1 |
/* |
2 |
* Copyright (c) 2005, 2009 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file Stats.cpp |
45 |
* @author tlin |
46 |
* @date 11/04/2004 |
47 |
* @time 14:26am |
48 |
* @version 1.0 |
49 |
*/ |
50 |
|
51 |
#include "brains/Stats.hpp" |
52 |
#include "brains/Thermo.hpp" |
53 |
|
54 |
namespace OpenMD { |
55 |
|
56 |
Stats::Stats(SimInfo* info) : isInit_(false), info_(info) { |
57 |
|
58 |
if (!isInit_) { |
59 |
init(); |
60 |
isInit_ = true; |
61 |
} |
62 |
} |
63 |
|
64 |
void Stats::init() { |
65 |
|
66 |
data_.resize(Stats::ENDINDEX); |
67 |
|
68 |
StatsData time; |
69 |
time.units = "fs"; |
70 |
time.title = "Time"; |
71 |
time.dataType = "RealType"; |
72 |
time.accumulator = new Accumulator(); |
73 |
data_[TIME] = time; |
74 |
statsMap_["TIME"] = TIME; |
75 |
|
76 |
StatsData total_energy; |
77 |
total_energy.units = "kcal/mol"; |
78 |
total_energy.title = "Total Energy"; |
79 |
total_energy.dataType = "RealType"; |
80 |
total_energy.accumulator = new Accumulator(); |
81 |
data_[TOTAL_ENERGY] = total_energy; |
82 |
statsMap_["TOTAL_ENERGY"] = TOTAL_ENERGY; |
83 |
|
84 |
StatsData potential_energy; |
85 |
potential_energy.units = "kcal/mol"; |
86 |
potential_energy.title = "Potential Energy"; |
87 |
potential_energy.dataType = "RealType"; |
88 |
potential_energy.accumulator = new Accumulator(); |
89 |
data_[POTENTIAL_ENERGY] = potential_energy; |
90 |
statsMap_["POTENTIAL_ENERGY"] = POTENTIAL_ENERGY; |
91 |
|
92 |
StatsData kinetic_energy; |
93 |
kinetic_energy.units = "kcal/mol"; |
94 |
kinetic_energy.title = "Kinetic Energy"; |
95 |
kinetic_energy.dataType = "RealType"; |
96 |
kinetic_energy.accumulator = new Accumulator(); |
97 |
data_[KINETIC_ENERGY] = kinetic_energy; |
98 |
statsMap_["KINETIC_ENERGY"] = KINETIC_ENERGY; |
99 |
|
100 |
StatsData temperature; |
101 |
temperature.units = "K"; |
102 |
temperature.title = "Temperature"; |
103 |
temperature.dataType = "RealType"; |
104 |
temperature.accumulator = new Accumulator(); |
105 |
data_[TEMPERATURE] = temperature; |
106 |
statsMap_["TEMPERATURE"] = TEMPERATURE; |
107 |
|
108 |
StatsData pressure; |
109 |
pressure.units = "atm"; |
110 |
pressure.title = "Pressure"; |
111 |
pressure.dataType = "RealType"; |
112 |
pressure.accumulator = new Accumulator(); |
113 |
data_[PRESSURE] = pressure; |
114 |
statsMap_["PRESSURE"] = PRESSURE; |
115 |
|
116 |
StatsData volume; |
117 |
volume.units = "A^3"; |
118 |
volume.title = "Volume"; |
119 |
volume.dataType = "RealType"; |
120 |
volume.accumulator = new Accumulator(); |
121 |
data_[VOLUME] = volume; |
122 |
statsMap_["VOLUME"] = VOLUME; |
123 |
|
124 |
StatsData hullvolume; |
125 |
hullvolume.units = "A^3"; |
126 |
hullvolume.title = "Hull Volume"; |
127 |
hullvolume.dataType = "RealType"; |
128 |
hullvolume.accumulator = new Accumulator(); |
129 |
data_[HULLVOLUME] = hullvolume; |
130 |
statsMap_["HULLVOLUME"] = HULLVOLUME; |
131 |
|
132 |
StatsData gyrvolume; |
133 |
gyrvolume.units = "A^3"; |
134 |
gyrvolume.title = "Gyrational Volume"; |
135 |
gyrvolume.dataType = "RealType"; |
136 |
gyrvolume.accumulator = new Accumulator(); |
137 |
data_[GYRVOLUME] = gyrvolume; |
138 |
statsMap_["GYRVOLUME"] = GYRVOLUME; |
139 |
|
140 |
StatsData conserved_quantity; |
141 |
conserved_quantity.units = "kcal/mol"; |
142 |
conserved_quantity.title = "Conserved Quantity"; |
143 |
conserved_quantity.dataType = "RealType"; |
144 |
conserved_quantity.accumulator = new Accumulator(); |
145 |
data_[CONSERVED_QUANTITY] = conserved_quantity; |
146 |
statsMap_["CONSERVED_QUANTITY"] = CONSERVED_QUANTITY; |
147 |
|
148 |
StatsData translational_kinetic; |
149 |
translational_kinetic.units = "kcal/mol"; |
150 |
translational_kinetic.title = "Translational Kinetic"; |
151 |
translational_kinetic.dataType = "RealType"; |
152 |
translational_kinetic.accumulator = new Accumulator(); |
153 |
data_[TRANSLATIONAL_KINETIC] = translational_kinetic; |
154 |
statsMap_["TRANSLATIONAL_KINETIC"] = TRANSLATIONAL_KINETIC; |
155 |
|
156 |
StatsData rotational_kinetic; |
157 |
rotational_kinetic.units = "kcal/mol"; |
158 |
rotational_kinetic.title = "Rotational Kinetic"; |
159 |
rotational_kinetic.dataType = "RealType"; |
160 |
rotational_kinetic.accumulator = new Accumulator(); |
161 |
data_[ROTATIONAL_KINETIC] = rotational_kinetic; |
162 |
statsMap_["ROTATIONAL_KINETIC"] = ROTATIONAL_KINETIC; |
163 |
|
164 |
StatsData long_range_potential; |
165 |
long_range_potential.units = "kcal/mol"; |
166 |
long_range_potential.title = "Long Range Potential"; |
167 |
long_range_potential.dataType = "RealType"; |
168 |
long_range_potential.accumulator = new Accumulator(); |
169 |
data_[LONG_RANGE_POTENTIAL] = long_range_potential; |
170 |
statsMap_["LONG_RANGE_POTENTIAL"] = LONG_RANGE_POTENTIAL; |
171 |
|
172 |
StatsData vanderwaals_potential; |
173 |
vanderwaals_potential.units = "kcal/mol"; |
174 |
vanderwaals_potential.title = "van der waals Potential"; |
175 |
vanderwaals_potential.dataType = "RealType"; |
176 |
vanderwaals_potential.accumulator = new Accumulator(); |
177 |
data_[VANDERWAALS_POTENTIAL] = vanderwaals_potential; |
178 |
statsMap_["VANDERWAALS_POTENTIAL"] = VANDERWAALS_POTENTIAL; |
179 |
|
180 |
StatsData electrostatic_potential; |
181 |
electrostatic_potential.units = "kcal/mol"; |
182 |
electrostatic_potential.title = "Electrostatic Potential"; |
183 |
electrostatic_potential.dataType = "RealType"; |
184 |
electrostatic_potential.accumulator = new Accumulator(); |
185 |
data_[ELECTROSTATIC_POTENTIAL] = electrostatic_potential; |
186 |
statsMap_["ELECTROSTATIC_POTENTIAL"] = ELECTROSTATIC_POTENTIAL; |
187 |
|
188 |
StatsData metallic_potential; |
189 |
metallic_potential.units = "kcal/mol"; |
190 |
metallic_potential.title = "Metallic Potential"; |
191 |
metallic_potential.dataType = "RealType"; |
192 |
metallic_potential.accumulator = new Accumulator(); |
193 |
data_[METALLIC_POTENTIAL] = metallic_potential; |
194 |
statsMap_["METALLIC_POTENTIAL"] = METALLIC_POTENTIAL; |
195 |
|
196 |
StatsData hydrogenbonding_potential; |
197 |
hydrogenbonding_potential.units = "kcal/mol"; |
198 |
hydrogenbonding_potential.title = "Hydrogen Bonding Potential"; |
199 |
hydrogenbonding_potential.dataType = "RealType"; |
200 |
hydrogenbonding_potential.accumulator = new Accumulator(); |
201 |
data_[HYDROGENBONDING_POTENTIAL] = hydrogenbonding_potential; |
202 |
statsMap_["HYDROGENBONDING_POTENTIAL"] = HYDROGENBONDING_POTENTIAL; |
203 |
|
204 |
StatsData short_range_potential; |
205 |
short_range_potential.units = "kcal/mol"; |
206 |
short_range_potential.title = "Short Range Potential"; |
207 |
short_range_potential.dataType = "RealType"; |
208 |
short_range_potential.accumulator = new Accumulator(); |
209 |
data_[SHORT_RANGE_POTENTIAL] = short_range_potential; |
210 |
statsMap_["SHORT_RANGE_POTENTIAL"] = SHORT_RANGE_POTENTIAL; |
211 |
|
212 |
StatsData bond_potential; |
213 |
bond_potential.units = "kcal/mol"; |
214 |
bond_potential.title = "Bond Potential"; |
215 |
bond_potential.dataType = "RealType"; |
216 |
bond_potential.accumulator = new Accumulator(); |
217 |
data_[BOND_POTENTIAL] = bond_potential; |
218 |
statsMap_["BOND_POTENTIAL"] = BOND_POTENTIAL; |
219 |
|
220 |
StatsData bend_potential; |
221 |
bend_potential.units = "kcal/mol"; |
222 |
bend_potential.title = "Bend Potential"; |
223 |
bend_potential.dataType = "RealType"; |
224 |
bend_potential.accumulator = new Accumulator(); |
225 |
data_[BEND_POTENTIAL] = bend_potential; |
226 |
statsMap_["BEND_POTENTIAL"] = BEND_POTENTIAL; |
227 |
|
228 |
StatsData dihedral_potential; |
229 |
dihedral_potential.units = "kcal/mol"; |
230 |
dihedral_potential.title = "Dihedral Potential"; |
231 |
dihedral_potential.dataType = "RealType"; |
232 |
dihedral_potential.accumulator = new Accumulator(); |
233 |
data_[DIHEDRAL_POTENTIAL] = dihedral_potential; |
234 |
statsMap_["DIHEDRAL_POTENTIAL"] = DIHEDRAL_POTENTIAL; |
235 |
|
236 |
StatsData inversion_potential; |
237 |
inversion_potential.units = "kcal/mol"; |
238 |
inversion_potential.title = "Inversion Potential"; |
239 |
inversion_potential.dataType = "RealType"; |
240 |
inversion_potential.accumulator = new Accumulator(); |
241 |
data_[INVERSION_POTENTIAL] = inversion_potential; |
242 |
statsMap_["INVERSION_POTENTIAL"] = INVERSION_POTENTIAL; |
243 |
|
244 |
StatsData vraw; |
245 |
vraw.units = "kcal/mol"; |
246 |
vraw.title = "Raw Potential"; |
247 |
vraw.dataType = "RealType"; |
248 |
vraw.accumulator = new Accumulator(); |
249 |
data_[RAW_POTENTIAL] = vraw; |
250 |
statsMap_["RAW_POTENTIAL"] = RAW_POTENTIAL; |
251 |
|
252 |
StatsData vrestraint; |
253 |
vrestraint.units = "kcal/mol"; |
254 |
vrestraint.title = "Restraint Potential"; |
255 |
vrestraint.dataType = "RealType"; |
256 |
vrestraint.accumulator = new Accumulator(); |
257 |
data_[RESTRAINT_POTENTIAL] = vrestraint; |
258 |
statsMap_["RESTRAINT_POTENTIAL"] = RESTRAINT_POTENTIAL; |
259 |
|
260 |
StatsData pressure_tensor; |
261 |
pressure_tensor.units = "amu*fs^-2*Ang^-1"; |
262 |
pressure_tensor.title = "Ptensor"; |
263 |
pressure_tensor.dataType = "Mat3x3d"; |
264 |
pressure_tensor.accumulator = new MatrixAccumulator(); |
265 |
data_[PRESSURE_TENSOR] = pressure_tensor; |
266 |
statsMap_["PRESSURE_TENSOR"] = PRESSURE_TENSOR; |
267 |
|
268 |
StatsData system_dipole; |
269 |
system_dipole.units = "C*m"; |
270 |
system_dipole.title = "System Dipole"; |
271 |
system_dipole.dataType = "Vector3d"; |
272 |
system_dipole.accumulator = new VectorAccumulator(); |
273 |
data_[SYSTEM_DIPOLE] = system_dipole; |
274 |
statsMap_["SYSTEM_DIPOLE"] = SYSTEM_DIPOLE; |
275 |
|
276 |
StatsData tagged_pair_distance; |
277 |
tagged_pair_distance.units = "Ang"; |
278 |
tagged_pair_distance.title = "Tagged_Pair_Distance"; |
279 |
tagged_pair_distance.dataType = "RealType"; |
280 |
tagged_pair_distance.accumulator = new Accumulator(); |
281 |
data_[TAGGED_PAIR_DISTANCE] = tagged_pair_distance; |
282 |
statsMap_["TAGGED_PAIR_DISTANCE"] = TAGGED_PAIR_DISTANCE; |
283 |
|
284 |
StatsData shadowh; |
285 |
shadowh.units = "kcal/mol"; |
286 |
shadowh.title = "Shadow Hamiltonian"; |
287 |
shadowh.dataType = "RealType"; |
288 |
shadowh.accumulator = new Accumulator(); |
289 |
data_[SHADOWH] = shadowh; |
290 |
statsMap_["SHADOWH"] = SHADOWH; |
291 |
|
292 |
StatsData helfandmoment; |
293 |
helfandmoment.units = "Ang*kcal/mol"; |
294 |
helfandmoment.title = "Thermal Helfand Moment"; |
295 |
helfandmoment.dataType = "Vector3d"; |
296 |
helfandmoment.accumulator = new VectorAccumulator(); |
297 |
data_[HELFANDMOMENT] = helfandmoment; |
298 |
statsMap_["HELFANDMOMENT"] = HELFANDMOMENT; |
299 |
|
300 |
StatsData heatflux; |
301 |
heatflux.units = "amu/fs^3"; |
302 |
heatflux.title = "Heat Flux"; |
303 |
heatflux.dataType = "Vector3d"; |
304 |
heatflux.accumulator = new VectorAccumulator(); |
305 |
data_[HEATFLUX] = heatflux; |
306 |
statsMap_["HEATFLUX"] = HEATFLUX; |
307 |
|
308 |
StatsData electronic_temperature; |
309 |
electronic_temperature.units = "K"; |
310 |
electronic_temperature.title = "Electronic Temperature"; |
311 |
electronic_temperature.dataType = "RealType"; |
312 |
electronic_temperature.accumulator = new Accumulator(); |
313 |
data_[ELECTRONIC_TEMPERATURE] = electronic_temperature; |
314 |
statsMap_["ELECTRONIC_TEMPERATURE"] = ELECTRONIC_TEMPERATURE; |
315 |
|
316 |
StatsData com; |
317 |
com.units = "A"; |
318 |
com.title = "Center of Mass"; |
319 |
com.dataType = "Vector3d"; |
320 |
com.accumulator = new VectorAccumulator(); |
321 |
data_[COM] = com; |
322 |
statsMap_["COM"] = COM; |
323 |
|
324 |
StatsData comVel; |
325 |
comVel.units = "A/fs"; |
326 |
comVel.title = "Center of Mass Velocity"; |
327 |
comVel.dataType = "Vector3d"; |
328 |
comVel.accumulator = new VectorAccumulator(); |
329 |
data_[COM_VELOCITY] = comVel; |
330 |
statsMap_["COM_VELOCITY"] = COM_VELOCITY; |
331 |
|
332 |
StatsData angMom; |
333 |
angMom.units = "amu A^2/fs"; |
334 |
angMom.title = "Angular Momentum"; |
335 |
angMom.dataType = "Vector3d"; |
336 |
angMom.accumulator = new VectorAccumulator(); |
337 |
data_[ANGULAR_MOMENTUM] = angMom; |
338 |
statsMap_["ANGULAR_MOMENTUM"] = ANGULAR_MOMENTUM; |
339 |
|
340 |
// Now, set some defaults in the mask: |
341 |
|
342 |
Globals* simParams = info_->getSimParams(); |
343 |
std::string statFileFormatString = simParams->getStatFileFormat(); |
344 |
parseStatFileFormat(statFileFormatString); |
345 |
|
346 |
// if we're doing a thermodynamic integration, we'll want the raw |
347 |
// potential as well as the full potential: |
348 |
|
349 |
if (simParams->getUseThermodynamicIntegration()) |
350 |
statsMask_.set(RAW_POTENTIAL); |
351 |
|
352 |
// if we've got restraints turned on, we'll also want a report of the |
353 |
// total harmonic restraints |
354 |
if (simParams->getUseRestraints()){ |
355 |
statsMask_.set(RESTRAINT_POTENTIAL); |
356 |
} |
357 |
|
358 |
if (simParams->havePrintPressureTensor() && |
359 |
simParams->getPrintPressureTensor()){ |
360 |
statsMask_.set(PRESSURE_TENSOR); |
361 |
} |
362 |
|
363 |
// Why do we have both of these? |
364 |
if (simParams->getAccumulateBoxDipole()) { |
365 |
statsMask_.set(SYSTEM_DIPOLE); |
366 |
} |
367 |
if (info_->getCalcBoxDipole()){ |
368 |
statsMask_.set(SYSTEM_DIPOLE); |
369 |
} |
370 |
|
371 |
if (simParams->havePrintHeatFlux()) { |
372 |
if (simParams->getPrintHeatFlux()){ |
373 |
statsMask_.set(HEATFLUX); |
374 |
} |
375 |
} |
376 |
|
377 |
|
378 |
if (simParams->haveTaggedAtomPair() && simParams->havePrintTaggedPairDistance()) { |
379 |
if (simParams->getPrintTaggedPairDistance()) { |
380 |
statsMask_.set(TAGGED_PAIR_DISTANCE); |
381 |
} |
382 |
} |
383 |
|
384 |
} |
385 |
|
386 |
void Stats::parseStatFileFormat(const std::string& format) { |
387 |
StringTokenizer tokenizer(format, " ,;|\t\n\r"); |
388 |
|
389 |
while(tokenizer.hasMoreTokens()) { |
390 |
std::string token(tokenizer.nextToken()); |
391 |
toUpper(token); |
392 |
StatsMapType::iterator i = statsMap_.find(token); |
393 |
if (i != statsMap_.end()) { |
394 |
statsMask_.set(i->second); |
395 |
} else { |
396 |
sprintf( painCave.errMsg, |
397 |
"Stats::parseStatFileFormat: %s is not a recognized\n" |
398 |
"\tstatFileFormat keyword.\n", token.c_str() ); |
399 |
painCave.isFatal = 0; |
400 |
painCave.severity = OPENMD_ERROR; |
401 |
simError(); |
402 |
} |
403 |
} |
404 |
} |
405 |
|
406 |
Stats::~Stats() { |
407 |
data_.clear(); |
408 |
statsMap_.clear(); |
409 |
} |
410 |
|
411 |
std::string Stats::getTitle(int index) { |
412 |
assert(index >=0 && index < ENDINDEX); |
413 |
return data_[index].title; |
414 |
} |
415 |
|
416 |
std::string Stats::getUnits(int index) { |
417 |
assert(index >=0 && index < ENDINDEX); |
418 |
return data_[index].units; |
419 |
} |
420 |
|
421 |
std::string Stats::getDataType(int index) { |
422 |
assert(index >=0 && index < ENDINDEX); |
423 |
return data_[index].dataType; |
424 |
} |
425 |
|
426 |
void Stats::collectStats(){ |
427 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
428 |
Thermo thermo(info_); |
429 |
|
430 |
for (unsigned int i = 0; i < statsMask_.size(); ++i) { |
431 |
if (statsMask_[i]) { |
432 |
switch (i) { |
433 |
case TIME: |
434 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getTime()); |
435 |
break; |
436 |
case KINETIC_ENERGY: |
437 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getKinetic()); |
438 |
break; |
439 |
case POTENTIAL_ENERGY: |
440 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getPotential()); |
441 |
break; |
442 |
case TOTAL_ENERGY: |
443 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTotalEnergy()); |
444 |
break; |
445 |
case TEMPERATURE: |
446 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTemperature()); |
447 |
break; |
448 |
case PRESSURE: |
449 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getPressure()); |
450 |
break; |
451 |
case VOLUME: |
452 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getVolume()); |
453 |
break; |
454 |
case CONSERVED_QUANTITY: |
455 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getConservedQuantity()); |
456 |
break; |
457 |
case PRESSURE_TENSOR: |
458 |
dynamic_cast<MatrixAccumulator *>(data_[i].accumulator)->add(thermo.getPressureTensor()); |
459 |
break; |
460 |
case SYSTEM_DIPOLE: |
461 |
dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getSystemDipole()); |
462 |
break; |
463 |
case HEATFLUX: |
464 |
dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getHeatFlux()); |
465 |
break; |
466 |
case HULLVOLUME: |
467 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getHullVolume()); |
468 |
break; |
469 |
case GYRVOLUME: |
470 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getGyrationalVolume()); |
471 |
break; |
472 |
case TRANSLATIONAL_KINETIC: |
473 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTranslationalKinetic()); |
474 |
break; |
475 |
case ROTATIONAL_KINETIC: |
476 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getRotationalKinetic()); |
477 |
break; |
478 |
case LONG_RANGE_POTENTIAL: |
479 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotential()); |
480 |
break; |
481 |
case VANDERWAALS_POTENTIAL: |
482 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[VANDERWAALS_FAMILY]); |
483 |
break; |
484 |
case ELECTROSTATIC_POTENTIAL: |
485 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[ELECTROSTATIC_FAMILY]); |
486 |
break; |
487 |
case METALLIC_POTENTIAL: |
488 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[METALLIC_FAMILY]); |
489 |
break; |
490 |
case HYDROGENBONDING_POTENTIAL: |
491 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[HYDROGENBONDING_FAMILY]); |
492 |
break; |
493 |
case SHORT_RANGE_POTENTIAL: |
494 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getShortRangePotential()); |
495 |
break; |
496 |
case BOND_POTENTIAL: |
497 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getBondPotential()); |
498 |
break; |
499 |
case BEND_POTENTIAL: |
500 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getBendPotential()); |
501 |
break; |
502 |
case DIHEDRAL_POTENTIAL: |
503 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getTorsionPotential()); |
504 |
break; |
505 |
case INVERSION_POTENTIAL: |
506 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getInversionPotential()); |
507 |
break; |
508 |
case RAW_POTENTIAL: |
509 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getRawPotential()); |
510 |
break; |
511 |
case RESTRAINT_POTENTIAL: |
512 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getRestraintPotential()); |
513 |
break; |
514 |
case TAGGED_PAIR_DISTANCE: |
515 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTaggedAtomPairDistance()); |
516 |
break; |
517 |
case ELECTRONIC_TEMPERATURE: |
518 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getElectronicTemperature()); |
519 |
break; |
520 |
case COM: |
521 |
dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getCom()); |
522 |
break; |
523 |
case COM_VELOCITY: |
524 |
dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getComVel()); |
525 |
break; |
526 |
case ANGULAR_MOMENTUM: |
527 |
dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getAngularMomentum()); |
528 |
break; |
529 |
/* |
530 |
case SHADOWH: |
531 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getShadowHamiltionian()); |
532 |
break; |
533 |
case HELFANDMOMENT: |
534 |
dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getHelfandMoment()); |
535 |
break; |
536 |
*/ |
537 |
} |
538 |
} |
539 |
} |
540 |
} |
541 |
|
542 |
int Stats::getIntData(int index) { |
543 |
assert(index >=0 && index < ENDINDEX); |
544 |
RealType value; |
545 |
dynamic_cast<Accumulator *>(data_[index].accumulator)->getLastValue(value); |
546 |
return (int) value; |
547 |
} |
548 |
RealType Stats::getRealData(int index) { |
549 |
assert(index >=0 && index < ENDINDEX); |
550 |
RealType value(0.0); |
551 |
dynamic_cast<Accumulator *>(data_[index].accumulator)->getLastValue(value); |
552 |
return value; |
553 |
} |
554 |
Vector3d Stats::getVectorData(int index) { |
555 |
assert(index >=0 && index < ENDINDEX); |
556 |
Vector3d value; |
557 |
dynamic_cast<VectorAccumulator*>(data_[index].accumulator)->getLastValue(value); |
558 |
return value; |
559 |
} |
560 |
Mat3x3d Stats::getMatrixData(int index) { |
561 |
assert(index >=0 && index < ENDINDEX); |
562 |
Mat3x3d value; |
563 |
dynamic_cast<MatrixAccumulator*>(data_[index].accumulator)->getLastValue(value); |
564 |
return value; |
565 |
} |
566 |
|
567 |
Stats::StatsBitSet Stats::getStatsMask() { |
568 |
return statsMask_; |
569 |
} |
570 |
Stats::StatsMapType Stats::getStatsMap() { |
571 |
return statsMap_; |
572 |
} |
573 |
void Stats::setStatsMask(Stats::StatsBitSet mask) { |
574 |
statsMask_ = mask; |
575 |
} |
576 |
|
577 |
} |