1 |
/* |
2 |
* Copyright (c) 2005, 2009 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file Stats.cpp |
45 |
* @author tlin |
46 |
* @date 11/04/2004 |
47 |
* @time 14:26am |
48 |
* @version 1.0 |
49 |
*/ |
50 |
|
51 |
#include "brains/Stats.hpp" |
52 |
|
53 |
namespace OpenMD { |
54 |
|
55 |
bool Stats::isInit_ = false; |
56 |
std::string Stats::title_[Stats::ENDINDEX - Stats::BEGININDEX]; |
57 |
std::string Stats::units_[Stats::ENDINDEX - Stats::BEGININDEX]; |
58 |
Stats::StatsMapType Stats::statsMap; |
59 |
Stats::Stats() { |
60 |
|
61 |
if (!isInit_) { |
62 |
init(); |
63 |
isInit_ = true; |
64 |
} |
65 |
|
66 |
} |
67 |
|
68 |
void Stats::init() { |
69 |
|
70 |
Stats::title_[TIME] = "Time"; |
71 |
Stats::title_[TOTAL_ENERGY] = "Total Energy"; |
72 |
Stats::title_[POTENTIAL_ENERGY] = "Potential Energy"; |
73 |
Stats::title_[KINETIC_ENERGY] = "Kinetic Energy"; |
74 |
Stats::title_[TEMPERATURE] = "Temperature"; |
75 |
Stats::title_[PRESSURE] = "Pressure"; |
76 |
Stats::title_[VOLUME] = "Volume"; |
77 |
Stats::title_[HULLVOLUME] = "Hull Volume"; |
78 |
Stats::title_[GYRVOLUME] = "Gyrational Volume"; |
79 |
Stats::title_[CONSERVED_QUANTITY] = "Conserved Quantity"; |
80 |
Stats::title_[TRANSLATIONAL_KINETIC] = "Translational Kinetic"; |
81 |
Stats::title_[ROTATIONAL_KINETIC] = "Rotational Kinetic"; |
82 |
Stats::title_[LONG_RANGE_POTENTIAL] = "Long Range Potential"; |
83 |
Stats::title_[VANDERWAALS_POTENTIAL] = "van der Waals Potential"; |
84 |
Stats::title_[ELECTROSTATIC_POTENTIAL] = "Electrostatic Potential"; |
85 |
Stats::title_[METALLIC_POTENTIAL] = "Metallic Potential"; |
86 |
Stats::title_[HYDROGENBONDING_POTENTIAL] = "Hydrogen Bonding Potential"; |
87 |
Stats::title_[SHORT_RANGE_POTENTIAL] = "Short Range Potential"; |
88 |
Stats::title_[BOND_POTENTIAL] = "Bond Potential"; |
89 |
Stats::title_[BEND_POTENTIAL] = "Bend Potential"; |
90 |
Stats::title_[DIHEDRAL_POTENTIAL] = "Dihedral Potential"; |
91 |
Stats::title_[INVERSION_POTENTIAL] = "Inversion Potential"; |
92 |
Stats::title_[RAW_POTENTIAL] = "Raw Potential"; |
93 |
Stats::title_[RESTRAINT_POTENTIAL] = "Restraint Potential"; |
94 |
Stats::title_[SHADOWH] = "Shadow Hamiltonian"; |
95 |
Stats::title_[PRESSURE_TENSOR_XX] = "P_xx"; |
96 |
Stats::title_[PRESSURE_TENSOR_XY] = "P_xy"; |
97 |
Stats::title_[PRESSURE_TENSOR_XZ] = "P_xz"; |
98 |
Stats::title_[PRESSURE_TENSOR_YX] = "P_yx"; |
99 |
Stats::title_[PRESSURE_TENSOR_YY] = "P_yy"; |
100 |
Stats::title_[PRESSURE_TENSOR_YZ] = "P_yz"; |
101 |
Stats::title_[PRESSURE_TENSOR_ZX] = "P_zx"; |
102 |
Stats::title_[PRESSURE_TENSOR_ZY] = "P_zy"; |
103 |
Stats::title_[PRESSURE_TENSOR_ZZ] = "P_zz"; |
104 |
Stats::title_[BOX_DIPOLE_X] = "box dipole x"; |
105 |
Stats::title_[BOX_DIPOLE_Y] = "box dipole y"; |
106 |
Stats::title_[BOX_DIPOLE_Z] = "box dipole z"; |
107 |
Stats::title_[TAGGED_PAIR_DISTANCE] = "Tagged_Pair_Distance"; |
108 |
Stats::title_[RNEMD_EXCHANGE_TOTAL] = "RNEMD_exchange_total"; |
109 |
Stats::title_[THERMAL_HELFANDMOMENT_X] = "Thermal Helfand Moment x"; |
110 |
Stats::title_[THERMAL_HELFANDMOMENT_Y] = "Thermal Helfand Moment y"; |
111 |
Stats::title_[THERMAL_HELFANDMOMENT_Z] = "Thermal Helfand Moment z"; |
112 |
Stats::title_[HEATFLUX_X]= "Heat Flux x component"; |
113 |
Stats::title_[HEATFLUX_Y]= "Heat Flux y component"; |
114 |
Stats::title_[HEATFLUX_Z]= "Heat Flux z component"; |
115 |
|
116 |
Stats::units_[TIME] = "fs"; |
117 |
Stats::units_[TOTAL_ENERGY] = "kcal/mol"; |
118 |
Stats::units_[POTENTIAL_ENERGY] = "kcal/mol"; |
119 |
Stats::units_[KINETIC_ENERGY] = "kcal/mol"; |
120 |
Stats::units_[TEMPERATURE] = "K"; |
121 |
Stats::units_[PRESSURE] = "atm"; |
122 |
Stats::units_[VOLUME] = "A^3"; |
123 |
Stats::units_[HULLVOLUME] = "A^3"; |
124 |
Stats::units_[GYRVOLUME] = "A^3"; |
125 |
Stats::units_[CONSERVED_QUANTITY] = "kcal/mol"; |
126 |
Stats::units_[TRANSLATIONAL_KINETIC] = "kcal/mol"; |
127 |
Stats::units_[ROTATIONAL_KINETIC] = "kcal/mol"; |
128 |
Stats::units_[LONG_RANGE_POTENTIAL] = "kcal/mol"; |
129 |
Stats::units_[VANDERWAALS_POTENTIAL] = "kcal/mol"; |
130 |
Stats::units_[ELECTROSTATIC_POTENTIAL] = "kcal/mol"; |
131 |
Stats::units_[METALLIC_POTENTIAL] = "kcal/mol"; |
132 |
Stats::units_[HYDROGENBONDING_POTENTIAL] = "kcal/mol"; |
133 |
Stats::units_[SHORT_RANGE_POTENTIAL] = "kcal/mol"; |
134 |
Stats::units_[BOND_POTENTIAL] = "kcal/mol"; |
135 |
Stats::units_[BEND_POTENTIAL] = "kcal/mol"; |
136 |
Stats::units_[DIHEDRAL_POTENTIAL] = "kcal/mol"; |
137 |
Stats::units_[INVERSION_POTENTIAL] = "kcal/mol"; |
138 |
Stats::units_[RAW_POTENTIAL] = "kcal/mol"; |
139 |
Stats::units_[RESTRAINT_POTENTIAL] = "kcal/mol"; |
140 |
Stats::units_[SHADOWH] = "kcal/mol"; |
141 |
Stats::units_[PRESSURE_TENSOR_XX] = "amu*fs^-2*Ang^-1"; |
142 |
Stats::units_[PRESSURE_TENSOR_XY] = "amu*fs^-2*Ang^-1"; |
143 |
Stats::units_[PRESSURE_TENSOR_XZ] = "amu*fs^-2*Ang^-1"; |
144 |
Stats::units_[PRESSURE_TENSOR_YX] = "amu*fs^-2*Ang^-1"; |
145 |
Stats::units_[PRESSURE_TENSOR_YY] = "amu*fs^-2*Ang^-1"; |
146 |
Stats::units_[PRESSURE_TENSOR_YZ] = "amu*fs^-2*Ang^-1"; |
147 |
Stats::units_[PRESSURE_TENSOR_ZX] = "amu*fs^-2*Ang^-1"; |
148 |
Stats::units_[PRESSURE_TENSOR_ZY] = "amu*fs^-2*Ang^-1"; |
149 |
Stats::units_[PRESSURE_TENSOR_ZZ] = "amu*fs^-2*Ang^-1"; |
150 |
Stats::units_[BOX_DIPOLE_X] = "C*m"; |
151 |
Stats::units_[BOX_DIPOLE_Y] = "C*m"; |
152 |
Stats::units_[BOX_DIPOLE_Z] = "C*m"; |
153 |
Stats::units_[TAGGED_PAIR_DISTANCE] = "Ang"; |
154 |
Stats::units_[RNEMD_EXCHANGE_TOTAL] = "Variable"; |
155 |
Stats::units_[THERMAL_HELFANDMOMENT_X] = "Ang*kcal/mol"; |
156 |
Stats::units_[THERMAL_HELFANDMOMENT_Y] = "Ang*kcal/mol"; |
157 |
Stats::units_[THERMAL_HELFANDMOMENT_Z] = "Ang*kcal/mol"; |
158 |
Stats::units_[HEATFLUX_X]="amu/fs^3"; |
159 |
Stats::units_[HEATFLUX_Y]="amu/fs^3"; |
160 |
Stats::units_[HEATFLUX_Z]="amu/fs^3"; |
161 |
|
162 |
Stats::statsMap.insert(StatsMapType::value_type("TIME", TIME)); |
163 |
Stats::statsMap.insert(StatsMapType::value_type("TOTAL_ENERGY", TOTAL_ENERGY)); |
164 |
Stats::statsMap.insert(StatsMapType::value_type("POTENTIAL_ENERGY", POTENTIAL_ENERGY)); |
165 |
Stats::statsMap.insert(StatsMapType::value_type("KINETIC_ENERGY", KINETIC_ENERGY)); |
166 |
Stats::statsMap.insert(StatsMapType::value_type("TEMPERATURE", TEMPERATURE)); |
167 |
Stats::statsMap.insert(StatsMapType::value_type("PRESSURE", PRESSURE)); |
168 |
Stats::statsMap.insert(StatsMapType::value_type("VOLUME", VOLUME)); |
169 |
Stats::statsMap.insert(StatsMapType::value_type("HULLVOLUME", HULLVOLUME)); |
170 |
Stats::statsMap.insert(StatsMapType::value_type("GYRVOLUME", GYRVOLUME)); |
171 |
Stats::statsMap.insert(StatsMapType::value_type("CONSERVED_QUANTITY", CONSERVED_QUANTITY)); |
172 |
Stats::statsMap.insert(StatsMapType::value_type("TRANSLATIONAL_KINETIC", TRANSLATIONAL_KINETIC)); |
173 |
Stats::statsMap.insert(StatsMapType::value_type("ROTATIONAL_KINETIC", ROTATIONAL_KINETIC)); |
174 |
Stats::statsMap.insert(StatsMapType::value_type("LONG_RANGE_POTENTIAL", LONG_RANGE_POTENTIAL)); |
175 |
Stats::statsMap.insert(StatsMapType::value_type("VANDERWAALS_POTENTIAL", VANDERWAALS_POTENTIAL)); |
176 |
Stats::statsMap.insert(StatsMapType::value_type("ELECTROSTATIC_POTENTIAL", ELECTROSTATIC_POTENTIAL)); |
177 |
Stats::statsMap.insert(StatsMapType::value_type("METALLIC_POTENTIAL", METALLIC_POTENTIAL)); |
178 |
Stats::statsMap.insert(StatsMapType::value_type("HYDROGENBONDING_POTENTIAL", HYDROGENBONDING_POTENTIAL)); |
179 |
Stats::statsMap.insert(StatsMapType::value_type("SHORT_RANGE_POTENTIAL", SHORT_RANGE_POTENTIAL)); |
180 |
Stats::statsMap.insert(StatsMapType::value_type("BOND_POTENTIAL", BOND_POTENTIAL)); |
181 |
Stats::statsMap.insert(StatsMapType::value_type("BEND_POTENTIAL", BEND_POTENTIAL)); |
182 |
Stats::statsMap.insert(StatsMapType::value_type("DIHEDRAL_POTENTIAL", DIHEDRAL_POTENTIAL)); |
183 |
Stats::statsMap.insert(StatsMapType::value_type("INVERSION_POTENTIAL", INVERSION_POTENTIAL)); |
184 |
Stats::statsMap.insert(StatsMapType::value_type("RAW_POTENTIAL", RAW_POTENTIAL)); |
185 |
Stats::statsMap.insert(StatsMapType::value_type("RESTRAINT_POTENTIAL", RESTRAINT_POTENTIAL)); |
186 |
Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_XX", PRESSURE_TENSOR_XX)); |
187 |
Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_XY", PRESSURE_TENSOR_XY)); |
188 |
Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_XZ", PRESSURE_TENSOR_XZ)); |
189 |
Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_YX", PRESSURE_TENSOR_YX)); |
190 |
Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_YY", PRESSURE_TENSOR_YY)); |
191 |
Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_YZ", PRESSURE_TENSOR_YZ)); |
192 |
Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_ZX", PRESSURE_TENSOR_ZX)); |
193 |
Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_ZY", PRESSURE_TENSOR_ZY)); |
194 |
Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_ZZ", PRESSURE_TENSOR_ZZ)); |
195 |
Stats::statsMap.insert(StatsMapType::value_type("BOX_DIPOLE_X", BOX_DIPOLE_X)); |
196 |
Stats::statsMap.insert(StatsMapType::value_type("BOX_DIPOLE_Y", BOX_DIPOLE_Y)); |
197 |
Stats::statsMap.insert(StatsMapType::value_type("BOX_DIPOLE_Z", BOX_DIPOLE_Z)); |
198 |
Stats::statsMap.insert(StatsMapType::value_type("TAGGED_PAIR_DISTANCE", TAGGED_PAIR_DISTANCE)); |
199 |
Stats::statsMap.insert(StatsMapType::value_type("RNEMD_EXCHANGE_TOTAL", RNEMD_EXCHANGE_TOTAL)); |
200 |
Stats::statsMap.insert(StatsMapType::value_type("SHADOWH", SHADOWH)); |
201 |
Stats::statsMap.insert(StatsMapType::value_type("THERMAL_HELFANDMOMENT_X",THERMAL_HELFANDMOMENT_X)); |
202 |
Stats::statsMap.insert(StatsMapType::value_type("THERMAL_HELFANDMOMENT_Y",THERMAL_HELFANDMOMENT_Y)); |
203 |
Stats::statsMap.insert(StatsMapType::value_type("THERMAL_HELFANDMOMENT_Z",THERMAL_HELFANDMOMENT_Z)); |
204 |
Stats::statsMap.insert(StatsMapType::value_type("HEATFLUX_X",HEATFLUX_X)); |
205 |
Stats::statsMap.insert(StatsMapType::value_type("HEATFLUX_Y",HEATFLUX_Y)); |
206 |
Stats::statsMap.insert(StatsMapType::value_type("HEATFLUX_Z",HEATFLUX_Z)); |
207 |
} |
208 |
|
209 |
} |