ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/Stats.cpp
Revision: 1874
Committed: Wed May 15 15:09:35 2013 UTC (11 years, 11 months ago) by gezelter
File size: 21785 byte(s)
Log Message:
Fixed a bunch of cppcheck warnings.

File Contents

# Content
1 /*
2 * Copyright (c) 2005, 2009 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file Stats.cpp
45 * @author tlin
46 * @date 11/04/2004
47 * @time 14:26am
48 * @version 1.0
49 */
50
51 #include "brains/Stats.hpp"
52 #include "brains/Thermo.hpp"
53
54 namespace OpenMD {
55
56 Stats::Stats(SimInfo* info) : isInit_(false), info_(info) {
57
58 if (!isInit_) {
59 init();
60 isInit_ = true;
61 }
62 }
63
64 void Stats::init() {
65
66 data_.resize(Stats::ENDINDEX);
67
68 StatsData time;
69 time.units = "fs";
70 time.title = "Time";
71 time.dataType = "RealType";
72 time.accumulator = new Accumulator();
73 data_[TIME] = time;
74 statsMap_["TIME"] = TIME;
75
76 StatsData total_energy;
77 total_energy.units = "kcal/mol";
78 total_energy.title = "Total Energy";
79 total_energy.dataType = "RealType";
80 total_energy.accumulator = new Accumulator();
81 data_[TOTAL_ENERGY] = total_energy;
82 statsMap_["TOTAL_ENERGY"] = TOTAL_ENERGY;
83
84 StatsData potential_energy;
85 potential_energy.units = "kcal/mol";
86 potential_energy.title = "Potential Energy";
87 potential_energy.dataType = "RealType";
88 potential_energy.accumulator = new Accumulator();
89 data_[POTENTIAL_ENERGY] = potential_energy;
90 statsMap_["POTENTIAL_ENERGY"] = POTENTIAL_ENERGY;
91
92 StatsData kinetic_energy;
93 kinetic_energy.units = "kcal/mol";
94 kinetic_energy.title = "Kinetic Energy";
95 kinetic_energy.dataType = "RealType";
96 kinetic_energy.accumulator = new Accumulator();
97 data_[KINETIC_ENERGY] = kinetic_energy;
98 statsMap_["KINETIC_ENERGY"] = KINETIC_ENERGY;
99
100 StatsData temperature;
101 temperature.units = "K";
102 temperature.title = "Temperature";
103 temperature.dataType = "RealType";
104 temperature.accumulator = new Accumulator();
105 data_[TEMPERATURE] = temperature;
106 statsMap_["TEMPERATURE"] = TEMPERATURE;
107
108 StatsData pressure;
109 pressure.units = "atm";
110 pressure.title = "Pressure";
111 pressure.dataType = "RealType";
112 pressure.accumulator = new Accumulator();
113 data_[PRESSURE] = pressure;
114 statsMap_["PRESSURE"] = PRESSURE;
115
116 StatsData volume;
117 volume.units = "A^3";
118 volume.title = "Volume";
119 volume.dataType = "RealType";
120 volume.accumulator = new Accumulator();
121 data_[VOLUME] = volume;
122 statsMap_["VOLUME"] = VOLUME;
123
124 StatsData hullvolume;
125 hullvolume.units = "A^3";
126 hullvolume.title = "Hull Volume";
127 hullvolume.dataType = "RealType";
128 hullvolume.accumulator = new Accumulator();
129 data_[HULLVOLUME] = hullvolume;
130 statsMap_["HULLVOLUME"] = HULLVOLUME;
131
132 StatsData gyrvolume;
133 gyrvolume.units = "A^3";
134 gyrvolume.title = "Gyrational Volume";
135 gyrvolume.dataType = "RealType";
136 gyrvolume.accumulator = new Accumulator();
137 data_[GYRVOLUME] = gyrvolume;
138 statsMap_["GYRVOLUME"] = GYRVOLUME;
139
140 StatsData conserved_quantity;
141 conserved_quantity.units = "kcal/mol";
142 conserved_quantity.title = "Conserved Quantity";
143 conserved_quantity.dataType = "RealType";
144 conserved_quantity.accumulator = new Accumulator();
145 data_[CONSERVED_QUANTITY] = conserved_quantity;
146 statsMap_["CONSERVED_QUANTITY"] = CONSERVED_QUANTITY;
147
148 StatsData translational_kinetic;
149 translational_kinetic.units = "kcal/mol";
150 translational_kinetic.title = "Translational Kinetic";
151 translational_kinetic.dataType = "RealType";
152 translational_kinetic.accumulator = new Accumulator();
153 data_[TRANSLATIONAL_KINETIC] = translational_kinetic;
154 statsMap_["TRANSLATIONAL_KINETIC"] = TRANSLATIONAL_KINETIC;
155
156 StatsData rotational_kinetic;
157 rotational_kinetic.units = "kcal/mol";
158 rotational_kinetic.title = "Rotational Kinetic";
159 rotational_kinetic.dataType = "RealType";
160 rotational_kinetic.accumulator = new Accumulator();
161 data_[ROTATIONAL_KINETIC] = rotational_kinetic;
162 statsMap_["ROTATIONAL_KINETIC"] = ROTATIONAL_KINETIC;
163
164 StatsData long_range_potential;
165 long_range_potential.units = "kcal/mol";
166 long_range_potential.title = "Long Range Potential";
167 long_range_potential.dataType = "RealType";
168 long_range_potential.accumulator = new Accumulator();
169 data_[LONG_RANGE_POTENTIAL] = long_range_potential;
170 statsMap_["LONG_RANGE_POTENTIAL"] = LONG_RANGE_POTENTIAL;
171
172 StatsData vanderwaals_potential;
173 vanderwaals_potential.units = "kcal/mol";
174 vanderwaals_potential.title = "van der waals Potential";
175 vanderwaals_potential.dataType = "RealType";
176 vanderwaals_potential.accumulator = new Accumulator();
177 data_[VANDERWAALS_POTENTIAL] = vanderwaals_potential;
178 statsMap_["VANDERWAALS_POTENTIAL"] = VANDERWAALS_POTENTIAL;
179
180 StatsData electrostatic_potential;
181 electrostatic_potential.units = "kcal/mol";
182 electrostatic_potential.title = "Electrostatic Potential";
183 electrostatic_potential.dataType = "RealType";
184 electrostatic_potential.accumulator = new Accumulator();
185 data_[ELECTROSTATIC_POTENTIAL] = electrostatic_potential;
186 statsMap_["ELECTROSTATIC_POTENTIAL"] = ELECTROSTATIC_POTENTIAL;
187
188 StatsData metallic_potential;
189 metallic_potential.units = "kcal/mol";
190 metallic_potential.title = "Metallic Potential";
191 metallic_potential.dataType = "RealType";
192 metallic_potential.accumulator = new Accumulator();
193 data_[METALLIC_POTENTIAL] = metallic_potential;
194 statsMap_["METALLIC_POTENTIAL"] = METALLIC_POTENTIAL;
195
196 StatsData hydrogenbonding_potential;
197 hydrogenbonding_potential.units = "kcal/mol";
198 hydrogenbonding_potential.title = "Hydrogen Bonding Potential";
199 hydrogenbonding_potential.dataType = "RealType";
200 hydrogenbonding_potential.accumulator = new Accumulator();
201 data_[HYDROGENBONDING_POTENTIAL] = hydrogenbonding_potential;
202 statsMap_["HYDROGENBONDING_POTENTIAL"] = HYDROGENBONDING_POTENTIAL;
203
204 StatsData short_range_potential;
205 short_range_potential.units = "kcal/mol";
206 short_range_potential.title = "Short Range Potential";
207 short_range_potential.dataType = "RealType";
208 short_range_potential.accumulator = new Accumulator();
209 data_[SHORT_RANGE_POTENTIAL] = short_range_potential;
210 statsMap_["SHORT_RANGE_POTENTIAL"] = SHORT_RANGE_POTENTIAL;
211
212 StatsData bond_potential;
213 bond_potential.units = "kcal/mol";
214 bond_potential.title = "Bond Potential";
215 bond_potential.dataType = "RealType";
216 bond_potential.accumulator = new Accumulator();
217 data_[BOND_POTENTIAL] = bond_potential;
218 statsMap_["BOND_POTENTIAL"] = BOND_POTENTIAL;
219
220 StatsData bend_potential;
221 bend_potential.units = "kcal/mol";
222 bend_potential.title = "Bend Potential";
223 bend_potential.dataType = "RealType";
224 bend_potential.accumulator = new Accumulator();
225 data_[BEND_POTENTIAL] = bend_potential;
226 statsMap_["BEND_POTENTIAL"] = BEND_POTENTIAL;
227
228 StatsData dihedral_potential;
229 dihedral_potential.units = "kcal/mol";
230 dihedral_potential.title = "Dihedral Potential";
231 dihedral_potential.dataType = "RealType";
232 dihedral_potential.accumulator = new Accumulator();
233 data_[DIHEDRAL_POTENTIAL] = dihedral_potential;
234 statsMap_["DIHEDRAL_POTENTIAL"] = DIHEDRAL_POTENTIAL;
235
236 StatsData inversion_potential;
237 inversion_potential.units = "kcal/mol";
238 inversion_potential.title = "Inversion Potential";
239 inversion_potential.dataType = "RealType";
240 inversion_potential.accumulator = new Accumulator();
241 data_[INVERSION_POTENTIAL] = inversion_potential;
242 statsMap_["INVERSION_POTENTIAL"] = INVERSION_POTENTIAL;
243
244 StatsData vraw;
245 vraw.units = "kcal/mol";
246 vraw.title = "Raw Potential";
247 vraw.dataType = "RealType";
248 vraw.accumulator = new Accumulator();
249 data_[RAW_POTENTIAL] = vraw;
250 statsMap_["RAW_POTENTIAL"] = RAW_POTENTIAL;
251
252 StatsData vrestraint;
253 vrestraint.units = "kcal/mol";
254 vrestraint.title = "Restraint Potential";
255 vrestraint.dataType = "RealType";
256 vrestraint.accumulator = new Accumulator();
257 data_[RESTRAINT_POTENTIAL] = vrestraint;
258 statsMap_["RESTRAINT_POTENTIAL"] = RESTRAINT_POTENTIAL;
259
260 StatsData pressure_tensor;
261 pressure_tensor.units = "amu*fs^-2*Ang^-1";
262 pressure_tensor.title = "Ptensor";
263 pressure_tensor.dataType = "Mat3x3d";
264 pressure_tensor.accumulator = new MatrixAccumulator();
265 data_[PRESSURE_TENSOR] = pressure_tensor;
266 statsMap_["PRESSURE_TENSOR"] = PRESSURE_TENSOR;
267
268 StatsData system_dipole;
269 system_dipole.units = "C*m";
270 system_dipole.title = "System Dipole";
271 system_dipole.dataType = "Vector3d";
272 system_dipole.accumulator = new VectorAccumulator();
273 data_[SYSTEM_DIPOLE] = system_dipole;
274 statsMap_["SYSTEM_DIPOLE"] = SYSTEM_DIPOLE;
275
276 StatsData tagged_pair_distance;
277 tagged_pair_distance.units = "Ang";
278 tagged_pair_distance.title = "Tagged_Pair_Distance";
279 tagged_pair_distance.dataType = "RealType";
280 tagged_pair_distance.accumulator = new Accumulator();
281 data_[TAGGED_PAIR_DISTANCE] = tagged_pair_distance;
282 statsMap_["TAGGED_PAIR_DISTANCE"] = TAGGED_PAIR_DISTANCE;
283
284 StatsData shadowh;
285 shadowh.units = "kcal/mol";
286 shadowh.title = "Shadow Hamiltonian";
287 shadowh.dataType = "RealType";
288 shadowh.accumulator = new Accumulator();
289 data_[SHADOWH] = shadowh;
290 statsMap_["SHADOWH"] = SHADOWH;
291
292 StatsData helfandmoment;
293 helfandmoment.units = "Ang*kcal/mol";
294 helfandmoment.title = "Thermal Helfand Moment";
295 helfandmoment.dataType = "Vector3d";
296 helfandmoment.accumulator = new VectorAccumulator();
297 data_[HELFANDMOMENT] = helfandmoment;
298 statsMap_["HELFANDMOMENT"] = HELFANDMOMENT;
299
300 StatsData heatflux;
301 heatflux.units = "amu/fs^3";
302 heatflux.title = "Heat Flux";
303 heatflux.dataType = "Vector3d";
304 heatflux.accumulator = new VectorAccumulator();
305 data_[HEATFLUX] = heatflux;
306 statsMap_["HEATFLUX"] = HEATFLUX;
307
308 StatsData electronic_temperature;
309 electronic_temperature.units = "K";
310 electronic_temperature.title = "Electronic Temperature";
311 electronic_temperature.dataType = "RealType";
312 electronic_temperature.accumulator = new Accumulator();
313 data_[ELECTRONIC_TEMPERATURE] = electronic_temperature;
314 statsMap_["ELECTRONIC_TEMPERATURE"] = ELECTRONIC_TEMPERATURE;
315
316 StatsData com;
317 com.units = "A";
318 com.title = "Center of Mass";
319 com.dataType = "Vector3d";
320 com.accumulator = new VectorAccumulator();
321 data_[COM] = com;
322 statsMap_["COM"] = COM;
323
324 StatsData comVel;
325 comVel.units = "A/fs";
326 comVel.title = "Center of Mass Velocity";
327 comVel.dataType = "Vector3d";
328 comVel.accumulator = new VectorAccumulator();
329 data_[COM_VELOCITY] = comVel;
330 statsMap_["COM_VELOCITY"] = COM_VELOCITY;
331
332 StatsData angMom;
333 angMom.units = "amu A^2/fs";
334 angMom.title = "Angular Momentum";
335 angMom.dataType = "Vector3d";
336 angMom.accumulator = new VectorAccumulator();
337 data_[ANGULAR_MOMENTUM] = angMom;
338 statsMap_["ANGULAR_MOMENTUM"] = ANGULAR_MOMENTUM;
339
340 // Now, set some defaults in the mask:
341
342 Globals* simParams = info_->getSimParams();
343 std::string statFileFormatString = simParams->getStatFileFormat();
344 parseStatFileFormat(statFileFormatString);
345
346 // if we're doing a thermodynamic integration, we'll want the raw
347 // potential as well as the full potential:
348
349 if (simParams->getUseThermodynamicIntegration())
350 statsMask_.set(RAW_POTENTIAL);
351
352 // if we've got restraints turned on, we'll also want a report of the
353 // total harmonic restraints
354 if (simParams->getUseRestraints()){
355 statsMask_.set(RESTRAINT_POTENTIAL);
356 }
357
358 if (simParams->havePrintPressureTensor() &&
359 simParams->getPrintPressureTensor()){
360 statsMask_.set(PRESSURE_TENSOR);
361 }
362
363 // Why do we have both of these?
364 if (simParams->getAccumulateBoxDipole()) {
365 statsMask_.set(SYSTEM_DIPOLE);
366 }
367 if (info_->getCalcBoxDipole()){
368 statsMask_.set(SYSTEM_DIPOLE);
369 }
370
371 if (simParams->havePrintHeatFlux()) {
372 if (simParams->getPrintHeatFlux()){
373 statsMask_.set(HEATFLUX);
374 }
375 }
376
377
378 if (simParams->haveTaggedAtomPair() && simParams->havePrintTaggedPairDistance()) {
379 if (simParams->getPrintTaggedPairDistance()) {
380 statsMask_.set(TAGGED_PAIR_DISTANCE);
381 }
382 }
383
384 }
385
386 void Stats::parseStatFileFormat(const std::string& format) {
387 StringTokenizer tokenizer(format, " ,;|\t\n\r");
388
389 while(tokenizer.hasMoreTokens()) {
390 std::string token(tokenizer.nextToken());
391 toUpper(token);
392 StatsMapType::iterator i = statsMap_.find(token);
393 if (i != statsMap_.end()) {
394 statsMask_.set(i->second);
395 } else {
396 sprintf( painCave.errMsg,
397 "Stats::parseStatFileFormat: %s is not a recognized\n"
398 "\tstatFileFormat keyword.\n", token.c_str() );
399 painCave.isFatal = 0;
400 painCave.severity = OPENMD_ERROR;
401 simError();
402 }
403 }
404 }
405
406 Stats::~Stats() {
407 data_.clear();
408 statsMap_.clear();
409 }
410
411 std::string Stats::getTitle(int index) {
412 assert(index >=0 && index < ENDINDEX);
413 return data_[index].title;
414 }
415
416 std::string Stats::getUnits(int index) {
417 assert(index >=0 && index < ENDINDEX);
418 return data_[index].units;
419 }
420
421 std::string Stats::getDataType(int index) {
422 assert(index >=0 && index < ENDINDEX);
423 return data_[index].dataType;
424 }
425
426 void Stats::collectStats(){
427 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
428 Thermo thermo(info_);
429
430 for (unsigned int i = 0; i < statsMask_.size(); ++i) {
431 if (statsMask_[i]) {
432 switch (i) {
433 case TIME:
434 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getTime());
435 break;
436 case KINETIC_ENERGY:
437 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getKinetic());
438 break;
439 case POTENTIAL_ENERGY:
440 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getPotential());
441 break;
442 case TOTAL_ENERGY:
443 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTotalEnergy());
444 break;
445 case TEMPERATURE:
446 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTemperature());
447 break;
448 case PRESSURE:
449 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getPressure());
450 break;
451 case VOLUME:
452 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getVolume());
453 break;
454 case CONSERVED_QUANTITY:
455 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getConservedQuantity());
456 break;
457 case PRESSURE_TENSOR:
458 dynamic_cast<MatrixAccumulator *>(data_[i].accumulator)->add(thermo.getPressureTensor());
459 break;
460 case SYSTEM_DIPOLE:
461 dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getSystemDipole());
462 break;
463 case HEATFLUX:
464 dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getHeatFlux());
465 break;
466 case HULLVOLUME:
467 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getHullVolume());
468 break;
469 case GYRVOLUME:
470 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getGyrationalVolume());
471 break;
472 case TRANSLATIONAL_KINETIC:
473 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTranslationalKinetic());
474 break;
475 case ROTATIONAL_KINETIC:
476 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getRotationalKinetic());
477 break;
478 case LONG_RANGE_POTENTIAL:
479 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotential());
480 break;
481 case VANDERWAALS_POTENTIAL:
482 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[VANDERWAALS_FAMILY]);
483 break;
484 case ELECTROSTATIC_POTENTIAL:
485 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[ELECTROSTATIC_FAMILY]);
486 break;
487 case METALLIC_POTENTIAL:
488 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[METALLIC_FAMILY]);
489 break;
490 case HYDROGENBONDING_POTENTIAL:
491 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[HYDROGENBONDING_FAMILY]);
492 break;
493 case SHORT_RANGE_POTENTIAL:
494 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getShortRangePotential());
495 break;
496 case BOND_POTENTIAL:
497 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getBondPotential());
498 break;
499 case BEND_POTENTIAL:
500 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getBendPotential());
501 break;
502 case DIHEDRAL_POTENTIAL:
503 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getTorsionPotential());
504 break;
505 case INVERSION_POTENTIAL:
506 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getInversionPotential());
507 break;
508 case RAW_POTENTIAL:
509 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getRawPotential());
510 break;
511 case RESTRAINT_POTENTIAL:
512 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getRestraintPotential());
513 break;
514 case TAGGED_PAIR_DISTANCE:
515 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTaggedAtomPairDistance());
516 break;
517 case ELECTRONIC_TEMPERATURE:
518 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getElectronicTemperature());
519 break;
520 case COM:
521 dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getCom());
522 break;
523 case COM_VELOCITY:
524 dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getComVel());
525 break;
526 case ANGULAR_MOMENTUM:
527 dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getAngularMomentum());
528 break;
529 /*
530 case SHADOWH:
531 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getShadowHamiltionian());
532 break;
533 case HELFANDMOMENT:
534 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getHelfandMoment());
535 break;
536 */
537 }
538 }
539 }
540 }
541
542 int Stats::getIntData(int index) {
543 assert(index >=0 && index < ENDINDEX);
544 RealType value;
545 dynamic_cast<Accumulator *>(data_[index].accumulator)->getLastValue(value);
546 return (int) value;
547 }
548 RealType Stats::getRealData(int index) {
549 assert(index >=0 && index < ENDINDEX);
550 RealType value(0.0);
551 dynamic_cast<Accumulator *>(data_[index].accumulator)->getLastValue(value);
552 return value;
553 }
554 Vector3d Stats::getVectorData(int index) {
555 assert(index >=0 && index < ENDINDEX);
556 Vector3d value;
557 dynamic_cast<VectorAccumulator*>(data_[index].accumulator)->getLastValue(value);
558 return value;
559 }
560 Mat3x3d Stats::getMatrixData(int index) {
561 assert(index >=0 && index < ENDINDEX);
562 Mat3x3d value;
563 dynamic_cast<MatrixAccumulator*>(data_[index].accumulator)->getLastValue(value);
564 return value;
565 }
566
567 Stats::StatsBitSet Stats::getStatsMask() {
568 return statsMask_;
569 }
570 Stats::StatsMapType Stats::getStatsMap() {
571 return statsMap_;
572 }
573 void Stats::setStatsMask(Stats::StatsBitSet mask) {
574 statsMask_ = mask;
575 }
576
577 }

Properties

Name Value
svn:eol-style native
svn:executable *