ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Thermo.cpp
Revision: 1503
Committed: Sat Oct 2 19:54:41 2010 UTC (14 years, 7 months ago) by gezelter
File size: 14345 byte(s)
Log Message:
Changes to remove more of the low level stuff from the fortran side.

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 246 */
41    
42 gezelter 2 #include <math.h>
43     #include <iostream>
44    
45     #ifdef IS_MPI
46     #include <mpi.h>
47     #endif //is_mpi
48    
49 tim 3 #include "brains/Thermo.hpp"
50 gezelter 246 #include "primitives/Molecule.hpp"
51 tim 3 #include "utils/simError.h"
52 gezelter 1390 #include "utils/PhysicalConstants.hpp"
53 gezelter 2
54 gezelter 1390 namespace OpenMD {
55 gezelter 2
56 tim 963 RealType Thermo::getKinetic() {
57 gezelter 246 SimInfo::MoleculeIterator miter;
58     std::vector<StuntDouble*>::iterator iiter;
59     Molecule* mol;
60     StuntDouble* integrableObject;
61     Vector3d vel;
62     Vector3d angMom;
63     Mat3x3d I;
64     int i;
65     int j;
66     int k;
67 chrisfen 998 RealType mass;
68 tim 963 RealType kinetic = 0.0;
69     RealType kinetic_global = 0.0;
70 gezelter 246
71     for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
72 gezelter 507 for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
73     integrableObject = mol->nextIntegrableObject(iiter)) {
74 gezelter 945
75 chrisfen 998 mass = integrableObject->getMass();
76     vel = integrableObject->getVel();
77 gezelter 945
78 gezelter 507 kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
79 gezelter 945
80 gezelter 507 if (integrableObject->isDirectional()) {
81     angMom = integrableObject->getJ();
82     I = integrableObject->getI();
83 gezelter 2
84 gezelter 507 if (integrableObject->isLinear()) {
85     i = integrableObject->linearAxis();
86     j = (i + 1) % 3;
87     k = (i + 2) % 3;
88     kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
89     } else {
90     kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
91     + angMom[2]*angMom[2]/I(2, 2);
92     }
93     }
94 gezelter 246
95 gezelter 507 }
96 gezelter 246 }
97    
98     #ifdef IS_MPI
99 gezelter 2
100 tim 963 MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
101 gezelter 246 MPI_COMM_WORLD);
102     kinetic = kinetic_global;
103 gezelter 2
104 gezelter 246 #endif //is_mpi
105 gezelter 2
106 gezelter 1390 kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
107 gezelter 2
108 gezelter 246 return kinetic;
109 gezelter 507 }
110 gezelter 2
111 tim 963 RealType Thermo::getPotential() {
112     RealType potential = 0.0;
113 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
114 tim 963 RealType shortRangePot_local = curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
115 gezelter 2
116 gezelter 246 // Get total potential for entire system from MPI.
117 gezelter 2
118 gezelter 246 #ifdef IS_MPI
119 gezelter 2
120 tim 963 MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
121 gezelter 246 MPI_COMM_WORLD);
122 tim 833 potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
123 gezelter 2
124 gezelter 246 #else
125 gezelter 2
126 tim 833 potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
127 gezelter 2
128     #endif // is_mpi
129    
130 gezelter 246 return potential;
131 gezelter 507 }
132 gezelter 2
133 tim 963 RealType Thermo::getTotalE() {
134     RealType total;
135 gezelter 2
136 gezelter 246 total = this->getKinetic() + this->getPotential();
137     return total;
138 gezelter 507 }
139 gezelter 2
140 tim 963 RealType Thermo::getTemperature() {
141 gezelter 246
142 gezelter 1390 RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
143 gezelter 246 return temperature;
144 gezelter 507 }
145 gezelter 2
146 tim 963 RealType Thermo::getVolume() {
147 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
148     return curSnapshot->getVolume();
149 gezelter 507 }
150 gezelter 2
151 tim 963 RealType Thermo::getPressure() {
152 gezelter 2
153 gezelter 246 // Relies on the calculation of the full molecular pressure tensor
154 gezelter 2
155    
156 gezelter 246 Mat3x3d tensor;
157 tim 963 RealType pressure;
158 gezelter 2
159 gezelter 246 tensor = getPressureTensor();
160 gezelter 2
161 gezelter 1390 pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
162 gezelter 2
163 gezelter 246 return pressure;
164 gezelter 507 }
165 gezelter 2
166 tim 963 RealType Thermo::getPressure(int direction) {
167 tim 538
168     // Relies on the calculation of the full molecular pressure tensor
169    
170    
171     Mat3x3d tensor;
172 tim 963 RealType pressure;
173 tim 538
174     tensor = getPressureTensor();
175    
176 gezelter 1390 pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
177 tim 538
178     return pressure;
179     }
180    
181 gezelter 507 Mat3x3d Thermo::getPressureTensor() {
182 gezelter 246 // returns pressure tensor in units amu*fs^-2*Ang^-1
183     // routine derived via viral theorem description in:
184     // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
185     Mat3x3d pressureTensor;
186     Mat3x3d p_local(0.0);
187     Mat3x3d p_global(0.0);
188 gezelter 2
189 gezelter 246 SimInfo::MoleculeIterator i;
190     std::vector<StuntDouble*>::iterator j;
191     Molecule* mol;
192     StuntDouble* integrableObject;
193     for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
194 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
195     integrableObject = mol->nextIntegrableObject(j)) {
196 gezelter 2
197 tim 963 RealType mass = integrableObject->getMass();
198 gezelter 507 Vector3d vcom = integrableObject->getVel();
199     p_local += mass * outProduct(vcom, vcom);
200     }
201 gezelter 246 }
202 gezelter 2
203     #ifdef IS_MPI
204 tim 963 MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
205 gezelter 2 #else
206 gezelter 246 p_global = p_local;
207 gezelter 2 #endif // is_mpi
208    
209 tim 963 RealType volume = this->getVolume();
210 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
211     Mat3x3d tau = curSnapshot->statData.getTau();
212 gezelter 1126
213 gezelter 1390 pressureTensor = (p_global + PhysicalConstants::energyConvert* tau)/volume;
214 chrisfen 998
215 gezelter 246 return pressureTensor;
216 gezelter 507 }
217 gezelter 2
218 chrisfen 998
219 gezelter 507 void Thermo::saveStat(){
220 gezelter 246 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
221     Stats& stat = currSnapshot->statData;
222 gezelter 2
223 gezelter 246 stat[Stats::KINETIC_ENERGY] = getKinetic();
224     stat[Stats::POTENTIAL_ENERGY] = getPotential();
225     stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY] + stat[Stats::POTENTIAL_ENERGY] ;
226     stat[Stats::TEMPERATURE] = getTemperature();
227     stat[Stats::PRESSURE] = getPressure();
228     stat[Stats::VOLUME] = getVolume();
229 gezelter 2
230 tim 541 Mat3x3d tensor =getPressureTensor();
231 gezelter 1126 stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);
232     stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);
233     stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);
234     stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);
235     stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);
236     stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);
237     stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);
238     stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);
239     stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);
240 tim 541
241 gezelter 1503 // grab the simulation box dipole moment if specified
242     if (info_->getCalcBoxDipole()){
243     Vector3d totalDipole = getBoxDipole();
244     stat[Stats::BOX_DIPOLE_X] = totalDipole(0);
245     stat[Stats::BOX_DIPOLE_Y] = totalDipole(1);
246     stat[Stats::BOX_DIPOLE_Z] = totalDipole(2);
247     }
248 tim 541
249 gezelter 1291 Globals* simParams = info_->getSimParams();
250    
251     if (simParams->haveTaggedAtomPair() &&
252     simParams->havePrintTaggedPairDistance()) {
253     if ( simParams->getPrintTaggedPairDistance()) {
254    
255     std::pair<int, int> tap = simParams->getTaggedAtomPair();
256     Vector3d pos1, pos2, rab;
257    
258     #ifdef IS_MPI
259 gezelter 1313 std::cerr << "tap = " << tap.first << " " << tap.second << std::endl;
260 gezelter 1291
261 chuckv 1292 int mol1 = info_->getGlobalMolMembership(tap.first);
262     int mol2 = info_->getGlobalMolMembership(tap.second);
263 gezelter 1313 std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
264    
265 gezelter 1291 int proc1 = info_->getMolToProc(mol1);
266     int proc2 = info_->getMolToProc(mol2);
267    
268 gezelter 1313 std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
269    
270 chuckv 1292 RealType data[3];
271 gezelter 1291 if (proc1 == worldRank) {
272     StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
273 gezelter 1313 std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
274 gezelter 1291 pos1 = sd1->getPos();
275     data[0] = pos1.x();
276     data[1] = pos1.y();
277     data[2] = pos1.z();
278     MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
279     } else {
280     MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
281     pos1 = Vector3d(data);
282     }
283 chuckv 1292
284    
285 gezelter 1291 if (proc2 == worldRank) {
286     StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
287 gezelter 1313 std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
288 gezelter 1291 pos2 = sd2->getPos();
289     data[0] = pos2.x();
290     data[1] = pos2.y();
291     data[2] = pos2.z();
292     MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
293     } else {
294     MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
295     pos2 = Vector3d(data);
296     }
297     #else
298     StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
299     StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
300     pos1 = at1->getPos();
301     pos2 = at2->getPos();
302     #endif
303     rab = pos2 - pos1;
304     currSnapshot->wrapVector(rab);
305     stat[Stats::TAGGED_PAIR_DISTANCE] = rab.length();
306     }
307     }
308    
309 gezelter 246 /**@todo need refactorying*/
310     //Conserved Quantity is set by integrator and time is set by setTime
311 gezelter 2
312 gezelter 507 }
313 gezelter 2
314 gezelter 1503
315     Vector3d Thermo::getBoxDipole() {
316     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
317     SimInfo::MoleculeIterator miter;
318     std::vector<Atom*>::iterator aiter;
319     Molecule* mol;
320     Atom* atom;
321     RealType charge;
322     RealType moment(0.0);
323     Vector3d ri(0.0);
324     Vector3d dipoleVector(0.0);
325     Vector3d nPos(0.0);
326     Vector3d pPos(0.0);
327     RealType nChg(0.0);
328     RealType pChg(0.0);
329     int nCount = 0;
330     int pCount = 0;
331    
332     RealType chargeToC = 1.60217733e-19;
333     RealType angstromToM = 1.0e-10;
334     RealType debyeToCm = 3.33564095198e-30;
335    
336     for (mol = info_->beginMolecule(miter); mol != NULL;
337     mol = info_->nextMolecule(miter)) {
338    
339     for (atom = mol->beginAtom(aiter); atom != NULL;
340     atom = mol->nextAtom(aiter)) {
341    
342     if (atom->isCharge() ) {
343     charge = 0.0;
344     GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
345     if (data != NULL) {
346    
347     charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
348     charge *= chargeToC;
349    
350     ri = atom->getPos();
351     currSnapshot->wrapVector(ri);
352     ri *= angstromToM;
353    
354     if (charge < 0.0) {
355     nPos += ri;
356     nChg -= charge;
357     nCount++;
358     } else if (charge > 0.0) {
359     pPos += ri;
360     pChg += charge;
361     pCount++;
362     }
363     }
364     }
365    
366     if (atom->isDipole() ) {
367     Vector3d u_i = atom->getElectroFrame().getColumn(2);
368     GenericData* data = dynamic_cast<DirectionalAtomType*>(atom->getAtomType())->getPropertyByName("Dipole");
369     if (data != NULL) {
370     moment = (dynamic_cast<DoubleGenericData*>(data))->getData();
371    
372     moment *= debyeToCm;
373     dipoleVector += u_i * moment;
374     }
375     }
376     }
377     }
378    
379    
380     #ifdef IS_MPI
381     RealType pChg_global, nChg_global;
382     int pCount_global, nCount_global;
383     Vector3d pPos_global, nPos_global, dipVec_global;
384    
385     MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
386     MPI_COMM_WORLD);
387     pChg = pChg_global;
388     MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
389     MPI_COMM_WORLD);
390     nChg = nChg_global;
391     MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
392     MPI_COMM_WORLD);
393     pCount = pCount_global;
394     MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
395     MPI_COMM_WORLD);
396     nCount = nCount_global;
397     MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
398     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
399     pPos = pPos_global;
400     MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
401     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
402     nPos = nPos_global;
403     MPI_Allreduce(dipoleVector.getArrayPointer(),
404     dipVec_global.getArrayPointer(), 3,
405     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
406     dipoleVector = dipVec_global;
407     #endif //is_mpi
408    
409     // first load the accumulated dipole moment (if dipoles were present)
410     Vector3d boxDipole = dipoleVector;
411     // now include the dipole moment due to charges
412     // use the lesser of the positive and negative charge totals
413     RealType chg_value = nChg <= pChg ? nChg : pChg;
414    
415     // find the average positions
416     if (pCount > 0 && nCount > 0 ) {
417     pPos /= pCount;
418     nPos /= nCount;
419     }
420    
421     // dipole is from the negative to the positive (physics notation)
422     boxDipole += (pPos - nPos) * chg_value;
423    
424     return boxDipole;
425     }
426 gezelter 1390 } //end namespace OpenMD

Properties

Name Value
svn:keywords Author Id Revision Date