6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
/** |
51 |
|
#include "utils/NumericConstant.hpp" |
52 |
|
#include "utils/simError.h" |
53 |
|
#include "utils/Utility.hpp" |
54 |
< |
namespace oopse { |
54 |
> |
namespace OpenMD { |
55 |
|
|
56 |
|
void Snapshot::setHmat(const Mat3x3d& m) { |
57 |
– |
const RealType orthoTolerance = NumericConstant::epsilon; |
57 |
|
hmat_ = m; |
58 |
|
invHmat_ = hmat_.inverse(); |
59 |
|
|
60 |
+ |
|
61 |
|
//prepare fortran Hmat |
62 |
|
RealType fortranHmat[9]; |
63 |
|
RealType fortranInvHmat[9]; |
70 |
|
RealType smallDiag = fabs(hmat_(0, 0)); |
71 |
|
if(smallDiag > fabs(hmat_(1, 1))) smallDiag = fabs(hmat_(1, 1)); |
72 |
|
if(smallDiag > fabs(hmat_(2, 2))) smallDiag = fabs(hmat_(2, 2)); |
73 |
< |
RealType tol = smallDiag * orthoTolerance; |
73 |
> |
RealType tol = smallDiag * orthoTolerance_; |
74 |
|
|
75 |
|
orthoRhombic_ = 1; |
76 |
|
|
89 |
|
|
90 |
|
if( orthoRhombic_ ) { |
91 |
|
sprintf( painCave.errMsg, |
92 |
< |
"OOPSE is switching from the default Non-Orthorhombic\n" |
92 |
> |
"OpenMD is switching from the default Non-Orthorhombic\n" |
93 |
|
"\tto the faster Orthorhombic periodic boundary computations.\n" |
94 |
|
"\tThis is usually a good thing, but if you want the\n" |
95 |
|
"\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
96 |
|
"\tvariable ( currently set to %G ) smaller.\n", |
97 |
< |
orthoTolerance); |
98 |
< |
painCave.severity = OOPSE_INFO; |
97 |
> |
orthoTolerance_); |
98 |
> |
painCave.severity = OPENMD_INFO; |
99 |
|
simError(); |
100 |
|
} |
101 |
|
else { |
102 |
|
sprintf( painCave.errMsg, |
103 |
< |
"OOPSE is switching from the faster Orthorhombic to the more\n" |
103 |
> |
"OpenMD is switching from the faster Orthorhombic to the more\n" |
104 |
|
"\tflexible Non-Orthorhombic periodic boundary computations.\n" |
105 |
|
"\tThis is usually because the box has deformed under\n" |
106 |
|
"\tNPTf integration. If you want to live on the edge with\n" |
107 |
|
"\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
108 |
|
"\tvariable ( currently set to %G ) larger.\n", |
109 |
< |
orthoTolerance); |
110 |
< |
painCave.severity = OOPSE_WARNING; |
109 |
> |
orthoTolerance_); |
110 |
> |
painCave.severity = OPENMD_WARNING; |
111 |
|
simError(); |
112 |
|
} |
113 |
|
} |
156 |
|
|
157 |
|
} |
158 |
|
|
159 |
+ |
Vector3d Snapshot::getCOM() { |
160 |
+ |
if( !hasCOM_ ) { |
161 |
+ |
sprintf( painCave.errMsg, "COM was requested before COM was computed!\n"); |
162 |
+ |
painCave.severity = OPENMD_ERROR; |
163 |
+ |
simError(); |
164 |
+ |
} |
165 |
+ |
return COM_; |
166 |
+ |
} |
167 |
+ |
|
168 |
+ |
Vector3d Snapshot::getCOMvel() { |
169 |
+ |
if( !hasCOM_ ) { |
170 |
+ |
sprintf( painCave.errMsg, "COMvel was requested before COM was computed!\n"); |
171 |
+ |
painCave.severity = OPENMD_ERROR; |
172 |
+ |
simError(); |
173 |
+ |
} |
174 |
+ |
return COMvel_; |
175 |
+ |
} |
176 |
+ |
|
177 |
+ |
Vector3d Snapshot::getCOMw() { |
178 |
+ |
if( !hasCOM_ ) { |
179 |
+ |
sprintf( painCave.errMsg, "COMw was requested before COM was computed!\n"); |
180 |
+ |
painCave.severity = OPENMD_ERROR; |
181 |
+ |
simError(); |
182 |
+ |
} |
183 |
+ |
return COMw_; |
184 |
+ |
} |
185 |
+ |
|
186 |
|
} |
187 |
|
|