ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.hpp (file contents), Revision 417 by chrisfen, Thu Mar 10 15:10:24 2005 UTC vs.
branches/development/src/brains/SimInfo.hpp (file contents), Revision 1744 by gezelter, Tue Jun 5 18:07:08 2012 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include <utility>
56   #include <vector>
57  
58 < #include "brains/Exclude.hpp"
58 > #include "brains/PairList.hpp"
59   #include "io/Globals.hpp"
60   #include "math/Vector3.hpp"
61 + #include "math/SquareMatrix3.hpp"
62   #include "types/MoleculeStamp.hpp"
63 < #include "UseTheForce/ForceField.hpp"
63 > #include "brains/ForceField.hpp"
64   #include "utils/PropertyMap.hpp"
65   #include "utils/LocalIndexManager.hpp"
66 + #include "nonbonded/SwitchingFunction.hpp"
67  
68 < //another nonsense macro declaration
69 < #define __C
70 < #include "brains/fSimulation.h"
68 > using namespace std;
69 > namespace OpenMD{
70 >  //forward declaration
71 >  class SnapshotManager;
72 >  class Molecule;
73 >  class SelectionManager;
74 >  class StuntDouble;
75  
76 < namespace oopse{
76 >  /**
77 >   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
78 >   *
79 >   * @brief One of the heavy-weight classes of OpenMD, SimInfo
80 >   * maintains objects and variables relating to the current
81 >   * simulation.  This includes the master list of Molecules.  The
82 >   * Molecule class maintains all of the concrete objects (Atoms,
83 >   * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
84 >   * Constraints). In both the single and parallel versions, Atoms and
85 >   * RigidBodies have both global and local indices.
86 >   */
87 >  class SimInfo {
88 >  public:
89 >    typedef map<int, Molecule*>::iterator  MoleculeIterator;
90 >    
91 >    /**
92 >     * Constructor of SimInfo
93 >     *
94 >     * @param molStampPairs MoleculeStamp Array. The first element of
95 >     * the pair is molecule stamp, the second element is the total
96 >     * number of molecules with the same molecule stamp in the system
97 >     *
98 >     * @param ff pointer of a concrete ForceField instance
99 >     *
100 >     * @param simParams
101 >     */
102 >    SimInfo(ForceField* ff, Globals* simParams);
103 >    virtual ~SimInfo();
104  
105 < //forward decalration
106 < class SnapshotManager;
107 < class Molecule;
108 < class SelectionManager;
109 < /**
110 < * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
111 < * @brief As one of the heavy weight class of OOPSE, SimInfo
112 < * One of the major changes in SimInfo class is the data struct. It only maintains a list of molecules.
113 < * And the Molecule class will maintain all of the concrete objects (atoms, bond, bend, torsions, rigid bodies,
80 < * cutoff groups, constrains).
81 < * Another major change is the index. No matter single version or parallel version,  atoms and
82 < * rigid bodies have both global index and local index. Local index is not important to molecule as well as
83 < * cutoff group.
84 < */
85 < class SimInfo {
86 <    public:
87 <        typedef std::map<int, Molecule*>::iterator  MoleculeIterator;
105 >    /**
106 >     * Adds a molecule
107 >     *
108 >     * @return return true if adding successfully, return false if the
109 >     * molecule is already in SimInfo
110 >     *
111 >     * @param mol molecule to be added
112 >     */
113 >    bool addMolecule(Molecule* mol);
114  
115 <        /**
116 <         * Constructor of SimInfo
117 <         * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
118 <         * second element is the total number of molecules with the same molecule stamp in the system
119 <         * @param ff pointer of a concrete ForceField instance
120 <         * @param simParams
121 <         * @note
96 <         */
97 <        SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, ForceField* ff, Globals* simParams);
98 <        virtual ~SimInfo();
115 >    /**
116 >     * Removes a molecule from SimInfo
117 >     *
118 >     * @return true if removing successfully, return false if molecule
119 >     * is not in this SimInfo
120 >     */
121 >    bool removeMolecule(Molecule* mol);
122  
123 <        /**
124 <         * Adds a molecule
125 <         * @return return true if adding successfully, return false if the molecule is already in SimInfo
126 <         * @param mol molecule to be added
104 <         */
105 <        bool addMolecule(Molecule* mol);
123 >    /** Returns the total number of molecules in the system. */
124 >    int getNGlobalMolecules() {
125 >      return nGlobalMols_;
126 >    }
127  
128 <        /**
129 <         * Removes a molecule from SimInfo
130 <         * @return true if removing successfully, return false if molecule is not in this SimInfo
131 <         */
111 <        bool removeMolecule(Molecule* mol);
128 >    /** Returns the total number of atoms in the system. */
129 >    int getNGlobalAtoms() {
130 >      return nGlobalAtoms_;
131 >    }
132  
133 <        /** Returns the total number of molecules in the system. */
134 <        int getNGlobalMolecules() {
135 <            return nGlobalMols_;
136 <        }
133 >    /** Returns the total number of cutoff groups in the system. */
134 >    int getNGlobalCutoffGroups() {
135 >      return nGlobalCutoffGroups_;
136 >    }
137  
138 <        /** Returns the total number of atoms in the system. */
139 <        int getNGlobalAtoms() {
140 <            return nGlobalAtoms_;
141 <        }
138 >    /**
139 >     * Returns the total number of integrable objects (total number of
140 >     * rigid bodies plus the total number of atoms which do not belong
141 >     * to the rigid bodies) in the system
142 >     */
143 >    int getNGlobalIntegrableObjects() {
144 >      return nGlobalIntegrableObjects_;
145 >    }
146  
147 <        /** Returns the total number of cutoff groups in the system. */
148 <        int getNGlobalCutoffGroups() {
149 <            return nGlobalCutoffGroups_;
150 <        }
147 >    /**
148 >     * Returns the total number of integrable objects (total number of
149 >     * rigid bodies plus the total number of atoms which do not belong
150 >     * to the rigid bodies) in the system
151 >     */
152 >    int getNGlobalRigidBodies() {
153 >      return nGlobalRigidBodies_;
154 >    }
155  
156 <        /**
157 <         * Returns the total number of integrable objects (total number of rigid bodies plus the total number
158 <         * of atoms which do not belong to the rigid bodies) in the system
159 <         */
160 <        int getNGlobalIntegrableObjects() {
161 <            return nGlobalIntegrableObjects_;
162 <        }
156 >    int getNGlobalConstraints();
157 >    /**
158 >     * Returns the number of local molecules.
159 >     * @return the number of local molecules
160 >     */
161 >    int getNMolecules() {
162 >      return molecules_.size();
163 >    }
164  
165 <        /**
166 <         * Returns the total number of integrable objects (total number of rigid bodies plus the total number
167 <         * of atoms which do not belong to the rigid bodies) in the system
168 <         */
140 <        int getNGlobalRigidBodies() {
141 <            return nGlobalRigidBodies_;
142 <        }
165 >    /** Returns the number of local atoms */
166 >    unsigned int getNAtoms() {
167 >      return nAtoms_;
168 >    }
169  
170 <        int getNGlobalConstraints();
171 <        /**
146 <         * Returns the number of local molecules.
147 <         * @return the number of local molecules
148 <         */
149 <        int getNMolecules() {
150 <            return molecules_.size();
151 <        }
170 >    /** Returns the number of effective cutoff groups on local processor */
171 >    unsigned int getNLocalCutoffGroups();
172  
173 <        /** Returns the number of local atoms */
174 <        unsigned int getNAtoms() {
175 <            return nAtoms_;
176 <        }
173 >    /** Returns the number of local bonds */        
174 >    unsigned int getNBonds(){
175 >      return nBonds_;
176 >    }
177  
178 <        /** Returns the number of local bonds */        
179 <        unsigned int getNBonds(){
180 <            return nBonds_;
181 <        }
178 >    /** Returns the number of local bends */        
179 >    unsigned int getNBends() {
180 >      return nBends_;
181 >    }
182  
183 <        /** Returns the number of local bends */        
184 <        unsigned int getNBends() {
185 <            return nBends_;
186 <        }
183 >    /** Returns the number of local torsions */        
184 >    unsigned int getNTorsions() {
185 >      return nTorsions_;
186 >    }
187  
188 <        /** Returns the number of local torsions */        
189 <        unsigned int getNTorsions() {
190 <            return nTorsions_;
191 <        }
188 >    /** Returns the number of local torsions */        
189 >    unsigned int getNInversions() {
190 >      return nInversions_;
191 >    }
192 >    /** Returns the number of local rigid bodies */        
193 >    unsigned int getNRigidBodies() {
194 >      return nRigidBodies_;
195 >    }
196  
197 <        /** Returns the number of local rigid bodies */        
198 <        unsigned int getNRigidBodies() {
199 <            return nRigidBodies_;
200 <        }
197 >    /** Returns the number of local integrable objects */
198 >    unsigned int getNIntegrableObjects() {
199 >      return nIntegrableObjects_;
200 >    }
201  
202 <        /** Returns the number of local integrable objects */
203 <        unsigned int getNIntegrableObjects() {
204 <            return nIntegrableObjects_;
205 <        }
202 >    /** Returns the number of local cutoff groups */
203 >    unsigned int getNCutoffGroups() {
204 >      return nCutoffGroups_;
205 >    }
206  
207 <        /** Returns the number of local cutoff groups */
208 <        unsigned int getNCutoffGroups() {
209 <            return nCutoffGroups_;
210 <        }
187 <
188 <        /** Returns the total number of constraints in this SimInfo */
189 <        unsigned int getNConstraints() {
190 <            return nConstraints_;
191 <        }
207 >    /** Returns the total number of constraints in this SimInfo */
208 >    unsigned int getNConstraints() {
209 >      return nConstraints_;
210 >    }
211          
212 <        /**
213 <         * Returns the first molecule in this SimInfo and intialize the iterator.
214 <         * @return the first molecule, return NULL if there is not molecule in this SimInfo
215 <         * @param i the iterator of molecule array (user shouldn't change it)
216 <         */
217 <        Molecule* beginMolecule(MoleculeIterator& i);
212 >    /**
213 >     * Returns the first molecule in this SimInfo and intialize the iterator.
214 >     * @return the first molecule, return NULL if there is not molecule in this SimInfo
215 >     * @param i the iterator of molecule array (user shouldn't change it)
216 >     */
217 >    Molecule* beginMolecule(MoleculeIterator& i);
218  
219 <        /**
220 <          * Returns the next avaliable Molecule based on the iterator.
221 <          * @return the next avaliable molecule, return NULL if reaching the end of the array
222 <          * @param i the iterator of molecule array
223 <          */
224 <        Molecule* nextMolecule(MoleculeIterator& i);
206 <
207 <        /** Returns the number of degrees of freedom */
208 <        int getNdf() {
209 <            return ndf_;
210 <        }
219 >    /**
220 >     * Returns the next avaliable Molecule based on the iterator.
221 >     * @return the next avaliable molecule, return NULL if reaching the end of the array
222 >     * @param i the iterator of molecule array
223 >     */
224 >    Molecule* nextMolecule(MoleculeIterator& i);
225  
226 <        /** Returns the number of raw degrees of freedom */
227 <        int getNdfRaw() {
228 <            return ndfRaw_;
229 <        }
226 >    /** Returns the total number of fluctuating charges that are present */
227 >    int getNFluctuatingCharges() {
228 >      return nGlobalFluctuatingCharges_;
229 >    }
230  
231 <        /** Returns the number of translational degrees of freedom */
232 <        int getNdfTrans() {
233 <            return ndfTrans_;
234 <        }
231 >    /** Returns the number of degrees of freedom */
232 >    int getNdf() {
233 >      return ndf_ - getFdf();
234 >    }
235  
236 <        //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
236 >    /** Returns the number of degrees of freedom (LOCAL) */
237 >    int getNdfLocal() {
238 >      return ndfLocal_;
239 >    }
240 >
241 >    /** Returns the number of raw degrees of freedom */
242 >    int getNdfRaw() {
243 >      return ndfRaw_;
244 >    }
245 >
246 >    /** Returns the number of translational degrees of freedom */
247 >    int getNdfTrans() {
248 >      return ndfTrans_;
249 >    }
250 >
251 >    /** sets the current number of frozen degrees of freedom */
252 >    void setFdf(int fdf) {
253 >      fdf_local = fdf;
254 >    }
255 >
256 >    int getFdf();
257 >    
258 >    //getNZconstraint and setNZconstraint ruin the coherence of
259 >    //SimInfo class, need refactoring
260          
261 <        /** Returns the total number of z-constraint molecules in the system */
262 <        int getNZconstraint() {
263 <            return nZconstraint_;
264 <        }
261 >    /** Returns the total number of z-constraint molecules in the system */
262 >    int getNZconstraint() {
263 >      return nZconstraint_;
264 >    }
265  
266 <        /**
267 <         * Sets the number of z-constraint molecules in the system.
268 <         */
269 <        void setNZconstraint(int nZconstraint) {
270 <            nZconstraint_ = nZconstraint;
271 <        }
266 >    /**
267 >     * Sets the number of z-constraint molecules in the system.
268 >     */
269 >    void setNZconstraint(int nZconstraint) {
270 >      nZconstraint_ = nZconstraint;
271 >    }
272          
273 <        /** Returns the snapshot manager. */
274 <        SnapshotManager* getSnapshotManager() {
275 <            return sman_;
276 <        }
273 >    /** Returns the snapshot manager. */
274 >    SnapshotManager* getSnapshotManager() {
275 >      return sman_;
276 >    }
277  
278 <        /** Sets the snapshot manager. */
279 <        void setSnapshotManager(SnapshotManager* sman);
278 >    /** Sets the snapshot manager. */
279 >    void setSnapshotManager(SnapshotManager* sman);
280          
281 <        /** Returns the force field */
282 <        ForceField* getForceField() {
283 <            return forceField_;
284 <        }
281 >    /** Returns the force field */
282 >    ForceField* getForceField() {
283 >      return forceField_;
284 >    }
285  
286 <        Globals* getSimParams() {
287 <            return simParams_;
288 <        }
286 >    Globals* getSimParams() {
287 >      return simParams_;
288 >    }
289  
290 <        /** Returns the velocity of center of mass of the whole system.*/
291 <        Vector3d getComVel();
290 >    /** Returns the velocity of center of mass of the whole system.*/
291 >    Vector3d getComVel();
292  
293 <        /** Returns the center of the mass of the whole system.*/
294 <        Vector3d getCom();
293 >    /** Returns the center of the mass of the whole system.*/
294 >    Vector3d getCom();
295 >    /** Returns the center of the mass and Center of Mass velocity of
296 >        the whole system.*/
297 >    void getComAll(Vector3d& com,Vector3d& comVel);
298  
299 <        /** main driver function to interact with fortran during the initialization and molecule migration */
300 <        void update();
299 >    /** Returns intertia tensor for the entire system and system
300 >        Angular Momentum.*/
301 >    void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
302 >    
303 >    /** Returns system angular momentum */
304 >    Vector3d getAngularMomentum();
305  
306 <        /** Returns the local index manager */
307 <        LocalIndexManager* getLocalIndexManager() {
308 <            return &localIndexMan_;
309 <        }
306 >    /** Returns volume of system as estimated by an ellipsoid defined
307 >        by the radii of gyration*/
308 >    void getGyrationalVolume(RealType &vol);
309 >    /** Overloaded version of gyrational volume that also returns
310 >        det(I) so dV/dr can be calculated*/
311 >    void getGyrationalVolume(RealType &vol, RealType &detI);
312  
313 <        int getMoleculeStampId(int globalIndex) {
314 <            //assert(globalIndex < molStampIds_.size())
315 <            return molStampIds_[globalIndex];
316 <        }
313 >    void update();
314 >    /**
315 >     * Do final bookkeeping before Force managers need their data.
316 >     */
317 >    void prepareTopology();
318  
272        /** Returns the molecule stamp */
273        MoleculeStamp* getMoleculeStamp(int id) {
274            return moleculeStamps_[id];
275        }
319  
320 <        /** Return the total number of the molecule stamps */
321 <        int getNMoleculeStamp() {
322 <            return moleculeStamps_.size();
323 <        }
281 <        /**
282 <         * Finds a molecule with a specified global index
283 <         * @return a pointer point to found molecule
284 <         * @param index
285 <         */
286 <        Molecule* getMoleculeByGlobalIndex(int index) {
287 <            MoleculeIterator i;
288 <            i = molecules_.find(index);
320 >    /** Returns the local index manager */
321 >    LocalIndexManager* getLocalIndexManager() {
322 >      return &localIndexMan_;
323 >    }
324  
325 <            return i != molecules_.end() ? i->second : NULL;
326 <        }
325 >    int getMoleculeStampId(int globalIndex) {
326 >      //assert(globalIndex < molStampIds_.size())
327 >      return molStampIds_[globalIndex];
328 >    }
329  
330 <        /** Calculate the maximum cutoff radius based on the atom types */
331 <        double calcMaxCutoffRadius();
330 >    /** Returns the molecule stamp */
331 >    MoleculeStamp* getMoleculeStamp(int id) {
332 >      return moleculeStamps_[id];
333 >    }
334  
335 <        double getRcut() {
336 <            return rcut_;
337 <        }
335 >    /** Return the total number of the molecule stamps */
336 >    int getNMoleculeStamp() {
337 >      return moleculeStamps_.size();
338 >    }
339 >    /**
340 >     * Finds a molecule with a specified global index
341 >     * @return a pointer point to found molecule
342 >     * @param index
343 >     */
344 >    Molecule* getMoleculeByGlobalIndex(int index) {
345 >      MoleculeIterator i;
346 >      i = molecules_.find(index);
347  
348 <        double getRsw() {
349 <            return rsw_;
302 <        }
303 <        
304 <        std::string getFinalConfigFileName() {
305 <            return finalConfigFileName_;
306 <        }
307 <        
308 <        void setFinalConfigFileName(const std::string& fileName) {
309 <            finalConfigFileName_ = fileName;
310 <        }
348 >      return i != molecules_.end() ? i->second : NULL;
349 >    }
350  
351 <        std::string getDumpFileName() {
352 <            return dumpFileName_;
353 <        }
315 <        
316 <        void setDumpFileName(const std::string& fileName) {
317 <            dumpFileName_ = fileName;
318 <        }
351 >    int getGlobalMolMembership(int id){
352 >      return globalMolMembership_[id];
353 >    }
354  
355 <        std::string getStatFileName() {
356 <            return statFileName_;
357 <        }
358 <        
359 <        void setStatFileName(const std::string& fileName) {
360 <            statFileName_ = fileName;
326 <        }
327 <        
328 <        std::string getRestFileName() {
329 <          return restFileName_;
330 <        }
331 <        
332 <        void setRestFileName(const std::string& fileName) {
333 <          restFileName_ = fileName;
334 <        }
355 >    /**
356 >     * returns a vector which maps the local atom index on this
357 >     * processor to the global atom index.  With only one processor,
358 >     * these should be identical.
359 >     */
360 >    vector<int> getGlobalAtomIndices();
361  
362 <        /**
363 <         * Sets GlobalGroupMembership
364 <         * @see #SimCreator::setGlobalIndex
365 <         */  
366 <        void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
367 <            assert(globalGroupMembership.size() == nGlobalAtoms_);
342 <            globalGroupMembership_ = globalGroupMembership;
343 <        }
362 >    /**
363 >     * returns a vector which maps the local cutoff group index on
364 >     * this processor to the global cutoff group index.  With only one
365 >     * processor, these should be identical.
366 >     */
367 >    vector<int> getGlobalGroupIndices();
368  
369 <        /**
370 <         * Sets GlobalMolMembership
371 <         * @see #SimCreator::setGlobalIndex
372 <         */        
349 <        void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
350 <            assert(globalMolMembership.size() == nGlobalAtoms_);
351 <            globalMolMembership_ = globalMolMembership;
352 <        }
369 >        
370 >    string getFinalConfigFileName() {
371 >      return finalConfigFileName_;
372 >    }
373  
374 +    void setFinalConfigFileName(const string& fileName) {
375 +      finalConfigFileName_ = fileName;
376 +    }
377  
378 <        bool isFortranInitialized() {
379 <            return fortranInitialized_;
380 <        }
378 >    string getRawMetaData() {
379 >      return rawMetaData_;
380 >    }
381 >    void setRawMetaData(const string& rawMetaData) {
382 >      rawMetaData_ = rawMetaData;
383 >    }
384          
385 <        //below functions are just forward functions
386 <        //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
387 <        //the other hand, has-a relation need composing.
388 <        /**
389 <         * Adds property into property map
390 <         * @param genData GenericData to be added into PropertyMap
391 <         */
366 <        void addProperty(GenericData* genData);
385 >    string getDumpFileName() {
386 >      return dumpFileName_;
387 >    }
388 >        
389 >    void setDumpFileName(const string& fileName) {
390 >      dumpFileName_ = fileName;
391 >    }
392  
393 <        /**
394 <         * Removes property from PropertyMap by name
395 <         * @param propName the name of property to be removed
396 <         */
397 <        void removeProperty(const std::string& propName);
393 >    string getStatFileName() {
394 >      return statFileName_;
395 >    }
396 >        
397 >    void setStatFileName(const string& fileName) {
398 >      statFileName_ = fileName;
399 >    }
400 >        
401 >    string getRestFileName() {
402 >      return restFileName_;
403 >    }
404 >        
405 >    void setRestFileName(const string& fileName) {
406 >      restFileName_ = fileName;
407 >    }
408  
409 <        /**
410 <         * clear all of the properties
411 <         */
412 <        void clearProperties();
409 >    /**
410 >     * Sets GlobalGroupMembership
411 >     * @see #SimCreator::setGlobalIndex
412 >     */  
413 >    void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
414 >      assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
415 >      globalGroupMembership_ = globalGroupMembership;
416 >    }
417  
418 <        /**
419 <         * Returns all names of properties
420 <         * @return all names of properties
421 <         */
422 <        std::vector<std::string> getPropertyNames();
418 >    /**
419 >     * Sets GlobalMolMembership
420 >     * @see #SimCreator::setGlobalIndex
421 >     */        
422 >    void setGlobalMolMembership(const vector<int>& globalMolMembership) {
423 >      assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
424 >      globalMolMembership_ = globalMolMembership;
425 >    }
426  
385        /**
386         * Returns all of the properties in PropertyMap
387         * @return all of the properties in PropertyMap
388         */      
389        std::vector<GenericData*> getProperties();
427  
428 <        /**
429 <         * Returns property
430 <         * @param propName name of property
431 <         * @return a pointer point to property with propName. If no property named propName
432 <         * exists, return NULL
433 <         */      
434 <        GenericData* getPropertyByName(const std::string& propName);
428 >    bool isTopologyDone() {
429 >      return topologyDone_;
430 >    }
431 >        
432 >    bool getCalcBoxDipole() {
433 >      return calcBoxDipole_;
434 >    }
435  
436 <        /**
437 <         * add all exclude pairs of a molecule into exclude list.
438 <         */
402 <        void addExcludePairs(Molecule* mol);
436 >    bool getUseAtomicVirial() {
437 >      return useAtomicVirial_;
438 >    }
439  
440 <        /**
441 <         * remove all exclude pairs which belong to a molecule from exclude list
442 <         */
440 >    /**
441 >     * Adds property into property map
442 >     * @param genData GenericData to be added into PropertyMap
443 >     */
444 >    void addProperty(GenericData* genData);
445  
446 <        void removeExcludePairs(Molecule* mol);
446 >    /**
447 >     * Removes property from PropertyMap by name
448 >     * @param propName the name of property to be removed
449 >     */
450 >    void removeProperty(const string& propName);
451  
452 +    /**
453 +     * clear all of the properties
454 +     */
455 +    void clearProperties();
456  
457 <        /** Returns the unique atom types of local processor in an array */
458 <        std::set<AtomType*> getUniqueAtomTypes();
459 <        
460 <        friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
457 >    /**
458 >     * Returns all names of properties
459 >     * @return all names of properties
460 >     */
461 >    vector<string> getPropertyNames();
462  
463 <        void getCutoff(double& rcut, double& rsw);
464 <        
465 <    private:
463 >    /**
464 >     * Returns all of the properties in PropertyMap
465 >     * @return all of the properties in PropertyMap
466 >     */      
467 >    vector<GenericData*> getProperties();
468  
469 <        /** fill up the simtype struct*/
470 <        void setupSimType();
469 >    /**
470 >     * Returns property
471 >     * @param propName name of property
472 >     * @return a pointer point to property with propName. If no property named propName
473 >     * exists, return NULL
474 >     */      
475 >    GenericData* getPropertyByName(const string& propName);
476  
477 <        /**
478 <         * Setup Fortran Simulation
479 <         * @see #setupFortranParallel
480 <         */
481 <        void setupFortranSim();
477 >    /**
478 >     * add all special interaction pairs (including excluded
479 >     * interactions) in a molecule into the appropriate lists.
480 >     */
481 >    void addInteractionPairs(Molecule* mol);
482  
483 <        /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
484 <        void setupCutoff();
483 >    /**
484 >     * remove all special interaction pairs which belong to a molecule
485 >     * from the appropriate lists.
486 >     */
487 >    void removeInteractionPairs(Molecule* mol);
488  
489 <        /** Calculates the number of degress of freedom in the whole system */
490 <        void calcNdf();
434 <        void calcNdfRaw();
435 <        void calcNdfTrans();
436 <
437 <        /**
438 <         * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
439 <         * system.
440 <         */
441 <        void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
442 <
443 <        ForceField* forceField_;      
444 <        Globals* simParams_;
445 <
446 <        std::map<int, Molecule*>  molecules_; /**< Molecule array */
489 >    /** Returns the set of atom types present in this simulation */
490 >    set<AtomType*> getSimulatedAtomTypes();
491          
492 <        //degress of freedom
449 <        int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
450 <        int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
451 <        int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
452 <        int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
453 <        
454 <        //number of global objects
455 <        int nGlobalMols_;       /**< number of molecules in the system */
456 <        int nGlobalAtoms_;   /**< number of atoms in the system */
457 <        int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
458 <        int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
459 <        int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
460 <        /**
461 <         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
462 <         * corresponding content is the global index of cutoff group this atom belong to.
463 <         * It is filled by SimCreator once and only once, since it never changed during the simulation.
464 <         */
465 <        std::vector<int> globalGroupMembership_;
492 >    friend ostream& operator <<(ostream& o, SimInfo& info);
493  
494 <        /**
468 <         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
469 <         * corresponding content is the global index of molecule this atom belong to.
470 <         * It is filled by SimCreator once and only once, since it is never changed during the simulation.
471 <         */
472 <        std::vector<int> globalMolMembership_;        
473 <
494 >    void getCutoff(RealType& rcut, RealType& rsw);
495          
496 <        std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
476 <        std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
477 <        
478 <        //number of local objects
479 <        int nAtoms_;                        /**< number of atoms in local processor */
480 <        int nBonds_;                        /**< number of bonds in local processor */
481 <        int nBends_;                        /**< number of bends in local processor */
482 <        int nTorsions_;                    /**< number of torsions in local processor */
483 <        int nRigidBodies_;              /**< number of rigid bodies in local processor */
484 <        int nIntegrableObjects_;    /**< number of integrable objects in local processor */
485 <        int nCutoffGroups_;             /**< number of cutoff groups in local processor */
486 <        int nConstraints_;              /**< number of constraints in local processors */
496 >  private:
497  
498 <        simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
499 <        Exclude exclude_;      
490 <        PropertyMap properties_;                  /**< Generic Property */
491 <        SnapshotManager* sman_;               /**< SnapshotManager */
498 >    /** fill up the simtype struct and other simulation-related variables */
499 >    void setupSimVariables();
500  
493        /**
494         * The reason to have a local index manager is that when molecule is migrating to other processors,
495         * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
496         * information of molecule migrating to current processor, Migrator class can query  the LocalIndexManager
497         * to make a efficient data moving plan.
498         */        
499        LocalIndexManager localIndexMan_;
501  
502 <        //file names
503 <        std::string finalConfigFileName_;
503 <        std::string dumpFileName_;
504 <        std::string statFileName_;
505 <        std::string restFileName_;
506 <        
507 <        double rcut_;       /**< cutoff radius*/
508 <        double rsw_;        /**< radius of switching function*/
502 >    /** Determine if we need to accumulate the simulation box dipole */
503 >    void setupAccumulateBoxDipole();
504  
505 <        bool fortranInitialized_; /**< flag indicate whether fortran side is initialized */
505 >    /** Calculates the number of degress of freedom in the whole system */
506 >    void calcNdf();
507 >    void calcNdfRaw();
508 >    void calcNdfTrans();
509  
510 < #ifdef IS_MPI
511 <    //in Parallel version, we need MolToProc
512 <    public:
513 <                
514 <        /**
517 <         * Finds the processor where a molecule resides
518 <         * @return the id of the processor which contains the molecule
519 <         * @param globalIndex global Index of the molecule
520 <         */
521 <        int getMolToProc(int globalIndex) {
522 <            //assert(globalIndex < molToProcMap_.size());
523 <            return molToProcMap_[globalIndex];
524 <        }
510 >    /**
511 >     * Adds molecule stamp and the total number of the molecule with
512 >     * same molecule stamp in the whole system.
513 >     */
514 >    void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
515  
516 <        /**
517 <         * Set MolToProcMap array
518 <         * @see #SimCreator::divideMolecules
519 <         */
520 <        void setMolToProcMap(const std::vector<int>& molToProcMap) {
521 <            molToProcMap_ = molToProcMap;
522 <        }
516 >    // Other classes holdingn important information
517 >    ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
518 >    Globals* simParams_;     /**< provides access to simulation parameters set by user */
519 >
520 >    ///  Counts of local objects
521 >    int nAtoms_;              /**< number of atoms in local processor */
522 >    int nBonds_;              /**< number of bonds in local processor */
523 >    int nBends_;              /**< number of bends in local processor */
524 >    int nTorsions_;           /**< number of torsions in local processor */
525 >    int nInversions_;         /**< number of inversions in local processor */
526 >    int nRigidBodies_;        /**< number of rigid bodies in local processor */
527 >    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
528 >    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
529 >    int nConstraints_;        /**< number of constraints in local processors */
530 >    int nFluctuatingCharges_; /**< number of fluctuating charges in local processor */
531          
532 <    private:
532 >    /// Counts of global objects
533 >    int nGlobalMols_;              /**< number of molecules in the system (GLOBAL) */
534 >    int nGlobalAtoms_;             /**< number of atoms in the system (GLOBAL) */
535 >    int nGlobalCutoffGroups_;      /**< number of cutoff groups in this system (GLOBAL) */
536 >    int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
537 >    int nGlobalRigidBodies_;       /**< number of rigid bodies in this system (GLOBAL) */
538 >    int nGlobalFluctuatingCharges_;/**< number of fluctuating charges in this system (GLOBAL) */
539 >    
540 >      
541 >    /// Degress of freedom
542 >    int ndf_;          /**< number of degress of freedom (excludes constraints) (LOCAL) */
543 >    int ndfLocal_;     /**< number of degrees of freedom (LOCAL, excludes constraints) */
544 >    int fdf_local;     /**< number of frozen degrees of freedom (LOCAL) */
545 >    int fdf_;          /**< number of frozen degrees of freedom (GLOBAL) */
546 >    int ndfRaw_;       /**< number of degress of freedom (includes constraints),  (LOCAL) */
547 >    int ndfTrans_;     /**< number of translation degress of freedom, (LOCAL) */
548 >    int nZconstraint_; /**< number of  z-constraint molecules (GLOBAL) */
549  
550 <        void setupFortranParallel();
550 >    /// logicals
551 >    bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
552 >    bool usesDirectionalAtoms_;   /**< are there atoms with position AND orientation? */
553 >    bool usesMetallicAtoms_;      /**< are there transition metal atoms? */
554 >    bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
555 >    bool usesFluctuatingCharges_; /**< are there fluctuating charges? */
556 >    bool usesAtomicVirial_;       /**< are we computing atomic virials? */
557 >    bool requiresPrepair_;        /**< does this simulation require a pre-pair loop? */
558 >    bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
559 >    bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
560 >
561 >  public:
562 >    bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
563 >    bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
564 >    bool usesFluctuatingCharges() { return usesFluctuatingCharges_; }
565 >    bool usesAtomicVirial() { return usesAtomicVirial_; }
566 >    bool requiresPrepair() { return requiresPrepair_; }
567 >    bool requiresSkipCorrection() { return requiresSkipCorrection_;}
568 >    bool requiresSelfCorrection() { return requiresSelfCorrection_;}
569 >
570 >  private:
571 >    /// Data structures holding primary simulation objects
572 >    map<int, Molecule*>  molecules_;  /**< map holding pointers to LOCAL molecules */
573 >
574 >    /// Stamps are templates for objects that are then used to create
575 >    /// groups of objects.  For example, a molecule stamp contains
576 >    /// information on how to build that molecule (i.e. the topology,
577 >    /// the atoms, the bonds, etc.)  Once the system is built, the
578 >    /// stamps are no longer useful.
579 >    vector<int> molStampIds_;                /**< stamp id for molecules in the system */
580 >    vector<MoleculeStamp*> moleculeStamps_;  /**< molecule stamps array */        
581 >
582 >    /**
583 >     * A vector that maps between the global index of an atom, and the
584 >     * global index of cutoff group the atom belong to.  It is filled
585 >     * by SimCreator once and only once, since it never changed during
586 >     * the simulation.  It should be nGlobalAtoms_ in size.
587 >     */
588 >    vector<int> globalGroupMembership_;
589 >  public:
590 >    vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
591 >  private:
592 >
593 >    /**
594 >     * A vector that maps between the global index of an atom and the
595 >     * global index of the molecule the atom belongs to.  It is filled
596 >     * by SimCreator once and only once, since it is never changed
597 >     * during the simulation. It shoudl be nGlobalAtoms_ in size.
598 >     */
599 >    vector<int> globalMolMembership_;
600 >
601 >    /**
602 >     * A vector that maps between the local index of an atom and the
603 >     * index of the AtomType.
604 >     */
605 >    vector<int> identArray_;
606 >  public:
607 >    vector<int> getIdentArray() { return identArray_; }
608 >  private:
609 >    
610 >    /**
611 >     * A vector which contains the fractional contribution of an
612 >     * atom's mass to the total mass of the cutoffGroup that atom
613 >     * belongs to.  In the case of single atom cutoff groups, the mass
614 >     * factor for that atom is 1.  For massless atoms, the factor is
615 >     * also 1.
616 >     */
617 >    vector<RealType> massFactors_;
618 >  public:
619 >    vector<RealType> getMassFactors() { return massFactors_; }
620 >
621 >    PairList* getExcludedInteractions() { return &excludedInteractions_; }
622 >    PairList* getOneTwoInteractions() { return &oneTwoInteractions_; }
623 >    PairList* getOneThreeInteractions() { return &oneThreeInteractions_; }
624 >    PairList* getOneFourInteractions() { return &oneFourInteractions_; }
625 >
626 >  private:
627 >              
628 >    /// lists to handle atoms needing special treatment in the non-bonded interactions
629 >    PairList excludedInteractions_;  /**< atoms excluded from interacting with each other */
630 >    PairList oneTwoInteractions_;    /**< atoms that are directly Bonded */
631 >    PairList oneThreeInteractions_;  /**< atoms sharing a Bend */    
632 >    PairList oneFourInteractions_;   /**< atoms sharing a Torsion */
633 >
634 >    PropertyMap properties_;       /**< Generic Properties can be added */
635 >    SnapshotManager* sman_;        /**< SnapshotManager (handles particle positions, etc.) */
636 >
637 >    /**
638 >     * The reason to have a local index manager is that when molecule
639 >     * is migrating to other processors, the atoms and the
640 >     * rigid-bodies will release their local indices to
641 >     * LocalIndexManager. Combining the information of molecule
642 >     * migrating to current processor, Migrator class can query the
643 >     * LocalIndexManager to make a efficient data moving plan.
644 >     */        
645 >    LocalIndexManager localIndexMan_;
646 >
647 >    // unparsed MetaData block for storing in Dump and EOR files:
648 >    string rawMetaData_;
649 >
650 >    // file names
651 >    string finalConfigFileName_;
652 >    string dumpFileName_;
653 >    string statFileName_;
654 >    string restFileName_;
655          
538        /**
539         * The size of molToProcMap_ is equal to total number of molecules in the system.
540         *  It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
541         * once.
542         */        
543        std::vector<int> molToProcMap_;
656  
657 < #endif
657 >    bool topologyDone_;  /** flag to indicate whether the topology has
658 >                             been scanned and all the relevant
659 >                             bookkeeping has been done*/
660 >    
661 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
662 >                            the simulation box dipole moment */
663 >    
664 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
665 >                              Atomic Virials to calculate the pressure */
666 >    
667 >  public:
668 >    /**
669 >     * return an integral objects by its global index. In MPI
670 >     * version, if the StuntDouble with specified global index does
671 >      * not belong to local processor, a NULL will be return.
672 >      */
673 >    StuntDouble* getIOIndexToIntegrableObject(int index);
674 >    void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
675 >    
676 >  private:
677 >    vector<StuntDouble*> IOIndexToIntegrableObject;
678 >    
679 >  public:
680 >                
681 >    /**
682 >     * Finds the processor where a molecule resides
683 >     * @return the id of the processor which contains the molecule
684 >     * @param globalIndex global Index of the molecule
685 >     */
686 >    int getMolToProc(int globalIndex) {
687 >      //assert(globalIndex < molToProcMap_.size());
688 >      return molToProcMap_[globalIndex];
689 >    }
690 >    
691 >    /**
692 >     * Set MolToProcMap array
693 >     * @see #SimCreator::divideMolecules
694 >     */
695 >    void setMolToProcMap(const vector<int>& molToProcMap) {
696 >      molToProcMap_ = molToProcMap;
697 >    }
698 >        
699 >  private:
700 >        
701 >    /**
702 >     * The size of molToProcMap_ is equal to total number of molecules
703 >     * in the system.  It maps a molecule to the processor on which it
704 >     * resides. it is filled by SimCreator once and only once.
705 >     */        
706 >    vector<int> molToProcMap_;
707  
708 < };
708 >  };
709  
710 < } //namespace oopse
710 > } //namespace OpenMD
711   #endif //BRAINS_SIMMODEL_HPP
712  

Comparing:
trunk/src/brains/SimInfo.hpp (property svn:keywords), Revision 417 by chrisfen, Thu Mar 10 15:10:24 2005 UTC vs.
branches/development/src/brains/SimInfo.hpp (property svn:keywords), Revision 1744 by gezelter, Tue Jun 5 18:07:08 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines