ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.hpp (file contents), Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
branches/development/src/brains/SimInfo.hpp (file contents), Revision 1808 by gezelter, Mon Oct 22 20:42:10 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include <utility>
56   #include <vector>
57  
58 < #include "brains/Exclude.hpp"
58 > #include "brains/PairList.hpp"
59   #include "io/Globals.hpp"
60   #include "math/Vector3.hpp"
61   #include "math/SquareMatrix3.hpp"
62   #include "types/MoleculeStamp.hpp"
63 < #include "UseTheForce/ForceField.hpp"
63 > #include "brains/ForceField.hpp"
64   #include "utils/PropertyMap.hpp"
65   #include "utils/LocalIndexManager.hpp"
66 + #include "nonbonded/SwitchingFunction.hpp"
67  
68 < //another nonsense macro declaration
69 < #define __C
70 < #include "brains/fSimulation.h"
69 <
70 < namespace oopse{
71 <
72 <  //forward decalration
68 > using namespace std;
69 > namespace OpenMD{
70 >  //forward declaration
71    class SnapshotManager;
72    class Molecule;
73    class SelectionManager;
74 +  class StuntDouble;
75 +
76    /**
77 <   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
78 <   * @brief As one of the heavy weight class of OOPSE, SimInfo
79 <   * One of the major changes in SimInfo class is the data struct. It only maintains a list of molecules.
80 <   * And the Molecule class will maintain all of the concrete objects (atoms, bond, bend, torsions, rigid bodies,
81 <   * cutoff groups, constrains).
82 <   * Another major change is the index. No matter single version or parallel version,  atoms and
83 <   * rigid bodies have both global index and local index. Local index is not important to molecule as well as
84 <   * cutoff group.
77 >   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
78 >   *
79 >   * @brief One of the heavy-weight classes of OpenMD, SimInfo
80 >   * maintains objects and variables relating to the current
81 >   * simulation.  This includes the master list of Molecules.  The
82 >   * Molecule class maintains all of the concrete objects (Atoms,
83 >   * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
84 >   * Constraints). In both the single and parallel versions, Atoms and
85 >   * RigidBodies have both global and local indices.
86     */
87    class SimInfo {
88    public:
89 <    typedef std::map<int, Molecule*>::iterator  MoleculeIterator;
90 <
89 >    typedef map<int, Molecule*>::iterator  MoleculeIterator;
90 >    
91      /**
92       * Constructor of SimInfo
93 <     * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
94 <     * second element is the total number of molecules with the same molecule stamp in the system
95 <     * @param ff pointer of a concrete ForceField instance
96 <     * @param simParams
96 <     * @note
93 >     *
94 >     * @param ff pointer to a concrete ForceField instance
95 >     *
96 >     * @param simParams pointer to the simulation parameters in a Globals object
97       */
98      SimInfo(ForceField* ff, Globals* simParams);
99      virtual ~SimInfo();
100  
101      /**
102       * Adds a molecule
103 <     * @return return true if adding successfully, return false if the molecule is already in SimInfo
104 <     * @param mol molecule to be added
103 >     *
104 >     * @return return true if adding successfully, return false if the
105 >     * molecule is already in SimInfo
106 >     *
107 >     * @param mol Molecule to be added
108       */
109      bool addMolecule(Molecule* mol);
110  
111      /**
112       * Removes a molecule from SimInfo
113 <     * @return true if removing successfully, return false if molecule is not in this SimInfo
113 >     *
114 >     * @return true if removing successfully, return false if molecule
115 >     * is not in this SimInfo
116       */
117      bool removeMolecule(Molecule* mol);
118  
# Line 127 | Line 132 | namespace oopse{
132      }
133  
134      /**
135 <     * Returns the total number of integrable objects (total number of rigid bodies plus the total number
136 <     * of atoms which do not belong to the rigid bodies) in the system
135 >     * Returns the total number of integrable objects (total number of
136 >     * rigid bodies plus the total number of atoms which do not belong
137 >     * to the rigid bodies) in the system
138       */
139      int getNGlobalIntegrableObjects() {
140        return nGlobalIntegrableObjects_;
141      }
142  
143      /**
144 <     * Returns the total number of integrable objects (total number of rigid bodies plus the total number
145 <     * of atoms which do not belong to the rigid bodies) in the system
144 >     * Returns the total number of integrable objects (total number of
145 >     * rigid bodies plus the total number of atoms which do not belong
146 >     * to the rigid bodies) in the system
147       */
148      int getNGlobalRigidBodies() {
149        return nGlobalRigidBodies_;
# Line 156 | Line 163 | namespace oopse{
163        return nAtoms_;
164      }
165  
166 +    /** Returns the number of effective cutoff groups on local processor */
167 +    unsigned int getNLocalCutoffGroups();
168 +
169      /** Returns the number of local bonds */        
170      unsigned int getNBonds(){
171        return nBonds_;
# Line 171 | Line 181 | namespace oopse{
181        return nTorsions_;
182      }
183  
184 +    /** Returns the number of local torsions */        
185 +    unsigned int getNInversions() {
186 +      return nInversions_;
187 +    }
188      /** Returns the number of local rigid bodies */        
189      unsigned int getNRigidBodies() {
190        return nRigidBodies_;
# Line 205 | Line 219 | namespace oopse{
219       */
220      Molecule* nextMolecule(MoleculeIterator& i);
221  
222 +    /** Returns the total number of fluctuating charges that are present */
223 +    int getNFluctuatingCharges() {
224 +      return nGlobalFluctuatingCharges_;
225 +    }
226 +
227      /** Returns the number of degrees of freedom */
228      int getNdf() {
229 <      return ndf_;
229 >      return ndf_ - getFdf();
230      }
231  
232 +    /** Returns the number of degrees of freedom (LOCAL) */
233 +    int getNdfLocal() {
234 +      return ndfLocal_;
235 +    }
236 +
237      /** Returns the number of raw degrees of freedom */
238      int getNdfRaw() {
239        return ndfRaw_;
# Line 220 | Line 244 | namespace oopse{
244        return ndfTrans_;
245      }
246  
247 <    //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
247 >    /** sets the current number of frozen degrees of freedom */
248 >    void setFdf(int fdf) {
249 >      fdf_local = fdf;
250 >    }
251 >
252 >    int getFdf();
253 >    
254 >    //getNZconstraint and setNZconstraint ruin the coherence of
255 >    //SimInfo class, need refactoring
256          
257      /** Returns the total number of z-constraint molecules in the system */
258      int getNZconstraint() {
# Line 251 | Line 283 | namespace oopse{
283        return simParams_;
284      }
285  
254    /** Returns the velocity of center of mass of the whole system.*/
255    Vector3d getComVel();
256
257    /** Returns the center of the mass of the whole system.*/
258    Vector3d getCom();
259   /** Returns the center of the mass and Center of Mass velocity of the whole system.*/
260    void getComAll(Vector3d& com,Vector3d& comVel);
261
262    /** Returns intertia tensor for the entire system and system Angular Momentum.*/
263    void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
264    
265    /** Returns system angular momentum */
266    Vector3d getAngularMomentum();
267
268    /** main driver function to interact with fortran during the initialization and molecule migration */
286      void update();
287 +    /**
288 +     * Do final bookkeeping before Force managers need their data.
289 +     */
290 +    void prepareTopology();
291  
292 +
293      /** Returns the local index manager */
294      LocalIndexManager* getLocalIndexManager() {
295        return &localIndexMan_;
# Line 299 | Line 321 | namespace oopse{
321        return i != molecules_.end() ? i->second : NULL;
322      }
323  
324 <    double getRcut() {
325 <      return rcut_;
324 >    int getGlobalMolMembership(int id){
325 >      return globalMolMembership_[id];
326      }
327  
328 <    double getRsw() {
329 <      return rsw_;
330 <    }
328 >    /**
329 >     * returns a vector which maps the local atom index on this
330 >     * processor to the global atom index.  With only one processor,
331 >     * these should be identical.
332 >     */
333 >    vector<int> getGlobalAtomIndices();
334  
335 <    double getList() {
336 <      return rlist_;
337 <    }
335 >    /**
336 >     * returns a vector which maps the local cutoff group index on
337 >     * this processor to the global cutoff group index.  With only one
338 >     * processor, these should be identical.
339 >     */
340 >    vector<int> getGlobalGroupIndices();
341 >
342          
343 <    std::string getFinalConfigFileName() {
343 >    string getFinalConfigFileName() {
344        return finalConfigFileName_;
345      }
346 <        
347 <    void setFinalConfigFileName(const std::string& fileName) {
346 >
347 >    void setFinalConfigFileName(const string& fileName) {
348        finalConfigFileName_ = fileName;
349      }
350  
351 <    std::string getDumpFileName() {
351 >    string getRawMetaData() {
352 >      return rawMetaData_;
353 >    }
354 >    void setRawMetaData(const string& rawMetaData) {
355 >      rawMetaData_ = rawMetaData;
356 >    }
357 >        
358 >    string getDumpFileName() {
359        return dumpFileName_;
360      }
361          
362 <    void setDumpFileName(const std::string& fileName) {
362 >    void setDumpFileName(const string& fileName) {
363        dumpFileName_ = fileName;
364      }
365  
366 <    std::string getStatFileName() {
366 >    string getStatFileName() {
367        return statFileName_;
368      }
369          
370 <    void setStatFileName(const std::string& fileName) {
370 >    void setStatFileName(const string& fileName) {
371        statFileName_ = fileName;
372      }
373          
374 <    std::string getRestFileName() {
374 >    string getRestFileName() {
375        return restFileName_;
376      }
377          
378 <    void setRestFileName(const std::string& fileName) {
378 >    void setRestFileName(const string& fileName) {
379        restFileName_ = fileName;
380      }
381  
382      /**
383       * Sets GlobalGroupMembership
348     * @see #SimCreator::setGlobalIndex
384       */  
385 <    void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
386 <      assert(globalGroupMembership.size() == nGlobalAtoms_);
385 >    void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
386 >      assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
387        globalGroupMembership_ = globalGroupMembership;
388      }
389  
390      /**
391       * Sets GlobalMolMembership
357     * @see #SimCreator::setGlobalIndex
392       */        
393 <    void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
394 <      assert(globalMolMembership.size() == nGlobalAtoms_);
393 >    void setGlobalMolMembership(const vector<int>& globalMolMembership) {
394 >      assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
395        globalMolMembership_ = globalMolMembership;
396      }
397  
398  
399 <    bool isFortranInitialized() {
400 <      return fortranInitialized_;
399 >    bool isTopologyDone() {
400 >      return topologyDone_;
401      }
402          
403 <    //below functions are just forward functions
404 <    //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
405 <    //the other hand, has-a relation need composing.
403 >    bool getCalcBoxDipole() {
404 >      return calcBoxDipole_;
405 >    }
406 >
407 >    bool getUseAtomicVirial() {
408 >      return useAtomicVirial_;
409 >    }
410 >
411      /**
412       * Adds property into property map
413       * @param genData GenericData to be added into PropertyMap
# Line 379 | Line 418 | namespace oopse{
418       * Removes property from PropertyMap by name
419       * @param propName the name of property to be removed
420       */
421 <    void removeProperty(const std::string& propName);
421 >    void removeProperty(const string& propName);
422  
423      /**
424       * clear all of the properties
# Line 390 | Line 429 | namespace oopse{
429       * Returns all names of properties
430       * @return all names of properties
431       */
432 <    std::vector<std::string> getPropertyNames();
432 >    vector<string> getPropertyNames();
433  
434      /**
435       * Returns all of the properties in PropertyMap
436       * @return all of the properties in PropertyMap
437       */      
438 <    std::vector<GenericData*> getProperties();
438 >    vector<GenericData*> getProperties();
439  
440      /**
441       * Returns property
# Line 404 | Line 443 | namespace oopse{
443       * @return a pointer point to property with propName. If no property named propName
444       * exists, return NULL
445       */      
446 <    GenericData* getPropertyByName(const std::string& propName);
446 >    GenericData* getPropertyByName(const string& propName);
447  
448      /**
449 <     * add all exclude pairs of a molecule into exclude list.
449 >     * add all special interaction pairs (including excluded
450 >     * interactions) in a molecule into the appropriate lists.
451       */
452 <    void addExcludePairs(Molecule* mol);
452 >    void addInteractionPairs(Molecule* mol);
453  
454      /**
455 <     * remove all exclude pairs which belong to a molecule from exclude list
455 >     * remove all special interaction pairs which belong to a molecule
456 >     * from the appropriate lists.
457       */
458 +    void removeInteractionPairs(Molecule* mol);
459  
460 <    void removeExcludePairs(Molecule* mol);
461 <
420 <
421 <    /** Returns the unique atom types of local processor in an array */
422 <    std::set<AtomType*> getUniqueAtomTypes();
460 >    /** Returns the set of atom types present in this simulation */
461 >    set<AtomType*> getSimulatedAtomTypes();
462          
463 <    friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
463 >    friend ostream& operator <<(ostream& o, SimInfo& info);
464  
465 <    void getCutoff(double& rcut, double& rsw);
465 >    void getCutoff(RealType& rcut, RealType& rsw);
466          
467    private:
468  
469 <    /** fill up the simtype struct*/
470 <    void setupSimType();
469 >    /** fill up the simtype struct and other simulation-related variables */
470 >    void setupSimVariables();
471  
433    /**
434     * Setup Fortran Simulation
435     * @see #setupFortranParallel
436     */
437    void setupFortranSim();
438
439    /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
440    void setupCutoff();
441
442    /** Figure out which coulombic correction method to use and pass to fortran */
443    void setupElectrostaticSummationMethod( int isError );
472  
473 <    /** Figure out which polynomial type to use for the switching function */
474 <    void setupSwitchingFunction();
473 >    /** Determine if we need to accumulate the simulation box dipole */
474 >    void setupAccumulateBoxDipole();
475  
476      /** Calculates the number of degress of freedom in the whole system */
477      void calcNdf();
478      void calcNdfRaw();
479      void calcNdfTrans();
480  
453    ForceField* forceField_;      
454    Globals* simParams_;
455
456    std::map<int, Molecule*>  molecules_; /**< Molecule array */
457
481      /**
482 <     * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
483 <     * system.
482 >     * Adds molecule stamp and the total number of the molecule with
483 >     * same molecule stamp in the whole system.
484       */
485      void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
486 +
487 +    // Other classes holdingn important information
488 +    ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
489 +    Globals* simParams_;     /**< provides access to simulation parameters set by user */
490 +
491 +    ///  Counts of local objects
492 +    int nAtoms_;              /**< number of atoms in local processor */
493 +    int nBonds_;              /**< number of bonds in local processor */
494 +    int nBends_;              /**< number of bends in local processor */
495 +    int nTorsions_;           /**< number of torsions in local processor */
496 +    int nInversions_;         /**< number of inversions in local processor */
497 +    int nRigidBodies_;        /**< number of rigid bodies in local processor */
498 +    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
499 +    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
500 +    int nConstraints_;        /**< number of constraints in local processors */
501 +    int nFluctuatingCharges_; /**< number of fluctuating charges in local processor */
502          
503 <    //degress of freedom
504 <    int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
505 <    int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
506 <    int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
468 <    int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
469 <        
470 <    //number of global objects
471 <    int nGlobalMols_;       /**< number of molecules in the system */
472 <    int nGlobalAtoms_;   /**< number of atoms in the system */
473 <    int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
503 >    /// Counts of global objects
504 >    int nGlobalMols_;              /**< number of molecules in the system (GLOBAL) */
505 >    int nGlobalAtoms_;             /**< number of atoms in the system (GLOBAL) */
506 >    int nGlobalCutoffGroups_;      /**< number of cutoff groups in this system (GLOBAL) */
507      int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
508 <    int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
508 >    int nGlobalRigidBodies_;       /**< number of rigid bodies in this system (GLOBAL) */
509 >    int nGlobalFluctuatingCharges_;/**< number of fluctuating charges in this system (GLOBAL) */
510 >    
511 >      
512 >    /// Degress of freedom
513 >    int ndf_;          /**< number of degress of freedom (excludes constraints) (LOCAL) */
514 >    int ndfLocal_;     /**< number of degrees of freedom (LOCAL, excludes constraints) */
515 >    int fdf_local;     /**< number of frozen degrees of freedom (LOCAL) */
516 >    int fdf_;          /**< number of frozen degrees of freedom (GLOBAL) */
517 >    int ndfRaw_;       /**< number of degress of freedom (includes constraints),  (LOCAL) */
518 >    int ndfTrans_;     /**< number of translation degress of freedom, (LOCAL) */
519 >    int nZconstraint_; /**< number of  z-constraint molecules (GLOBAL) */
520 >
521 >    /// logicals
522 >    bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
523 >    bool usesDirectionalAtoms_;   /**< are there atoms with position AND orientation? */
524 >    bool usesMetallicAtoms_;      /**< are there transition metal atoms? */
525 >    bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
526 >    bool usesFluctuatingCharges_; /**< are there fluctuating charges? */
527 >    bool usesAtomicVirial_;       /**< are we computing atomic virials? */
528 >    bool requiresPrepair_;        /**< does this simulation require a pre-pair loop? */
529 >    bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
530 >    bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
531 >
532 >  public:
533 >    bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
534 >    bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
535 >    bool usesFluctuatingCharges() { return usesFluctuatingCharges_; }
536 >    bool usesAtomicVirial() { return usesAtomicVirial_; }
537 >    bool requiresPrepair() { return requiresPrepair_; }
538 >    bool requiresSkipCorrection() { return requiresSkipCorrection_;}
539 >    bool requiresSelfCorrection() { return requiresSelfCorrection_;}
540 >
541 >  private:
542 >    /// Data structures holding primary simulation objects
543 >    map<int, Molecule*>  molecules_;  /**< map holding pointers to LOCAL molecules */
544 >
545 >    /// Stamps are templates for objects that are then used to create
546 >    /// groups of objects.  For example, a molecule stamp contains
547 >    /// information on how to build that molecule (i.e. the topology,
548 >    /// the atoms, the bonds, etc.)  Once the system is built, the
549 >    /// stamps are no longer useful.
550 >    vector<int> molStampIds_;                /**< stamp id for molecules in the system */
551 >    vector<MoleculeStamp*> moleculeStamps_;  /**< molecule stamps array */        
552 >
553      /**
554 <     * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
555 <     * corresponding content is the global index of cutoff group this atom belong to.
556 <     * It is filled by SimCreator once and only once, since it never changed during the simulation.
554 >     * A vector that maps between the global index of an atom, and the
555 >     * global index of cutoff group the atom belong to.  It is filled
556 >     * by SimCreator once and only once, since it never changed during
557 >     * the simulation.  It should be nGlobalAtoms_ in size.
558       */
559 <    std::vector<int> globalGroupMembership_;
559 >    vector<int> globalGroupMembership_;
560 >  public:
561 >    vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
562 >  private:
563  
564      /**
565 <     * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
566 <     * corresponding content is the global index of molecule this atom belong to.
567 <     * It is filled by SimCreator once and only once, since it is never changed during the simulation.
565 >     * A vector that maps between the global index of an atom and the
566 >     * global index of the molecule the atom belongs to.  It is filled
567 >     * by SimCreator once and only once, since it is never changed
568 >     * during the simulation. It shoudl be nGlobalAtoms_ in size.
569       */
570 <    std::vector<int> globalMolMembership_;        
570 >    vector<int> globalMolMembership_;
571  
572 <        
573 <    std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
574 <    std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
575 <        
576 <    //number of local objects
577 <    int nAtoms_;                        /**< number of atoms in local processor */
578 <    int nBonds_;                        /**< number of bonds in local processor */
579 <    int nBends_;                        /**< number of bends in local processor */
580 <    int nTorsions_;                    /**< number of torsions in local processor */
581 <    int nRigidBodies_;              /**< number of rigid bodies in local processor */
582 <    int nIntegrableObjects_;    /**< number of integrable objects in local processor */
583 <    int nCutoffGroups_;             /**< number of cutoff groups in local processor */
584 <    int nConstraints_;              /**< number of constraints in local processors */
572 >    /**
573 >     * A vector that maps between the local index of an atom and the
574 >     * index of the AtomType.
575 >     */
576 >    vector<int> identArray_;
577 >  public:
578 >    vector<int> getIdentArray() { return identArray_; }
579 >  private:
580 >    
581 >    /**
582 >     * A vector which contains the fractional contribution of an
583 >     * atom's mass to the total mass of the cutoffGroup that atom
584 >     * belongs to.  In the case of single atom cutoff groups, the mass
585 >     * factor for that atom is 1.  For massless atoms, the factor is
586 >     * also 1.
587 >     */
588 >    vector<RealType> massFactors_;
589 >  public:
590 >    vector<RealType> getMassFactors() { return massFactors_; }
591  
592 <    simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
593 <    Exclude exclude_;      
594 <    PropertyMap properties_;                  /**< Generic Property */
595 <    SnapshotManager* sman_;               /**< SnapshotManager */
592 >    PairList* getExcludedInteractions() { return &excludedInteractions_; }
593 >    PairList* getOneTwoInteractions() { return &oneTwoInteractions_; }
594 >    PairList* getOneThreeInteractions() { return &oneThreeInteractions_; }
595 >    PairList* getOneFourInteractions() { return &oneFourInteractions_; }
596  
597 +  private:
598 +              
599 +    /// lists to handle atoms needing special treatment in the non-bonded interactions
600 +    PairList excludedInteractions_;  /**< atoms excluded from interacting with each other */
601 +    PairList oneTwoInteractions_;    /**< atoms that are directly Bonded */
602 +    PairList oneThreeInteractions_;  /**< atoms sharing a Bend */    
603 +    PairList oneFourInteractions_;   /**< atoms sharing a Torsion */
604 +
605 +    PropertyMap properties_;       /**< Generic Properties can be added */
606 +    SnapshotManager* sman_;        /**< SnapshotManager (handles particle positions, etc.) */
607 +
608      /**
609 <     * The reason to have a local index manager is that when molecule is migrating to other processors,
610 <     * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
611 <     * information of molecule migrating to current processor, Migrator class can query  the LocalIndexManager
612 <     * to make a efficient data moving plan.
609 >     * The reason to have a local index manager is that when molecule
610 >     * is migrating to other processors, the atoms and the
611 >     * rigid-bodies will release their local indices to
612 >     * LocalIndexManager. Combining the information of molecule
613 >     * migrating to current processor, Migrator class can query the
614 >     * LocalIndexManager to make a efficient data moving plan.
615       */        
616      LocalIndexManager localIndexMan_;
617  
618 <    //file names
619 <    std::string finalConfigFileName_;
620 <    std::string dumpFileName_;
621 <    std::string statFileName_;
622 <    std::string restFileName_;
618 >    // unparsed MetaData block for storing in Dump and EOR files:
619 >    string rawMetaData_;
620 >
621 >    // file names
622 >    string finalConfigFileName_;
623 >    string dumpFileName_;
624 >    string statFileName_;
625 >    string restFileName_;
626          
523    double rcut_;       /**< cutoff radius*/
524    double rsw_;        /**< radius of switching function*/
525    double rlist_;      /**< neighbor list radius */
627  
628 <    bool fortranInitialized_; /**< flag indicate whether fortran side is initialized */
629 <
630 < #ifdef IS_MPI
631 <    //in Parallel version, we need MolToProc
628 >    bool topologyDone_;  /** flag to indicate whether the topology has
629 >                             been scanned and all the relevant
630 >                             bookkeeping has been done*/
631 >    
632 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
633 >                            the simulation box dipole moment */
634 >    
635 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
636 >                              Atomic Virials to calculate the pressure */
637 >    
638    public:
639 +    /**
640 +     * return an integral objects by its global index. In MPI
641 +     * version, if the StuntDouble with specified global index does
642 +      * not belong to local processor, a NULL will be return.
643 +      */
644 +    StuntDouble* getIOIndexToIntegrableObject(int index);
645 +    void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
646 +    
647 +  private:
648 +    vector<StuntDouble*> IOIndexToIntegrableObject;
649 +    
650 +  public:
651                  
652      /**
653       * Finds the processor where a molecule resides
# Line 539 | Line 658 | namespace oopse{
658        //assert(globalIndex < molToProcMap_.size());
659        return molToProcMap_[globalIndex];
660      }
661 <
661 >    
662      /**
663       * Set MolToProcMap array
545     * @see #SimCreator::divideMolecules
664       */
665 <    void setMolToProcMap(const std::vector<int>& molToProcMap) {
665 >    void setMolToProcMap(const vector<int>& molToProcMap) {
666        molToProcMap_ = molToProcMap;
667      }
668          
669    private:
552
553    void setupFortranParallel();
670          
671      /**
672 <     * The size of molToProcMap_ is equal to total number of molecules in the system.
673 <     *  It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
674 <     * once.
672 >     * The size of molToProcMap_ is equal to total number of molecules
673 >     * in the system.  It maps a molecule to the processor on which it
674 >     * resides. it is filled by SimCreator once and only once.
675       */        
676 <    std::vector<int> molToProcMap_;
676 >    vector<int> molToProcMap_;
677  
562 #endif
563
678    };
679  
680 < } //namespace oopse
680 > } //namespace OpenMD
681   #endif //BRAINS_SIMMODEL_HPP
682  

Comparing:
trunk/src/brains/SimInfo.hpp (property svn:keywords), Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
branches/development/src/brains/SimInfo.hpp (property svn:keywords), Revision 1808 by gezelter, Mon Oct 22 20:42:10 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines