ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
Revision: 1665
Committed: Tue Nov 22 20:38:56 2011 UTC (13 years, 5 months ago) by gezelter
File size: 14411 byte(s)
Log Message:
updated copyright notices

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 246 */
42    
43 gezelter 2 #include <math.h>
44     #include <iostream>
45    
46     #ifdef IS_MPI
47     #include <mpi.h>
48     #endif //is_mpi
49    
50 tim 3 #include "brains/Thermo.hpp"
51 gezelter 246 #include "primitives/Molecule.hpp"
52 tim 3 #include "utils/simError.h"
53 gezelter 1390 #include "utils/PhysicalConstants.hpp"
54 gezelter 2
55 gezelter 1390 namespace OpenMD {
56 gezelter 2
57 tim 963 RealType Thermo::getKinetic() {
58 gezelter 246 SimInfo::MoleculeIterator miter;
59     std::vector<StuntDouble*>::iterator iiter;
60     Molecule* mol;
61     StuntDouble* integrableObject;
62     Vector3d vel;
63     Vector3d angMom;
64     Mat3x3d I;
65     int i;
66     int j;
67     int k;
68 chrisfen 998 RealType mass;
69 tim 963 RealType kinetic = 0.0;
70     RealType kinetic_global = 0.0;
71 gezelter 246
72     for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
73 gezelter 507 for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
74     integrableObject = mol->nextIntegrableObject(iiter)) {
75 gezelter 945
76 chrisfen 998 mass = integrableObject->getMass();
77     vel = integrableObject->getVel();
78 gezelter 945
79 gezelter 507 kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
80 gezelter 945
81 gezelter 507 if (integrableObject->isDirectional()) {
82     angMom = integrableObject->getJ();
83     I = integrableObject->getI();
84 gezelter 2
85 gezelter 507 if (integrableObject->isLinear()) {
86     i = integrableObject->linearAxis();
87     j = (i + 1) % 3;
88     k = (i + 2) % 3;
89     kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
90     } else {
91     kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
92     + angMom[2]*angMom[2]/I(2, 2);
93     }
94     }
95 gezelter 246
96 gezelter 507 }
97 gezelter 246 }
98    
99     #ifdef IS_MPI
100 gezelter 2
101 tim 963 MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
102 gezelter 246 MPI_COMM_WORLD);
103     kinetic = kinetic_global;
104 gezelter 2
105 gezelter 246 #endif //is_mpi
106 gezelter 2
107 gezelter 1390 kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
108 gezelter 2
109 gezelter 246 return kinetic;
110 gezelter 507 }
111 gezelter 2
112 tim 963 RealType Thermo::getPotential() {
113     RealType potential = 0.0;
114 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
115 tim 963 RealType shortRangePot_local = curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
116 gezelter 2
117 gezelter 246 // Get total potential for entire system from MPI.
118 gezelter 2
119 gezelter 246 #ifdef IS_MPI
120 gezelter 2
121 tim 963 MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
122 gezelter 246 MPI_COMM_WORLD);
123 tim 833 potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
124 gezelter 2
125 gezelter 246 #else
126 gezelter 2
127 tim 833 potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
128 gezelter 2
129     #endif // is_mpi
130    
131 gezelter 246 return potential;
132 gezelter 507 }
133 gezelter 2
134 tim 963 RealType Thermo::getTotalE() {
135     RealType total;
136 gezelter 2
137 gezelter 246 total = this->getKinetic() + this->getPotential();
138     return total;
139 gezelter 507 }
140 gezelter 2
141 tim 963 RealType Thermo::getTemperature() {
142 gezelter 246
143 gezelter 1390 RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
144 gezelter 246 return temperature;
145 gezelter 507 }
146 gezelter 2
147 tim 963 RealType Thermo::getVolume() {
148 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
149     return curSnapshot->getVolume();
150 gezelter 507 }
151 gezelter 2
152 tim 963 RealType Thermo::getPressure() {
153 gezelter 2
154 gezelter 246 // Relies on the calculation of the full molecular pressure tensor
155 gezelter 2
156    
157 gezelter 246 Mat3x3d tensor;
158 tim 963 RealType pressure;
159 gezelter 2
160 gezelter 246 tensor = getPressureTensor();
161 gezelter 2
162 gezelter 1390 pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
163 gezelter 2
164 gezelter 246 return pressure;
165 gezelter 507 }
166 gezelter 2
167 tim 963 RealType Thermo::getPressure(int direction) {
168 tim 538
169     // Relies on the calculation of the full molecular pressure tensor
170    
171    
172     Mat3x3d tensor;
173 tim 963 RealType pressure;
174 tim 538
175     tensor = getPressureTensor();
176    
177 gezelter 1390 pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
178 tim 538
179     return pressure;
180     }
181    
182 gezelter 507 Mat3x3d Thermo::getPressureTensor() {
183 gezelter 246 // returns pressure tensor in units amu*fs^-2*Ang^-1
184     // routine derived via viral theorem description in:
185     // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
186     Mat3x3d pressureTensor;
187     Mat3x3d p_local(0.0);
188     Mat3x3d p_global(0.0);
189 gezelter 2
190 gezelter 246 SimInfo::MoleculeIterator i;
191     std::vector<StuntDouble*>::iterator j;
192     Molecule* mol;
193     StuntDouble* integrableObject;
194     for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
195 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
196     integrableObject = mol->nextIntegrableObject(j)) {
197 gezelter 2
198 tim 963 RealType mass = integrableObject->getMass();
199 gezelter 507 Vector3d vcom = integrableObject->getVel();
200     p_local += mass * outProduct(vcom, vcom);
201     }
202 gezelter 246 }
203 gezelter 2
204     #ifdef IS_MPI
205 tim 963 MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
206 gezelter 2 #else
207 gezelter 246 p_global = p_local;
208 gezelter 2 #endif // is_mpi
209    
210 tim 963 RealType volume = this->getVolume();
211 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
212     Mat3x3d tau = curSnapshot->statData.getTau();
213 gezelter 1126
214 gezelter 1390 pressureTensor = (p_global + PhysicalConstants::energyConvert* tau)/volume;
215 chrisfen 998
216 gezelter 246 return pressureTensor;
217 gezelter 507 }
218 gezelter 2
219 chrisfen 998
220 gezelter 507 void Thermo::saveStat(){
221 gezelter 246 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
222     Stats& stat = currSnapshot->statData;
223 gezelter 2
224 gezelter 246 stat[Stats::KINETIC_ENERGY] = getKinetic();
225     stat[Stats::POTENTIAL_ENERGY] = getPotential();
226     stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY] + stat[Stats::POTENTIAL_ENERGY] ;
227     stat[Stats::TEMPERATURE] = getTemperature();
228     stat[Stats::PRESSURE] = getPressure();
229     stat[Stats::VOLUME] = getVolume();
230 gezelter 2
231 tim 541 Mat3x3d tensor =getPressureTensor();
232 gezelter 1126 stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);
233     stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);
234     stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);
235     stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);
236     stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);
237     stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);
238     stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);
239     stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);
240     stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);
241 tim 541
242 gezelter 1503 // grab the simulation box dipole moment if specified
243     if (info_->getCalcBoxDipole()){
244     Vector3d totalDipole = getBoxDipole();
245     stat[Stats::BOX_DIPOLE_X] = totalDipole(0);
246     stat[Stats::BOX_DIPOLE_Y] = totalDipole(1);
247     stat[Stats::BOX_DIPOLE_Z] = totalDipole(2);
248     }
249 tim 541
250 gezelter 1291 Globals* simParams = info_->getSimParams();
251    
252     if (simParams->haveTaggedAtomPair() &&
253     simParams->havePrintTaggedPairDistance()) {
254     if ( simParams->getPrintTaggedPairDistance()) {
255    
256     std::pair<int, int> tap = simParams->getTaggedAtomPair();
257     Vector3d pos1, pos2, rab;
258    
259     #ifdef IS_MPI
260 gezelter 1313 std::cerr << "tap = " << tap.first << " " << tap.second << std::endl;
261 gezelter 1291
262 chuckv 1292 int mol1 = info_->getGlobalMolMembership(tap.first);
263     int mol2 = info_->getGlobalMolMembership(tap.second);
264 gezelter 1313 std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
265    
266 gezelter 1291 int proc1 = info_->getMolToProc(mol1);
267     int proc2 = info_->getMolToProc(mol2);
268    
269 gezelter 1313 std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
270    
271 chuckv 1292 RealType data[3];
272 gezelter 1291 if (proc1 == worldRank) {
273     StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
274 gezelter 1313 std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
275 gezelter 1291 pos1 = sd1->getPos();
276     data[0] = pos1.x();
277     data[1] = pos1.y();
278     data[2] = pos1.z();
279     MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
280     } else {
281     MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
282     pos1 = Vector3d(data);
283     }
284 chuckv 1292
285    
286 gezelter 1291 if (proc2 == worldRank) {
287     StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
288 gezelter 1313 std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
289 gezelter 1291 pos2 = sd2->getPos();
290     data[0] = pos2.x();
291     data[1] = pos2.y();
292     data[2] = pos2.z();
293     MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
294     } else {
295     MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
296     pos2 = Vector3d(data);
297     }
298     #else
299     StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
300     StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
301     pos1 = at1->getPos();
302     pos2 = at2->getPos();
303     #endif
304     rab = pos2 - pos1;
305     currSnapshot->wrapVector(rab);
306     stat[Stats::TAGGED_PAIR_DISTANCE] = rab.length();
307     }
308     }
309    
310 gezelter 246 /**@todo need refactorying*/
311     //Conserved Quantity is set by integrator and time is set by setTime
312 gezelter 2
313 gezelter 507 }
314 gezelter 2
315 gezelter 1503
316     Vector3d Thermo::getBoxDipole() {
317     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
318     SimInfo::MoleculeIterator miter;
319     std::vector<Atom*>::iterator aiter;
320     Molecule* mol;
321     Atom* atom;
322     RealType charge;
323     RealType moment(0.0);
324     Vector3d ri(0.0);
325     Vector3d dipoleVector(0.0);
326     Vector3d nPos(0.0);
327     Vector3d pPos(0.0);
328     RealType nChg(0.0);
329     RealType pChg(0.0);
330     int nCount = 0;
331     int pCount = 0;
332    
333     RealType chargeToC = 1.60217733e-19;
334     RealType angstromToM = 1.0e-10;
335     RealType debyeToCm = 3.33564095198e-30;
336    
337     for (mol = info_->beginMolecule(miter); mol != NULL;
338     mol = info_->nextMolecule(miter)) {
339    
340     for (atom = mol->beginAtom(aiter); atom != NULL;
341     atom = mol->nextAtom(aiter)) {
342    
343     if (atom->isCharge() ) {
344     charge = 0.0;
345     GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
346     if (data != NULL) {
347    
348     charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
349     charge *= chargeToC;
350    
351     ri = atom->getPos();
352     currSnapshot->wrapVector(ri);
353     ri *= angstromToM;
354    
355     if (charge < 0.0) {
356     nPos += ri;
357     nChg -= charge;
358     nCount++;
359     } else if (charge > 0.0) {
360     pPos += ri;
361     pChg += charge;
362     pCount++;
363     }
364     }
365     }
366    
367     if (atom->isDipole() ) {
368     Vector3d u_i = atom->getElectroFrame().getColumn(2);
369     GenericData* data = dynamic_cast<DirectionalAtomType*>(atom->getAtomType())->getPropertyByName("Dipole");
370     if (data != NULL) {
371     moment = (dynamic_cast<DoubleGenericData*>(data))->getData();
372    
373     moment *= debyeToCm;
374     dipoleVector += u_i * moment;
375     }
376     }
377     }
378     }
379    
380    
381     #ifdef IS_MPI
382     RealType pChg_global, nChg_global;
383     int pCount_global, nCount_global;
384     Vector3d pPos_global, nPos_global, dipVec_global;
385    
386     MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
387     MPI_COMM_WORLD);
388     pChg = pChg_global;
389     MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
390     MPI_COMM_WORLD);
391     nChg = nChg_global;
392     MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
393     MPI_COMM_WORLD);
394     pCount = pCount_global;
395     MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
396     MPI_COMM_WORLD);
397     nCount = nCount_global;
398     MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
399     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
400     pPos = pPos_global;
401     MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
402     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
403     nPos = nPos_global;
404     MPI_Allreduce(dipoleVector.getArrayPointer(),
405     dipVec_global.getArrayPointer(), 3,
406     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
407     dipoleVector = dipVec_global;
408     #endif //is_mpi
409    
410     // first load the accumulated dipole moment (if dipoles were present)
411     Vector3d boxDipole = dipoleVector;
412     // now include the dipole moment due to charges
413     // use the lesser of the positive and negative charge totals
414     RealType chg_value = nChg <= pChg ? nChg : pChg;
415    
416     // find the average positions
417     if (pCount > 0 && nCount > 0 ) {
418     pPos /= pCount;
419     nPos /= nCount;
420     }
421    
422     // dipole is from the negative to the positive (physics notation)
423     boxDipole += (pPos - nPos) * chg_value;
424    
425     return boxDipole;
426     }
427 gezelter 1390 } //end namespace OpenMD

Properties

Name Value
svn:keywords Author Id Revision Date