);
278     stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);
279 tim 541
280 gezelter 1503 // grab the simulation box dipole moment if specified
281     if (info_->getCalcBoxDipole()){
282     Vector3d totalDipole = getBoxDipole();
283     stat[Stats::BOX_DIPOLE_X] = totalDipole(0);
284     stat[Stats::BOX_DIPOLE_Y] = totalDipole(1);
285     stat[Stats::BOX_DIPOLE_Z] = totalDipole(2);
286     }
287 tim 541
288 gezelter 1291 Globals* simParams = info_->getSimParams();
289 gezelter 1723 // grab the heat flux if desired
290     if (simParams->havePrintHeatFlux()) {
291     if (simParams->getPrintHeatFlux()){
292     Vector3d heatFlux = getHeatFlux();
293     stat[Stats::HEATFLUX_X] = heatFlux(0);
294     stat[Stats::HEATFLUX_Y] = heatFlux(1);
295     stat[Stats::HEATFLUX_Z] = heatFlux(2);
296     }
297     }
298 gezelter 1291
299     if (simParams->haveTaggedAtomPair() &&
300     simParams->havePrintTaggedPairDistance()) {
301     if ( simParams->getPrintTaggedPairDistance()) {
302    
303     std::pair<int, int> tap = simParams->getTaggedAtomPair();
304     Vector3d pos1, pos2, rab;
305    
306     #ifdef IS_MPI
307 gezelter 1313 std::cerr << "tap = " << tap.first << " " << tap.second << std::endl;
308 gezelter 1291
309 chuckv 1292 int mol1 = info_->getGlobalMolMembership(tap.first);
310     int mol2 = info_->getGlobalMolMembership(tap.second);
311 gezelter 1313 std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
312    
313 gezelter 1291 int proc1 = info_->getMolToProc(mol1);
314     int proc2 = info_->getMolToProc(mol2);
315    
316 gezelter 1313 std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
317    
318 chuckv 1292 RealType data[3];
319 gezelter 1291 if (proc1 == worldRank) {
320     StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
321 gezelter 1313 std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
322 gezelter 1291 pos1 = sd1->getPos();
323     data[0] = pos1.x();
324     data[1] = pos1.y();
325     data[2] = pos1.z();
326     MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
327     } else {
328     MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
329     pos1 = Vector3d(data);
330     }
331 chuckv 1292
332    
333 gezelter 1291 if (proc2 == worldRank) {
334     StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
335 gezelter 1313 std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
336 gezelter 1291 pos2 = sd2->getPos();
337     data[0] = pos2.x();
338     data[1] = pos2.y();
339     data[2] = pos2.z();
340     MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
341     } else {
342     MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
343     pos2 = Vector3d(data);
344     }
345     #else
346     StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
347     StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
348     pos1 = at1->getPos();
349     pos2 = at2->getPos();
350     #endif
351     rab = pos2 - pos1;
352     currSnapshot->wrapVector(rab);
353     stat[Stats::TAGGED_PAIR_DISTANCE] = rab.length();
354     }
355     }
356    
357 gezelter 246 /**@todo need refactorying*/
358     //Conserved Quantity is set by integrator and time is set by setTime
359 gezelter 2
360 gezelter 507 }
361 gezelter 2
362 gezelter 1503
363     Vector3d Thermo::getBoxDipole() {
364     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
365     SimInfo::MoleculeIterator miter;
366     std::vector<Atom*>::iterator aiter;
367     Molecule* mol;
368     Atom* atom;
369     RealType charge;
370     RealType moment(0.0);
371     Vector3d ri(0.0);
372     Vector3d dipoleVector(0.0);
373     Vector3d nPos(0.0);
374     Vector3d pPos(0.0);
375     RealType nChg(0.0);
376     RealType pChg(0.0);
377     int nCount = 0;
378     int pCount = 0;
379    
380     RealType chargeToC = 1.60217733e-19;
381     RealType angstromToM = 1.0e-10;
382     RealType debyeToCm = 3.33564095198e-30;
383    
384     for (mol = info_->beginMolecule(miter); mol != NULL;
385     mol = info_->nextMolecule(miter)) {
386    
387     for (atom = mol->beginAtom(aiter); atom != NULL;
388     atom = mol->nextAtom(aiter)) {
389    
390     if (atom->isCharge() ) {
391     charge = 0.0;
392     GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
393     if (data != NULL) {
394    
395     charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
396     charge *= chargeToC;
397    
398     ri = atom->getPos();
399     currSnapshot->wrapVector(ri);
400     ri *= angstromToM;
401    
402     if (charge < 0.0) {
403     nPos += ri;
404     nChg -= charge;
405     nCount++;
406     } else if (charge > 0.0) {
407     pPos += ri;
408     pChg += charge;
409     pCount++;
410     }
411     }
412     }
413    
414 gezelter 1710 MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
415     if (ma.isDipole() ) {
416 gezelter 1503 Vector3d u_i = atom->getElectroFrame().getColumn(2);
417 gezelter 1710 moment = ma.getDipoleMoment();
418     moment *= debyeToCm;
419     dipoleVector += u_i * moment;
420 gezelter 1503 }
421     }
422     }
423    
424    
425     #ifdef IS_MPI
426     RealType pChg_global, nChg_global;
427     int pCount_global, nCount_global;
428     Vector3d pPos_global, nPos_global, dipVec_global;
429    
430     MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
431     MPI_COMM_WORLD);
432     pChg = pChg_global;
433     MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
434     MPI_COMM_WORLD);
435     nChg = nChg_global;
436     MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
437     MPI_COMM_WORLD);
438     pCount = pCount_global;
439     MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
440     MPI_COMM_WORLD);
441     nCount = nCount_global;
442     MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
443     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
444     pPos = pPos_global;
445     MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
446     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
447     nPos = nPos_global;
448     MPI_Allreduce(dipoleVector.getArrayPointer(),
449     dipVec_global.getArrayPointer(), 3,
450     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
451     dipoleVector = dipVec_global;
452     #endif //is_mpi
453    
454     // first load the accumulated dipole moment (if dipoles were present)
455     Vector3d boxDipole = dipoleVector;
456     // now include the dipole moment due to charges
457     // use the lesser of the positive and negative charge totals
458     RealType chg_value = nChg <= pChg ? nChg : pChg;
459    
460     // find the average positions
461     if (pCount > 0 && nCount > 0 ) {
462     pPos /= pCount;
463     nPos /= nCount;
464     }
465    
466     // dipole is from the negative to the positive (physics notation)
467     boxDipole += (pPos - nPos) * chg_value;
468    
469     return boxDipole;
470     }
471 gezelter 1723
472     // Returns the Heat Flux Vector for the system
473     Vector3d Thermo::getHeatFlux(){
474     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
475     SimInfo::MoleculeIterator miter;
476     std::vector<StuntDouble*>::iterator iiter;
477     Molecule* mol;
478     StuntDouble* integrableObject;
479     RigidBody::AtomIterator ai;
480     Atom* atom;
481     Vector3d vel;
482     Vector3d angMom;
483     Mat3x3d I;
484     int i;
485     int j;
486     int k;
487     RealType mass;
488    
489     Vector3d x_a;
490     RealType kinetic;
491     RealType potential;
492     RealType eatom;
493     RealType AvgE_a_ = 0;
494     // Convective portion of the heat flux
495     Vector3d heatFluxJc = V3Zero;
496    
497     /* Calculate convective portion of the heat flux */
498     for (mol = info_->beginMolecule(miter); mol != NULL;
499     mol = info_->nextMolecule(miter)) {
500    
501     for (integrableObject = mol->beginIntegrableObject(iiter);
502     integrableObject != NULL;
503     integrableObject = mol->nextIntegrableObject(iiter)) {
504    
505     mass = integrableObject->getMass();
506     vel = integrableObject->getVel();
507    
508     kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
509    
510     if (integrableObject->isDirectional()) {
511     angMom = integrableObject->getJ();
512     I = integrableObject->getI();
513    
514     if (integrableObject->isLinear()) {
515     i = integrableObject->linearAxis();
516     j = (i + 1) % 3;
517     k = (i + 2) % 3;
518     kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
519     } else {
520     kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
521     + angMom[2]*angMom[2]/I(2, 2);
522     }
523     }
524    
525     potential = 0.0;
526    
527     if (integrableObject->isRigidBody()) {
528     RigidBody* rb = dynamic_cast<RigidBody*>(integrableObject);
529     for (atom = rb->beginAtom(ai); atom != NULL;
530     atom = rb->nextAtom(ai)) {
531     potential += atom->getParticlePot();
532     }
533     } else {
534     potential = integrableObject->getParticlePot();
535     cerr << "ppot = " << potential << "\n";
536     }
537    
538     potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
539     // The potential may not be a 1/2 factor
540     eatom = (kinetic + potential)/2.0; // amu A^2/fs^2
541     heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
542     heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
543     heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
544     }
545     }
546    
547     std::cerr << "Heat flux heatFluxJc is: " << heatFluxJc << std::endl;
548    
549     /* The J_v vector is reduced in fortan so everyone has the global
550     * Jv. Jc is computed over the local atoms and must be reduced
551     * among all processors.
552     */
553     #ifdef IS_MPI
554     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,
555     MPI::SUM);
556     #endif
557    
558     // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
559    
560     Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
561     PhysicalConstants::energyConvert;
562    
563     std::cerr << "Heat flux Jc is: " << heatFluxJc << std::endl;
564     std::cerr << "Heat flux Jv is: " << heatFluxJv << std::endl;
565    
566     // Correct for the fact the flux is 1/V (Jc + Jv)
567     return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
568     }
569 gezelter 1390 } //end namespace OpenMD

Properties

Name Value
svn:keywords Author Id Revision Date