ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.hpp (file contents), Revision 555 by chuckv, Mon May 30 14:01:52 2005 UTC vs.
branches/development/src/brains/SimInfo.hpp (file contents), Revision 1577 by gezelter, Wed Jun 8 20:26:56 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 54 | Line 54
54   #include <utility>
55   #include <vector>
56  
57 < #include "brains/Exclude.hpp"
57 > #include "brains/PairList.hpp"
58   #include "io/Globals.hpp"
59   #include "math/Vector3.hpp"
60   #include "math/SquareMatrix3.hpp"
# Line 62 | Line 62
62   #include "UseTheForce/ForceField.hpp"
63   #include "utils/PropertyMap.hpp"
64   #include "utils/LocalIndexManager.hpp"
65 + #include "nonbonded/SwitchingFunction.hpp"
66  
67 < //another nonsense macro declaration
68 < #define __C
69 < #include "brains/fSimulation.h"
69 <
70 < namespace oopse{
71 <
72 <  //forward decalration
67 > using namespace std;
68 > namespace OpenMD{
69 >  //forward declaration
70    class SnapshotManager;
71    class Molecule;
72    class SelectionManager;
73 +  class StuntDouble;
74 +
75    /**
76 <   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
77 <   * @brief As one of the heavy weight class of OOPSE, SimInfo
78 <   * One of the major changes in SimInfo class is the data struct. It only maintains a list of molecules.
79 <   * And the Molecule class will maintain all of the concrete objects (atoms, bond, bend, torsions, rigid bodies,
80 <   * cutoff groups, constrains).
81 <   * Another major change is the index. No matter single version or parallel version,  atoms and
82 <   * rigid bodies have both global index and local index. Local index is not important to molecule as well as
83 <   * cutoff group.
76 >   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
77 >   *
78 >   * @brief One of the heavy-weight classes of OpenMD, SimInfo
79 >   * maintains objects and variables relating to the current
80 >   * simulation.  This includes the master list of Molecules.  The
81 >   * Molecule class maintains all of the concrete objects (Atoms,
82 >   * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
83 >   * Constraints). In both the single and parallel versions, Atoms and
84 >   * RigidBodies have both global and local indices.
85     */
86    class SimInfo {
87    public:
88 <    typedef std::map<int, Molecule*>::iterator  MoleculeIterator;
89 <
88 >    typedef map<int, Molecule*>::iterator  MoleculeIterator;
89 >    
90      /**
91       * Constructor of SimInfo
92 <     * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
93 <     * second element is the total number of molecules with the same molecule stamp in the system
92 >     *
93 >     * @param molStampPairs MoleculeStamp Array. The first element of
94 >     * the pair is molecule stamp, the second element is the total
95 >     * number of molecules with the same molecule stamp in the system
96 >     *
97       * @param ff pointer of a concrete ForceField instance
98 <     * @param simParams
99 <     * @note
98 >     *
99 >     * @param simParams
100       */
101 <    SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, ForceField* ff, Globals* simParams);
101 >    SimInfo(ForceField* ff, Globals* simParams);
102      virtual ~SimInfo();
103  
104      /**
105       * Adds a molecule
106 <     * @return return true if adding successfully, return false if the molecule is already in SimInfo
106 >     *
107 >     * @return return true if adding successfully, return false if the
108 >     * molecule is already in SimInfo
109 >     *
110       * @param mol molecule to be added
111       */
112      bool addMolecule(Molecule* mol);
113  
114      /**
115       * Removes a molecule from SimInfo
116 <     * @return true if removing successfully, return false if molecule is not in this SimInfo
116 >     *
117 >     * @return true if removing successfully, return false if molecule
118 >     * is not in this SimInfo
119       */
120      bool removeMolecule(Molecule* mol);
121  
# Line 127 | Line 135 | namespace oopse{
135      }
136  
137      /**
138 <     * Returns the total number of integrable objects (total number of rigid bodies plus the total number
139 <     * of atoms which do not belong to the rigid bodies) in the system
138 >     * Returns the total number of integrable objects (total number of
139 >     * rigid bodies plus the total number of atoms which do not belong
140 >     * to the rigid bodies) in the system
141       */
142      int getNGlobalIntegrableObjects() {
143        return nGlobalIntegrableObjects_;
144      }
145  
146      /**
147 <     * Returns the total number of integrable objects (total number of rigid bodies plus the total number
148 <     * of atoms which do not belong to the rigid bodies) in the system
147 >     * Returns the total number of integrable objects (total number of
148 >     * rigid bodies plus the total number of atoms which do not belong
149 >     * to the rigid bodies) in the system
150       */
151      int getNGlobalRigidBodies() {
152        return nGlobalRigidBodies_;
# Line 156 | Line 166 | namespace oopse{
166        return nAtoms_;
167      }
168  
169 +    /** Returns the number of effective cutoff groups on local processor */
170 +    unsigned int getNLocalCutoffGroups();
171 +
172      /** Returns the number of local bonds */        
173      unsigned int getNBonds(){
174        return nBonds_;
# Line 171 | Line 184 | namespace oopse{
184        return nTorsions_;
185      }
186  
187 +    /** Returns the number of local torsions */        
188 +    unsigned int getNInversions() {
189 +      return nInversions_;
190 +    }
191      /** Returns the number of local rigid bodies */        
192      unsigned int getNRigidBodies() {
193        return nRigidBodies_;
# Line 207 | Line 224 | namespace oopse{
224  
225      /** Returns the number of degrees of freedom */
226      int getNdf() {
227 <      return ndf_;
227 >      return ndf_ - getFdf();
228      }
229  
230      /** Returns the number of raw degrees of freedom */
# Line 220 | Line 237 | namespace oopse{
237        return ndfTrans_;
238      }
239  
240 <    //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
240 >    /** sets the current number of frozen degrees of freedom */
241 >    void setFdf(int fdf) {
242 >      fdf_local = fdf;
243 >    }
244 >
245 >    int getFdf();
246 >    
247 >    //getNZconstraint and setNZconstraint ruin the coherence of
248 >    //SimInfo class, need refactoring
249          
250      /** Returns the total number of z-constraint molecules in the system */
251      int getNZconstraint() {
# Line 256 | Line 281 | namespace oopse{
281  
282      /** Returns the center of the mass of the whole system.*/
283      Vector3d getCom();
284 <   /** Returns the center of the mass and Center of Mass velocity of the whole system.*/
284 >    /** Returns the center of the mass and Center of Mass velocity of
285 >        the whole system.*/
286      void getComAll(Vector3d& com,Vector3d& comVel);
287  
288 <    /** Returns intertia tensor for the entire system and system Angular Momentum.*/
288 >    /** Returns intertia tensor for the entire system and system
289 >        Angular Momentum.*/
290      void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
291      
292      /** Returns system angular momentum */
293      Vector3d getAngularMomentum();
294  
295 <    /** main driver function to interact with fortran during the initialization and molecule migration */
295 >    /** Returns volume of system as estimated by an ellipsoid defined
296 >        by the radii of gyration*/
297 >    void getGyrationalVolume(RealType &vol);
298 >    /** Overloaded version of gyrational volume that also returns
299 >        det(I) so dV/dr can be calculated*/
300 >    void getGyrationalVolume(RealType &vol, RealType &detI);
301 >
302      void update();
303 +    /**
304 +     * Do final bookkeeping before Force managers need their data.
305 +     */
306 +    void prepareTopology();
307  
308 +
309      /** Returns the local index manager */
310      LocalIndexManager* getLocalIndexManager() {
311        return &localIndexMan_;
# Line 297 | Line 335 | namespace oopse{
335        i = molecules_.find(index);
336  
337        return i != molecules_.end() ? i->second : NULL;
300    }
301
302    /** Calculate the maximum cutoff radius based on the atom types */
303    double calcMaxCutoffRadius();
304
305    double getRcut() {
306      return rcut_;
338      }
339  
340 <    double getRsw() {
341 <      return rsw_;
340 >    int getGlobalMolMembership(int id){
341 >      return globalMolMembership_[id];
342      }
343 +
344 +    /**
345 +     * returns a vector which maps the local atom index on this
346 +     * processor to the global atom index.  With only one processor,
347 +     * these should be identical.
348 +     */
349 +    vector<int> getGlobalAtomIndices();
350 +
351 +    /**
352 +     * returns a vector which maps the local cutoff group index on
353 +     * this processor to the global cutoff group index.  With only one
354 +     * processor, these should be identical.
355 +     */
356 +    vector<int> getGlobalGroupIndices();
357 +
358          
359 <    std::string getFinalConfigFileName() {
359 >    string getFinalConfigFileName() {
360        return finalConfigFileName_;
361      }
362 <        
363 <    void setFinalConfigFileName(const std::string& fileName) {
362 >
363 >    void setFinalConfigFileName(const string& fileName) {
364        finalConfigFileName_ = fileName;
365      }
366  
367 <    std::string getDumpFileName() {
367 >    string getRawMetaData() {
368 >      return rawMetaData_;
369 >    }
370 >    void setRawMetaData(const string& rawMetaData) {
371 >      rawMetaData_ = rawMetaData;
372 >    }
373 >        
374 >    string getDumpFileName() {
375        return dumpFileName_;
376      }
377          
378 <    void setDumpFileName(const std::string& fileName) {
378 >    void setDumpFileName(const string& fileName) {
379        dumpFileName_ = fileName;
380      }
381  
382 <    std::string getStatFileName() {
382 >    string getStatFileName() {
383        return statFileName_;
384      }
385          
386 <    void setStatFileName(const std::string& fileName) {
386 >    void setStatFileName(const string& fileName) {
387        statFileName_ = fileName;
388      }
389          
390 <    std::string getRestFileName() {
390 >    string getRestFileName() {
391        return restFileName_;
392      }
393          
394 <    void setRestFileName(const std::string& fileName) {
394 >    void setRestFileName(const string& fileName) {
395        restFileName_ = fileName;
396      }
397  
# Line 346 | Line 399 | namespace oopse{
399       * Sets GlobalGroupMembership
400       * @see #SimCreator::setGlobalIndex
401       */  
402 <    void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
403 <      assert(globalGroupMembership.size() == nGlobalAtoms_);
402 >    void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
403 >      assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
404        globalGroupMembership_ = globalGroupMembership;
405      }
406  
# Line 355 | Line 408 | namespace oopse{
408       * Sets GlobalMolMembership
409       * @see #SimCreator::setGlobalIndex
410       */        
411 <    void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
412 <      assert(globalMolMembership.size() == nGlobalAtoms_);
411 >    void setGlobalMolMembership(const vector<int>& globalMolMembership) {
412 >      assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
413        globalMolMembership_ = globalMolMembership;
414      }
415  
416  
417 <    bool isFortranInitialized() {
418 <      return fortranInitialized_;
417 >    bool isTopologyDone() {
418 >      return topologyDone_;
419      }
420          
421 <    //below functions are just forward functions
422 <    //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
423 <    //the other hand, has-a relation need composing.
421 >    bool getCalcBoxDipole() {
422 >      return calcBoxDipole_;
423 >    }
424 >
425 >    bool getUseAtomicVirial() {
426 >      return useAtomicVirial_;
427 >    }
428 >
429      /**
430       * Adds property into property map
431       * @param genData GenericData to be added into PropertyMap
# Line 378 | Line 436 | namespace oopse{
436       * Removes property from PropertyMap by name
437       * @param propName the name of property to be removed
438       */
439 <    void removeProperty(const std::string& propName);
439 >    void removeProperty(const string& propName);
440  
441      /**
442       * clear all of the properties
# Line 389 | Line 447 | namespace oopse{
447       * Returns all names of properties
448       * @return all names of properties
449       */
450 <    std::vector<std::string> getPropertyNames();
450 >    vector<string> getPropertyNames();
451  
452      /**
453       * Returns all of the properties in PropertyMap
454       * @return all of the properties in PropertyMap
455       */      
456 <    std::vector<GenericData*> getProperties();
456 >    vector<GenericData*> getProperties();
457  
458      /**
459       * Returns property
# Line 403 | Line 461 | namespace oopse{
461       * @return a pointer point to property with propName. If no property named propName
462       * exists, return NULL
463       */      
464 <    GenericData* getPropertyByName(const std::string& propName);
464 >    GenericData* getPropertyByName(const string& propName);
465  
466      /**
467 <     * add all exclude pairs of a molecule into exclude list.
467 >     * add all special interaction pairs (including excluded
468 >     * interactions) in a molecule into the appropriate lists.
469       */
470 <    void addExcludePairs(Molecule* mol);
470 >    void addInteractionPairs(Molecule* mol);
471  
472      /**
473 <     * remove all exclude pairs which belong to a molecule from exclude list
473 >     * remove all special interaction pairs which belong to a molecule
474 >     * from the appropriate lists.
475       */
476 +    void removeInteractionPairs(Molecule* mol);
477  
478 <    void removeExcludePairs(Molecule* mol);
479 <
419 <
420 <    /** Returns the unique atom types of local processor in an array */
421 <    std::set<AtomType*> getUniqueAtomTypes();
478 >    /** Returns the set of atom types present in this simulation */
479 >    set<AtomType*> getSimulatedAtomTypes();
480          
481 <    friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
481 >    friend ostream& operator <<(ostream& o, SimInfo& info);
482  
483 <    void getCutoff(double& rcut, double& rsw);
483 >    void getCutoff(RealType& rcut, RealType& rsw);
484          
485    private:
486  
487 <    /** fill up the simtype struct*/
488 <    void setupSimType();
487 >    /** fill up the simtype struct and other simulation-related variables */
488 >    void setupSimVariables();
489  
432    /**
433     * Setup Fortran Simulation
434     * @see #setupFortranParallel
435     */
436    void setupFortranSim();
490  
491 <    /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
492 <    void setupCutoff();
491 >    /** Determine if we need to accumulate the simulation box dipole */
492 >    void setupAccumulateBoxDipole();
493  
494      /** Calculates the number of degress of freedom in the whole system */
495      void calcNdf();
# Line 444 | Line 497 | namespace oopse{
497      void calcNdfTrans();
498  
499      /**
500 <     * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
501 <     * system.
500 >     * Adds molecule stamp and the total number of the molecule with
501 >     * same molecule stamp in the whole system.
502       */
503      void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
504  
505 <    MakeStamps* stamps_;
506 <    ForceField* forceField_;      
507 <    Globals* simParams_;
505 >    // Other classes holdingn important information
506 >    ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
507 >    Globals* simParams_;     /**< provides access to simulation parameters set by user */
508  
509 <    std::map<int, Molecule*>  molecules_; /**< Molecule array */
509 >    ///  Counts of local objects
510 >    int nAtoms_;              /**< number of atoms in local processor */
511 >    int nBonds_;              /**< number of bonds in local processor */
512 >    int nBends_;              /**< number of bends in local processor */
513 >    int nTorsions_;           /**< number of torsions in local processor */
514 >    int nInversions_;         /**< number of inversions in local processor */
515 >    int nRigidBodies_;        /**< number of rigid bodies in local processor */
516 >    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
517 >    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
518 >    int nConstraints_;        /**< number of constraints in local processors */
519          
520 <    //degress of freedom
521 <    int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
522 <    int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
523 <    int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
462 <    int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
463 <        
464 <    //number of global objects
465 <    int nGlobalMols_;       /**< number of molecules in the system */
466 <    int nGlobalAtoms_;   /**< number of atoms in the system */
467 <    int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
520 >    /// Counts of global objects
521 >    int nGlobalMols_;              /**< number of molecules in the system (GLOBAL) */
522 >    int nGlobalAtoms_;             /**< number of atoms in the system (GLOBAL) */
523 >    int nGlobalCutoffGroups_;      /**< number of cutoff groups in this system (GLOBAL) */
524      int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
525 <    int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
525 >    int nGlobalRigidBodies_;       /**< number of rigid bodies in this system (GLOBAL) */
526 >      
527 >    /// Degress of freedom
528 >    int ndf_;          /**< number of degress of freedom (excludes constraints) (LOCAL) */
529 >    int fdf_local;     /**< number of frozen degrees of freedom (LOCAL) */
530 >    int fdf_;          /**< number of frozen degrees of freedom (GLOBAL) */
531 >    int ndfRaw_;       /**< number of degress of freedom (includes constraints),  (LOCAL) */
532 >    int ndfTrans_;     /**< number of translation degress of freedom, (LOCAL) */
533 >    int nZconstraint_; /**< number of  z-constraint molecules (GLOBAL) */
534 >
535 >    /// logicals
536 >    bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
537 >    bool usesDirectionalAtoms_;   /**< are there atoms with position AND orientation? */
538 >    bool usesMetallicAtoms_;      /**< are there transition metal atoms? */
539 >    bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
540 >    bool usesAtomicVirial_;       /**< are we computing atomic virials? */
541 >    bool requiresPrepair_;        /**< does this simulation require a pre-pair loop? */
542 >    bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
543 >    bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
544 >
545 >  public:
546 >    bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
547 >    bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
548 >    bool usesMetallicAtoms() { return usesMetallicAtoms_; }
549 >    bool usesAtomicVirial() { return usesAtomicVirial_; }
550 >    bool requiresPrepair() { return requiresPrepair_; }
551 >    bool requiresSkipCorrection() { return requiresSkipCorrection_;}
552 >    bool requiresSelfCorrection() { return requiresSelfCorrection_;}
553 >
554 >  private:
555 >    /// Data structures holding primary simulation objects
556 >    map<int, Molecule*>  molecules_;  /**< map holding pointers to LOCAL molecules */
557 >
558 >    /// Stamps are templates for objects that are then used to create
559 >    /// groups of objects.  For example, a molecule stamp contains
560 >    /// information on how to build that molecule (i.e. the topology,
561 >    /// the atoms, the bonds, etc.)  Once the system is built, the
562 >    /// stamps are no longer useful.
563 >    vector<int> molStampIds_;                /**< stamp id for molecules in the system */
564 >    vector<MoleculeStamp*> moleculeStamps_;  /**< molecule stamps array */        
565 >
566      /**
567 <     * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
568 <     * corresponding content is the global index of cutoff group this atom belong to.
569 <     * It is filled by SimCreator once and only once, since it never changed during the simulation.
567 >     * A vector that maps between the global index of an atom, and the
568 >     * global index of cutoff group the atom belong to.  It is filled
569 >     * by SimCreator once and only once, since it never changed during
570 >     * the simulation.  It should be nGlobalAtoms_ in size.
571       */
572 <    std::vector<int> globalGroupMembership_;
572 >    vector<int> globalGroupMembership_;
573 >  public:
574 >    vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
575 >  private:
576  
577      /**
578 <     * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
579 <     * corresponding content is the global index of molecule this atom belong to.
580 <     * It is filled by SimCreator once and only once, since it is never changed during the simulation.
578 >     * A vector that maps between the global index of an atom and the
579 >     * global index of the molecule the atom belongs to.  It is filled
580 >     * by SimCreator once and only once, since it is never changed
581 >     * during the simulation. It shoudl be nGlobalAtoms_ in size.
582       */
583 <    std::vector<int> globalMolMembership_;        
583 >    vector<int> globalMolMembership_;
584  
585 <        
586 <    std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
587 <    std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
588 <        
589 <    //number of local objects
590 <    int nAtoms_;                        /**< number of atoms in local processor */
591 <    int nBonds_;                        /**< number of bonds in local processor */
592 <    int nBends_;                        /**< number of bends in local processor */
593 <    int nTorsions_;                    /**< number of torsions in local processor */
594 <    int nRigidBodies_;              /**< number of rigid bodies in local processor */
595 <    int nIntegrableObjects_;    /**< number of integrable objects in local processor */
596 <    int nCutoffGroups_;             /**< number of cutoff groups in local processor */
597 <    int nConstraints_;              /**< number of constraints in local processors */
585 >    /**
586 >     * A vector that maps between the local index of an atom and the
587 >     * index of the AtomType.
588 >     */
589 >    vector<int> identArray_;
590 >  public:
591 >    vector<int> getIdentArray() { return identArray_; }
592 >  private:
593 >    
594 >    /**
595 >     * A vector which contains the fractional contribution of an
596 >     * atom's mass to the total mass of the cutoffGroup that atom
597 >     * belongs to.  In the case of single atom cutoff groups, the mass
598 >     * factor for that atom is 1.  For massless atoms, the factor is
599 >     * also 1.
600 >     */
601 >    vector<RealType> massFactors_;
602 >  public:
603 >    vector<RealType> getMassFactors() { return massFactors_; }
604  
605 <    simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
606 <    Exclude exclude_;      
607 <    PropertyMap properties_;                  /**< Generic Property */
608 <    SnapshotManager* sman_;               /**< SnapshotManager */
605 >    PairList getExcludedInteractions() { return excludedInteractions_; }
606 >    PairList getOneTwoInteractions() { return oneTwoInteractions_; }
607 >    PairList getOneThreeInteractions() { return oneThreeInteractions_; }
608 >    PairList getOneFourInteractions() { return oneFourInteractions_; }
609  
610 +  private:
611 +
612 +              
613 +    /// lists to handle atoms needing special treatment in the non-bonded interactions
614 +    PairList excludedInteractions_;  /**< atoms excluded from interacting with each other */
615 +    PairList oneTwoInteractions_;    /**< atoms that are directly Bonded */
616 +    PairList oneThreeInteractions_;  /**< atoms sharing a Bend */    
617 +    PairList oneFourInteractions_;   /**< atoms sharing a Torsion */
618 +
619 +    PropertyMap properties_;       /**< Generic Properties can be added */
620 +    SnapshotManager* sman_;        /**< SnapshotManager (handles particle positions, etc.) */
621 +
622      /**
623 <     * The reason to have a local index manager is that when molecule is migrating to other processors,
624 <     * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
625 <     * information of molecule migrating to current processor, Migrator class can query  the LocalIndexManager
626 <     * to make a efficient data moving plan.
623 >     * The reason to have a local index manager is that when molecule
624 >     * is migrating to other processors, the atoms and the
625 >     * rigid-bodies will release their local indices to
626 >     * LocalIndexManager. Combining the information of molecule
627 >     * migrating to current processor, Migrator class can query the
628 >     * LocalIndexManager to make a efficient data moving plan.
629       */        
630      LocalIndexManager localIndexMan_;
631  
632 <    //file names
633 <    std::string finalConfigFileName_;
634 <    std::string dumpFileName_;
635 <    std::string statFileName_;
636 <    std::string restFileName_;
632 >    // unparsed MetaData block for storing in Dump and EOR files:
633 >    string rawMetaData_;
634 >
635 >    // file names
636 >    string finalConfigFileName_;
637 >    string dumpFileName_;
638 >    string statFileName_;
639 >    string restFileName_;
640          
517    double rcut_;       /**< cutoff radius*/
518    double rsw_;        /**< radius of switching function*/
641  
642 <    bool fortranInitialized_; /**< flag indicate whether fortran side is initialized */
643 <
644 < #ifdef IS_MPI
645 <    //in Parallel version, we need MolToProc
642 >    bool topologyDone_;  /** flag to indicate whether the topology has
643 >                             been scanned and all the relevant
644 >                             bookkeeping has been done*/
645 >    
646 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
647 >                            the simulation box dipole moment */
648 >    
649 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
650 >                              Atomic Virials to calculate the pressure */
651 >    
652    public:
653 +    /**
654 +     * return an integral objects by its global index. In MPI
655 +     * version, if the StuntDouble with specified global index does
656 +      * not belong to local processor, a NULL will be return.
657 +      */
658 +    StuntDouble* getIOIndexToIntegrableObject(int index);
659 +    void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
660 +    
661 +  private:
662 +    vector<StuntDouble*> IOIndexToIntegrableObject;
663 +    
664 +  public:
665                  
666      /**
667       * Finds the processor where a molecule resides
# Line 532 | Line 672 | namespace oopse{
672        //assert(globalIndex < molToProcMap_.size());
673        return molToProcMap_[globalIndex];
674      }
675 <
675 >    
676      /**
677       * Set MolToProcMap array
678       * @see #SimCreator::divideMolecules
679       */
680 <    void setMolToProcMap(const std::vector<int>& molToProcMap) {
680 >    void setMolToProcMap(const vector<int>& molToProcMap) {
681        molToProcMap_ = molToProcMap;
682      }
683          
684    private:
545
546    void setupFortranParallel();
685          
686      /**
687 <     * The size of molToProcMap_ is equal to total number of molecules in the system.
688 <     *  It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
689 <     * once.
687 >     * The size of molToProcMap_ is equal to total number of molecules
688 >     * in the system.  It maps a molecule to the processor on which it
689 >     * resides. it is filled by SimCreator once and only once.
690       */        
691 <    std::vector<int> molToProcMap_;
691 >    vector<int> molToProcMap_;
692  
555 #endif
556
693    };
694  
695 < } //namespace oopse
695 > } //namespace OpenMD
696   #endif //BRAINS_SIMMODEL_HPP
697  

Comparing:
trunk/src/brains/SimInfo.hpp (property svn:keywords), Revision 555 by chuckv, Mon May 30 14:01:52 2005 UTC vs.
branches/development/src/brains/SimInfo.hpp (property svn:keywords), Revision 1577 by gezelter, Wed Jun 8 20:26:56 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines