6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
42 |
– |
/** |
43 |
– |
* @file Snapshot.hpp |
44 |
– |
* @author tlin |
45 |
– |
* @date 10/20/2004 |
46 |
– |
* @time 23:56am |
47 |
– |
* @version 1.0 |
48 |
– |
*/ |
49 |
– |
|
43 |
|
#ifndef BRAINS_SNAPSHOT_HPP |
44 |
|
#define BRAINS_SNAPSHOT_HPP |
45 |
|
|
46 |
|
#include <vector> |
47 |
|
|
48 |
|
#include "brains/DataStorage.hpp" |
49 |
+ |
#include "nonbonded/NonBondedInteraction.hpp" |
50 |
|
#include "brains/Stats.hpp" |
57 |
– |
#include "UseTheForce/DarkSide/simulation_interface.h" |
51 |
|
|
52 |
< |
namespace oopse{ |
52 |
> |
using namespace std; |
53 |
> |
namespace OpenMD{ |
54 |
|
|
55 |
|
/** |
56 |
< |
* @class Snapshot Snapshot.hpp "brains/Snapshot.hpp" |
57 |
< |
* @brief Snapshot class is a repository class for storing dynamic data during |
64 |
< |
* Simulation |
65 |
< |
* Every snapshot class will contain one DataStorage for atoms and one DataStorage |
66 |
< |
* for rigid bodies. |
56 |
> |
* FrameData is a structure for holding system-wide dynamic data |
57 |
> |
* about the simulation. |
58 |
|
*/ |
59 |
< |
class Snapshot { |
60 |
< |
public: |
61 |
< |
|
62 |
< |
Snapshot(int nAtoms, int nRigidbodies) : atomData(nAtoms), rigidbodyData(nRigidbodies), |
63 |
< |
currentTime_(0), orthoRhombic_(0), chi_(0.0), integralOfChiDt_(0.0), eta_(0.0), id_(-1) { |
59 |
> |
|
60 |
> |
struct FrameData { |
61 |
> |
int id; /**< identification number of the snapshot */ |
62 |
> |
RealType currentTime; /**< current time */ |
63 |
> |
Mat3x3d hmat; /**< axes of the periodic box in matrix form */ |
64 |
> |
Mat3x3d invHmat; /**< the inverse of the Hmat matrix */ |
65 |
> |
Mat3x3d bBox; /**< axes of a bounding box in matrix form */ |
66 |
> |
Mat3x3d invBbox; /**< the inverse of the bounding box */ |
67 |
> |
bool orthoRhombic; /**< is this an orthorhombic periodic box? */ |
68 |
> |
RealType totalEnergy; /**< total energy of this frame */ |
69 |
> |
RealType translationalKinetic; /**< translational kinetic energy of this frame */ |
70 |
> |
RealType rotationalKinetic; /**< rotational kinetic energy of this frame */ |
71 |
> |
RealType kineticEnergy; /**< kinetic energy of this frame */ |
72 |
> |
RealType potentialEnergy; /**< potential energy of this frame */ |
73 |
> |
RealType shortRangePotential; /**< short-range contributions to the potential*/ |
74 |
> |
RealType longRangePotential; /**< long-range contributions to the potential */ |
75 |
> |
RealType bondPotential; /**< bonded contribution to the potential */ |
76 |
> |
RealType bendPotential; /**< angle-bending contribution to the potential */ |
77 |
> |
RealType torsionPotential; /**< dihedral (torsion angle) contribution to the potential */ |
78 |
> |
RealType inversionPotential; /**< inversion (planarity) contribution to the potential */ |
79 |
> |
potVec lrPotentials; /**< breakdown of long-range potentials by family */ |
80 |
> |
potVec excludedPotentials; /**< breakdown of excluded potentials by family */ |
81 |
> |
RealType restraintPotential; /**< potential energy of restraints */ |
82 |
> |
RealType rawPotential; /**< unrestrained potential energy (when restraints are applied) */ |
83 |
> |
RealType xyArea; /**< XY area of this frame */ |
84 |
> |
RealType volume; /**< total volume of this frame */ |
85 |
> |
RealType pressure; /**< pressure of this frame */ |
86 |
> |
RealType temperature; /**< temperature of this frame */ |
87 |
> |
pair<RealType, RealType> thermostat; /**< thermostat variables */ |
88 |
> |
RealType electronicTemperature; /**< temperature of the electronic degrees of freedom */ |
89 |
> |
pair<RealType, RealType> electronicThermostat; /**< thermostat variables for electronic degrees of freedom */ |
90 |
> |
Mat3x3d barostat; /**< barostat matrix */ |
91 |
> |
Vector3d COM; /**< location of system center of mass */ |
92 |
> |
Vector3d COMvel; /**< system center of mass velocity */ |
93 |
> |
Vector3d COMw; /**< system center of mass angular velocity */ |
94 |
> |
Mat3x3d inertiaTensor; /**< inertia tensor for entire system */ |
95 |
> |
RealType gyrationalVolume; /**< gyrational volume for entire system */ |
96 |
> |
RealType hullVolume; /**< hull volume for entire system */ |
97 |
> |
Mat3x3d stressTensor; /**< stress tensor */ |
98 |
> |
Mat3x3d pressureTensor; /**< pressure tensor */ |
99 |
> |
Vector3d systemDipole; /**< total system dipole moment */ |
100 |
> |
Vector3d conductiveHeatFlux; /**< heat flux vector (conductive only) */ |
101 |
> |
Vector3d convectiveHeatFlux; /**< heat flux vector (convective only) */ |
102 |
> |
RealType conservedQuantity; /**< anything conserved by the integrator */ |
103 |
> |
}; |
104 |
|
|
74 |
– |
} |
105 |
|
|
106 |
< |
Snapshot(int nAtoms, int nRigidbodies, int storageLayout) |
107 |
< |
: atomData(nAtoms, storageLayout), rigidbodyData(nRigidbodies, storageLayout), |
108 |
< |
currentTime_(0), orthoRhombic_(0), chi_(0.0), integralOfChiDt_(0.0), eta_(0.0), id_(-1) { |
106 |
> |
/** |
107 |
> |
* @class Snapshot |
108 |
> |
* @brief The Snapshot class is a repository storing dynamic data during a |
109 |
> |
* Simulation. Every Snapshot contains FrameData (for global information) |
110 |
> |
* as well as DataStorage (one for Atoms, one for RigidBodies, and one for |
111 |
> |
* CutoffGroups). |
112 |
> |
*/ |
113 |
> |
class Snapshot { |
114 |
|
|
115 |
< |
} |
116 |
< |
|
115 |
> |
public: |
116 |
> |
Snapshot(int nAtoms, int nRigidbodies, int nCutoffGroups); |
117 |
> |
Snapshot(int nAtoms, int nRigidbodies, int nCutoffGroups, int storageLayout); |
118 |
|
/** Returns the id of this Snapshot */ |
119 |
< |
int getID() { |
84 |
< |
return id_; |
85 |
< |
} |
86 |
< |
|
119 |
> |
int getID(); |
120 |
|
/** Sets the id of this Snapshot */ |
121 |
< |
void setID(int id) { |
89 |
< |
id_ = id; |
90 |
< |
} |
121 |
> |
void setID(int id); |
122 |
|
|
123 |
< |
int getSize() { |
124 |
< |
return atomData.getSize() + rigidbodyData.getSize(); |
94 |
< |
} |
123 |
> |
/** sets the state of the computed properties to false */ |
124 |
> |
void clearDerivedProperties(); |
125 |
|
|
126 |
+ |
int getSize(); |
127 |
|
/** Returns the number of atoms */ |
128 |
< |
int getNumberOfAtoms() { |
98 |
< |
return atomData.getSize(); |
99 |
< |
} |
100 |
< |
|
128 |
> |
int getNumberOfAtoms(); |
129 |
|
/** Returns the number of rigid bodies */ |
130 |
< |
int getNumberOfRigidBodies() { |
131 |
< |
return rigidbodyData.getSize(); |
132 |
< |
} |
130 |
> |
int getNumberOfRigidBodies(); |
131 |
> |
/** Returns the number of rigid bodies */ |
132 |
> |
int getNumberOfCutoffGroups(); |
133 |
|
|
134 |
|
/** Returns the H-Matrix */ |
135 |
< |
Mat3x3d getHmat() { |
108 |
< |
return hmat_; |
109 |
< |
} |
110 |
< |
|
135 |
> |
Mat3x3d getHmat(); |
136 |
|
/** Sets the H-Matrix */ |
137 |
< |
void setHmat(const Mat3x3d& m); |
113 |
< |
|
114 |
< |
RealType getVolume() { |
115 |
< |
return hmat_.determinant(); |
116 |
< |
} |
117 |
< |
|
137 |
> |
void setHmat(const Mat3x3d& m); |
138 |
|
/** Returns the inverse H-Matrix */ |
139 |
< |
Mat3x3d getInvHmat() { |
120 |
< |
return invHmat_; |
121 |
< |
} |
139 |
> |
Mat3x3d getInvHmat(); |
140 |
|
|
141 |
+ |
/** Returns the Bounding Box */ |
142 |
+ |
Mat3x3d getBoundingBox(); |
143 |
+ |
/** Sets the Bounding Box */ |
144 |
+ |
void setBoundingBox(const Mat3x3d& m); |
145 |
+ |
/** Returns the inverse Bounding Box*/ |
146 |
+ |
Mat3x3d getInvBoundingBox(); |
147 |
+ |
|
148 |
+ |
RealType getVolume(); |
149 |
+ |
RealType getXYarea(); |
150 |
+ |
void setVolume(const RealType vol); |
151 |
+ |
|
152 |
|
/** Wrapping the vector according to periodic boundary condition*/ |
153 |
< |
void wrapVector(Vector3d& v); |
153 |
> |
void wrapVector(Vector3d& v); |
154 |
|
|
155 |
+ |
/** Scaling a vector to multiples of the periodic box */ |
156 |
+ |
Vector3d scaleVector(Vector3d &v); |
157 |
+ |
|
158 |
+ |
void setCOM(const Vector3d &com); |
159 |
+ |
void setCOMvel(const Vector3d &comVel); |
160 |
+ |
void setCOMw(const Vector3d &comw); |
161 |
+ |
|
162 |
+ |
Vector3d getCOM(); |
163 |
+ |
Vector3d getCOMvel(); |
164 |
+ |
Vector3d getCOMw(); |
165 |
|
|
166 |
< |
RealType getTime() { |
167 |
< |
return currentTime_; |
168 |
< |
} |
166 |
> |
RealType getTime(); |
167 |
> |
void increaseTime(const RealType dt); |
168 |
> |
void setTime(const RealType time); |
169 |
|
|
170 |
< |
void increaseTime(RealType dt) { |
171 |
< |
setTime(getTime() + dt); |
172 |
< |
} |
170 |
> |
void setBondPotential(const RealType bp); |
171 |
> |
void setBendPotential(const RealType bp); |
172 |
> |
void setTorsionPotential(const RealType tp); |
173 |
> |
void setInversionPotential(const RealType ip); |
174 |
> |
RealType getBondPotential(); |
175 |
> |
RealType getBendPotential(); |
176 |
> |
RealType getTorsionPotential(); |
177 |
> |
RealType getInversionPotential(); |
178 |
|
|
179 |
< |
void setTime(RealType time) { |
136 |
< |
currentTime_ =time; |
137 |
< |
//time at statData is redundant |
138 |
< |
statData[Stats::TIME] = currentTime_; |
139 |
< |
} |
179 |
> |
RealType getShortRangePotential(); |
180 |
|
|
181 |
< |
RealType getChi() { |
182 |
< |
return chi_; |
183 |
< |
} |
181 |
> |
void setLongRangePotential(const potVec lrPot); |
182 |
> |
RealType getLongRangePotential(); |
183 |
> |
potVec getLongRangePotentials(); |
184 |
|
|
185 |
< |
void setChi(RealType chi) { |
186 |
< |
chi_ = chi; |
187 |
< |
} |
185 |
> |
void setExcludedPotentials(const potVec exPot); |
186 |
> |
potVec getExcludedPotentials(); |
187 |
> |
|
188 |
> |
void setRestraintPotential(const RealType rp); |
189 |
> |
RealType getRestraintPotential(); |
190 |
|
|
191 |
< |
RealType getIntegralOfChiDt() { |
192 |
< |
return integralOfChiDt_; |
151 |
< |
} |
191 |
> |
void setRawPotential(const RealType rp); |
192 |
> |
RealType getRawPotential(); |
193 |
|
|
194 |
< |
void setIntegralOfChiDt(RealType integralOfChiDt) { |
195 |
< |
integralOfChiDt_ = integralOfChiDt; |
196 |
< |
} |
197 |
< |
|
198 |
< |
Mat3x3d getEta() { |
199 |
< |
return eta_; |
200 |
< |
} |
194 |
> |
RealType getPotentialEnergy(); |
195 |
> |
RealType getKineticEnergy(); |
196 |
> |
RealType getTranslationalKineticEnergy(); |
197 |
> |
RealType getRotationalKineticEnergy(); |
198 |
> |
void setKineticEnergy(const RealType ke); |
199 |
> |
void setTranslationalKineticEnergy(const RealType tke); |
200 |
> |
void setRotationalKineticEnergy(const RealType rke); |
201 |
> |
RealType getTotalEnergy(); |
202 |
> |
void setTotalEnergy(const RealType te); |
203 |
> |
RealType getConservedQuantity(); |
204 |
> |
void setConservedQuantity(const RealType cq); |
205 |
> |
RealType getTemperature(); |
206 |
> |
void setTemperature(const RealType temp); |
207 |
> |
RealType getElectronicTemperature(); |
208 |
> |
void setElectronicTemperature(const RealType eTemp); |
209 |
> |
RealType getPressure(); |
210 |
> |
void setPressure(const RealType pressure); |
211 |
|
|
212 |
< |
void setEta(const Mat3x3d& eta) { |
213 |
< |
eta_ = eta; |
214 |
< |
} |
212 |
> |
Mat3x3d getPressureTensor(); |
213 |
> |
void setPressureTensor(const Mat3x3d& pressureTensor); |
214 |
> |
|
215 |
> |
Mat3x3d getStressTensor(); |
216 |
> |
void setStressTensor(const Mat3x3d& stressTensor); |
217 |
> |
|
218 |
> |
Vector3d getConductiveHeatFlux(); |
219 |
> |
void setConductiveHeatFlux(const Vector3d& chf); |
220 |
> |
|
221 |
> |
Vector3d getConvectiveHeatFlux(); |
222 |
> |
void setConvectiveHeatFlux(const Vector3d& chf); |
223 |
> |
|
224 |
> |
Vector3d getHeatFlux(); |
225 |
> |
|
226 |
> |
Vector3d getSystemDipole(); |
227 |
> |
void setSystemDipole(const Vector3d& bd); |
228 |
> |
|
229 |
> |
pair<RealType, RealType> getThermostat(); |
230 |
> |
void setThermostat(const pair<RealType, RealType>& thermostat); |
231 |
> |
|
232 |
> |
pair<RealType, RealType> getElectronicThermostat(); |
233 |
> |
void setElectronicThermostat(const pair<RealType, RealType>& eThermostat); |
234 |
|
|
235 |
+ |
Mat3x3d getBarostat(); |
236 |
+ |
void setBarostat(const Mat3x3d& barostat); |
237 |
+ |
|
238 |
+ |
Mat3x3d getInertiaTensor(); |
239 |
+ |
void setInertiaTensor(const Mat3x3d& inertiaTensor); |
240 |
+ |
|
241 |
+ |
RealType getGyrationalVolume(); |
242 |
+ |
void setGyrationalVolume(const RealType gv); |
243 |
+ |
|
244 |
+ |
RealType getHullVolume(); |
245 |
+ |
void setHullVolume(const RealType hv); |
246 |
+ |
|
247 |
+ |
void setOrthoTolerance(RealType orthoTolerance); |
248 |
+ |
|
249 |
|
DataStorage atomData; |
250 |
|
DataStorage rigidbodyData; |
251 |
< |
Stats statData; |
252 |
< |
|
169 |
< |
private: |
170 |
< |
RealType currentTime_; |
251 |
> |
DataStorage cgData; |
252 |
> |
FrameData frameData; |
253 |
|
|
254 |
< |
Mat3x3d hmat_; |
255 |
< |
Mat3x3d invHmat_; |
256 |
< |
int orthoRhombic_; |
254 |
> |
bool hasTotalEnergy; |
255 |
> |
bool hasTranslationalKineticEnergy; |
256 |
> |
bool hasRotationalKineticEnergy; |
257 |
> |
bool hasKineticEnergy; |
258 |
> |
bool hasShortRangePotential; |
259 |
> |
bool hasLongRangePotential; |
260 |
> |
bool hasPotentialEnergy; |
261 |
> |
bool hasXYarea; |
262 |
> |
bool hasVolume; |
263 |
> |
bool hasPressure; |
264 |
> |
bool hasTemperature; |
265 |
> |
bool hasElectronicTemperature; |
266 |
> |
bool hasCOM; |
267 |
> |
bool hasCOMvel; |
268 |
> |
bool hasCOMw; |
269 |
> |
bool hasPressureTensor; |
270 |
> |
bool hasSystemDipole; |
271 |
> |
bool hasConvectiveHeatFlux; |
272 |
> |
bool hasInertiaTensor; |
273 |
> |
bool hasGyrationalVolume; |
274 |
> |
bool hasHullVolume; |
275 |
> |
bool hasConservedQuantity; |
276 |
> |
bool hasBoundingBox; |
277 |
|
|
278 |
< |
RealType chi_; |
279 |
< |
RealType integralOfChiDt_; |
280 |
< |
Mat3x3d eta_; |
179 |
< |
|
180 |
< |
int id_; /**< identification number of the snapshot */ |
278 |
> |
private: |
279 |
> |
RealType orthoTolerance_; |
280 |
> |
|
281 |
|
}; |
282 |
|
|
283 |
|
typedef DataStorage (Snapshot::*DataStoragePointer); |