ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
Revision: 1710
Committed: Fri May 18 21:44:02 2012 UTC (12 years, 11 months ago) by gezelter
File size: 14298 byte(s)
Log Message:
Added an adapter layer between the AtomType and the rest of the code to 
handle the bolt-on capabilities of new types. 

Fixed a long-standing bug in how storageLayout was being set to the maximum
possible value.

Started to add infrastructure for Polarizable and fluc-Q calculations.

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 246 */
42    
43 gezelter 2 #include <math.h>
44     #include <iostream>
45    
46     #ifdef IS_MPI
47     #include <mpi.h>
48     #endif //is_mpi
49    
50 tim 3 #include "brains/Thermo.hpp"
51 gezelter 246 #include "primitives/Molecule.hpp"
52 tim 3 #include "utils/simError.h"
53 gezelter 1390 #include "utils/PhysicalConstants.hpp"
54 gezelter 1710 #include "types/MultipoleAdapter.hpp"
55 gezelter 2
56 gezelter 1390 namespace OpenMD {
57 gezelter 2
58 tim 963 RealType Thermo::getKinetic() {
59 gezelter 246 SimInfo::MoleculeIterator miter;
60     std::vector<StuntDouble*>::iterator iiter;
61     Molecule* mol;
62     StuntDouble* integrableObject;
63     Vector3d vel;
64     Vector3d angMom;
65     Mat3x3d I;
66     int i;
67     int j;
68     int k;
69 chrisfen 998 RealType mass;
70 tim 963 RealType kinetic = 0.0;
71     RealType kinetic_global = 0.0;
72 gezelter 246
73     for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
74 gezelter 507 for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
75     integrableObject = mol->nextIntegrableObject(iiter)) {
76 gezelter 945
77 chrisfen 998 mass = integrableObject->getMass();
78     vel = integrableObject->getVel();
79 gezelter 945
80 gezelter 507 kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
81 gezelter 945
82 gezelter 507 if (integrableObject->isDirectional()) {
83     angMom = integrableObject->getJ();
84     I = integrableObject->getI();
85 gezelter 2
86 gezelter 507 if (integrableObject->isLinear()) {
87     i = integrableObject->linearAxis();
88     j = (i + 1) % 3;
89     k = (i + 2) % 3;
90     kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
91     } else {
92     kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
93     + angMom[2]*angMom[2]/I(2, 2);
94     }
95     }
96 gezelter 246
97 gezelter 507 }
98 gezelter 246 }
99    
100     #ifdef IS_MPI
101 gezelter 2
102 tim 963 MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
103 gezelter 246 MPI_COMM_WORLD);
104     kinetic = kinetic_global;
105 gezelter 2
106 gezelter 246 #endif //is_mpi
107 gezelter 2
108 gezelter 1390 kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
109 gezelter 2
110 gezelter 246 return kinetic;
111 gezelter 507 }
112 gezelter 2
113 tim 963 RealType Thermo::getPotential() {
114     RealType potential = 0.0;
115 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
116 tim 963 RealType shortRangePot_local = curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
117 gezelter 2
118 gezelter 246 // Get total potential for entire system from MPI.
119 gezelter 2
120 gezelter 246 #ifdef IS_MPI
121 gezelter 2
122 tim 963 MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
123 gezelter 246 MPI_COMM_WORLD);
124 tim 833 potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
125 gezelter 2
126 gezelter 246 #else
127 gezelter 2
128 tim 833 potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
129 gezelter 2
130     #endif // is_mpi
131    
132 gezelter 246 return potential;
133 gezelter 507 }
134 gezelter 2
135 tim 963 RealType Thermo::getTotalE() {
136     RealType total;
137 gezelter 2
138 gezelter 246 total = this->getKinetic() + this->getPotential();
139     return total;
140 gezelter 507 }
141 gezelter 2
142 tim 963 RealType Thermo::getTemperature() {
143 gezelter 246
144 gezelter 1390 RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
145 gezelter 246 return temperature;
146 gezelter 507 }
147 gezelter 2
148 tim 963 RealType Thermo::getVolume() {
149 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
150     return curSnapshot->getVolume();
151 gezelter 507 }
152 gezelter 2
153 tim 963 RealType Thermo::getPressure() {
154 gezelter 2
155 gezelter 246 // Relies on the calculation of the full molecular pressure tensor
156 gezelter 2
157    
158 gezelter 246 Mat3x3d tensor;
159 tim 963 RealType pressure;
160 gezelter 2
161 gezelter 246 tensor = getPressureTensor();
162 gezelter 2
163 gezelter 1390 pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
164 gezelter 2
165 gezelter 246 return pressure;
166 gezelter 507 }
167 gezelter 2
168 tim 963 RealType Thermo::getPressure(int direction) {
169 tim 538
170     // Relies on the calculation of the full molecular pressure tensor
171    
172    
173     Mat3x3d tensor;
174 tim 963 RealType pressure;
175 tim 538
176     tensor = getPressureTensor();
177    
178 gezelter 1390 pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
179 tim 538
180     return pressure;
181     }
182    
183 gezelter 507 Mat3x3d Thermo::getPressureTensor() {
184 gezelter 246 // returns pressure tensor in units amu*fs^-2*Ang^-1
185     // routine derived via viral theorem description in:
186     // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
187     Mat3x3d pressureTensor;
188     Mat3x3d p_local(0.0);
189     Mat3x3d p_global(0.0);
190 gezelter 2
191 gezelter 246 SimInfo::MoleculeIterator i;
192     std::vector<StuntDouble*>::iterator j;
193     Molecule* mol;
194     StuntDouble* integrableObject;
195     for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
196 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
197     integrableObject = mol->nextIntegrableObject(j)) {
198 gezelter 2
199 tim 963 RealType mass = integrableObject->getMass();
200 gezelter 507 Vector3d vcom = integrableObject->getVel();
201     p_local += mass * outProduct(vcom, vcom);
202     }
203 gezelter 246 }
204 gezelter 2
205     #ifdef IS_MPI
206 tim 963 MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
207 gezelter 2 #else
208 gezelter 246 p_global = p_local;
209 gezelter 2 #endif // is_mpi
210    
211 tim 963 RealType volume = this->getVolume();
212 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
213 gezelter 1709 Mat3x3d tau = curSnapshot->getTau();
214 gezelter 1126
215 gezelter 1390 pressureTensor = (p_global + PhysicalConstants::energyConvert* tau)/volume;
216 chrisfen 998
217 gezelter 246 return pressureTensor;
218 gezelter 507 }
219 gezelter 2
220 chrisfen 998
221 gezelter 507 void Thermo::saveStat(){
222 gezelter 246 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
223     Stats& stat = currSnapshot->statData;
224 gezelter 2
225 gezelter 246 stat[Stats::KINETIC_ENERGY] = getKinetic();
226     stat[Stats::POTENTIAL_ENERGY] = getPotential();
227     stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY] + stat[Stats::POTENTIAL_ENERGY] ;
228     stat[Stats::TEMPERATURE] = getTemperature();
229     stat[Stats::PRESSURE] = getPressure();
230     stat[Stats::VOLUME] = getVolume();
231 gezelter 2
232 tim 541 Mat3x3d tensor =getPressureTensor();
233 gezelter 1126 stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);
234     stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);
235     stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);
236     stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);
237     stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);
238     stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);
239     stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);
240     stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);
241     stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);
242 tim 541
243 gezelter 1503 // grab the simulation box dipole moment if specified
244     if (info_->getCalcBoxDipole()){
245     Vector3d totalDipole = getBoxDipole();
246     stat[Stats::BOX_DIPOLE_X] = totalDipole(0);
247     stat[Stats::BOX_DIPOLE_Y] = totalDipole(1);
248     stat[Stats::BOX_DIPOLE_Z] = totalDipole(2);
249     }
250 tim 541
251 gezelter 1291 Globals* simParams = info_->getSimParams();
252    
253     if (simParams->haveTaggedAtomPair() &&
254     simParams->havePrintTaggedPairDistance()) {
255     if ( simParams->getPrintTaggedPairDistance()) {
256    
257     std::pair<int, int> tap = simParams->getTaggedAtomPair();
258     Vector3d pos1, pos2, rab;
259    
260     #ifdef IS_MPI
261 gezelter 1313 std::cerr << "tap = " << tap.first << " " << tap.second << std::endl;
262 gezelter 1291
263 chuckv 1292 int mol1 = info_->getGlobalMolMembership(tap.first);
264     int mol2 = info_->getGlobalMolMembership(tap.second);
265 gezelter 1313 std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
266    
267 gezelter 1291 int proc1 = info_->getMolToProc(mol1);
268     int proc2 = info_->getMolToProc(mol2);
269    
270 gezelter 1313 std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
271    
272 chuckv 1292 RealType data[3];
273 gezelter 1291 if (proc1 == worldRank) {
274     StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
275 gezelter 1313 std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
276 gezelter 1291 pos1 = sd1->getPos();
277     data[0] = pos1.x();
278     data[1] = pos1.y();
279     data[2] = pos1.z();
280     MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
281     } else {
282     MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
283     pos1 = Vector3d(data);
284     }
285 chuckv 1292
286    
287 gezelter 1291 if (proc2 == worldRank) {
288     StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
289 gezelter 1313 std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
290 gezelter 1291 pos2 = sd2->getPos();
291     data[0] = pos2.x();
292     data[1] = pos2.y();
293     data[2] = pos2.z();
294     MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
295     } else {
296     MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
297     pos2 = Vector3d(data);
298     }
299     #else
300     StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
301     StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
302     pos1 = at1->getPos();
303     pos2 = at2->getPos();
304     #endif
305     rab = pos2 - pos1;
306     currSnapshot->wrapVector(rab);
307     stat[Stats::TAGGED_PAIR_DISTANCE] = rab.length();
308     }
309     }
310    
311 gezelter 246 /**@todo need refactorying*/
312     //Conserved Quantity is set by integrator and time is set by setTime
313 gezelter 2
314 gezelter 507 }
315 gezelter 2
316 gezelter 1503
317     Vector3d Thermo::getBoxDipole() {
318     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
319     SimInfo::MoleculeIterator miter;
320     std::vector<Atom*>::iterator aiter;
321     Molecule* mol;
322     Atom* atom;
323     RealType charge;
324     RealType moment(0.0);
325     Vector3d ri(0.0);
326     Vector3d dipoleVector(0.0);
327     Vector3d nPos(0.0);
328     Vector3d pPos(0.0);
329     RealType nChg(0.0);
330     RealType pChg(0.0);
331     int nCount = 0;
332     int pCount = 0;
333    
334     RealType chargeToC = 1.60217733e-19;
335     RealType angstromToM = 1.0e-10;
336     RealType debyeToCm = 3.33564095198e-30;
337    
338     for (mol = info_->beginMolecule(miter); mol != NULL;
339     mol = info_->nextMolecule(miter)) {
340    
341     for (atom = mol->beginAtom(aiter); atom != NULL;
342     atom = mol->nextAtom(aiter)) {
343    
344     if (atom->isCharge() ) {
345     charge = 0.0;
346     GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
347     if (data != NULL) {
348    
349     charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
350     charge *= chargeToC;
351    
352     ri = atom->getPos();
353     currSnapshot->wrapVector(ri);
354     ri *= angstromToM;
355    
356     if (charge < 0.0) {
357     nPos += ri;
358     nChg -= charge;
359     nCount++;
360     } else if (charge > 0.0) {
361     pPos += ri;
362     pChg += charge;
363     pCount++;
364     }
365     }
366     }
367    
368 gezelter 1710 MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
369     if (ma.isDipole() ) {
370 gezelter 1503 Vector3d u_i = atom->getElectroFrame().getColumn(2);
371 gezelter 1710 moment = ma.getDipoleMoment();
372     moment *= debyeToCm;
373     dipoleVector += u_i * moment;
374 gezelter 1503 }
375     }
376     }
377    
378    
379     #ifdef IS_MPI
380     RealType pChg_global, nChg_global;
381     int pCount_global, nCount_global;
382     Vector3d pPos_global, nPos_global, dipVec_global;
383    
384     MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
385     MPI_COMM_WORLD);
386     pChg = pChg_global;
387     MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
388     MPI_COMM_WORLD);
389     nChg = nChg_global;
390     MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
391     MPI_COMM_WORLD);
392     pCount = pCount_global;
393     MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
394     MPI_COMM_WORLD);
395     nCount = nCount_global;
396     MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
397     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
398     pPos = pPos_global;
399     MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
400     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
401     nPos = nPos_global;
402     MPI_Allreduce(dipoleVector.getArrayPointer(),
403     dipVec_global.getArrayPointer(), 3,
404     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
405     dipoleVector = dipVec_global;
406     #endif //is_mpi
407    
408     // first load the accumulated dipole moment (if dipoles were present)
409     Vector3d boxDipole = dipoleVector;
410     // now include the dipole moment due to charges
411     // use the lesser of the positive and negative charge totals
412     RealType chg_value = nChg <= pChg ? nChg : pChg;
413    
414     // find the average positions
415     if (pCount > 0 && nCount > 0 ) {
416     pPos /= pCount;
417     nPos /= nCount;
418     }
419    
420     // dipole is from the negative to the positive (physics notation)
421     boxDipole += (pPos - nPos) * chg_value;
422    
423     return boxDipole;
424     }
425 gezelter 1390 } //end namespace OpenMD

Properties

Name Value
svn:keywords Author Id Revision Date