ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.hpp (file contents), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/SimInfo.hpp (file contents), Revision 1744 by gezelter, Tue Jun 5 18:07:08 2012 UTC

# Line 1 | Line 1
1 < #ifndef __SIMINFO_H__
2 < #define __SIMINFO_H__
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimInfo.hpp
45 > * @author    tlin
46 > * @date  11/02/2004
47 > * @version 1.0
48 > */
49  
50 < #include <map>
51 < #include <string>
50 > #ifndef BRAINS_SIMMODEL_HPP
51 > #define BRAINS_SIMMODEL_HPP
52 >
53 > #include <iostream>
54 > #include <set>
55 > #include <utility>
56   #include <vector>
57  
58 < #include "Atom.hpp"
59 < #include "RigidBody.hpp"
60 < #include "Molecule.hpp"
61 < #include "Exclude.hpp"
62 < #include "SkipList.hpp"
63 < #include "AbstractClasses.hpp"
64 < #include "MakeStamps.hpp"
65 < #include "SimState.hpp"
66 < #include "Restraints.hpp"
58 > #include "brains/PairList.hpp"
59 > #include "io/Globals.hpp"
60 > #include "math/Vector3.hpp"
61 > #include "math/SquareMatrix3.hpp"
62 > #include "types/MoleculeStamp.hpp"
63 > #include "brains/ForceField.hpp"
64 > #include "utils/PropertyMap.hpp"
65 > #include "utils/LocalIndexManager.hpp"
66 > #include "nonbonded/SwitchingFunction.hpp"
67  
68 < #define __C
69 < #include "fSimulation.h"
70 < #include "fortranWrapDefines.hpp"
71 < #include "GenericData.hpp"
68 > using namespace std;
69 > namespace OpenMD{
70 >  //forward declaration
71 >  class SnapshotManager;
72 >  class Molecule;
73 >  class SelectionManager;
74 >  class StuntDouble;
75  
76 +  /**
77 +   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
78 +   *
79 +   * @brief One of the heavy-weight classes of OpenMD, SimInfo
80 +   * maintains objects and variables relating to the current
81 +   * simulation.  This includes the master list of Molecules.  The
82 +   * Molecule class maintains all of the concrete objects (Atoms,
83 +   * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
84 +   * Constraints). In both the single and parallel versions, Atoms and
85 +   * RigidBodies have both global and local indices.
86 +   */
87 +  class SimInfo {
88 +  public:
89 +    typedef map<int, Molecule*>::iterator  MoleculeIterator;
90 +    
91 +    /**
92 +     * Constructor of SimInfo
93 +     *
94 +     * @param molStampPairs MoleculeStamp Array. The first element of
95 +     * the pair is molecule stamp, the second element is the total
96 +     * number of molecules with the same molecule stamp in the system
97 +     *
98 +     * @param ff pointer of a concrete ForceField instance
99 +     *
100 +     * @param simParams
101 +     */
102 +    SimInfo(ForceField* ff, Globals* simParams);
103 +    virtual ~SimInfo();
104  
105 < //#include "Minimizer.hpp"
106 < //#include "OOPSEMinimizer.hpp"
105 >    /**
106 >     * Adds a molecule
107 >     *
108 >     * @return return true if adding successfully, return false if the
109 >     * molecule is already in SimInfo
110 >     *
111 >     * @param mol molecule to be added
112 >     */
113 >    bool addMolecule(Molecule* mol);
114  
115 +    /**
116 +     * Removes a molecule from SimInfo
117 +     *
118 +     * @return true if removing successfully, return false if molecule
119 +     * is not in this SimInfo
120 +     */
121 +    bool removeMolecule(Molecule* mol);
122  
123 < double roundMe( double x );
124 < class OOPSEMinimizer;
125 < class SimInfo{
123 >    /** Returns the total number of molecules in the system. */
124 >    int getNGlobalMolecules() {
125 >      return nGlobalMols_;
126 >    }
127  
128 < public:
128 >    /** Returns the total number of atoms in the system. */
129 >    int getNGlobalAtoms() {
130 >      return nGlobalAtoms_;
131 >    }
132  
133 <  SimInfo();
134 <  ~SimInfo();
133 >    /** Returns the total number of cutoff groups in the system. */
134 >    int getNGlobalCutoffGroups() {
135 >      return nGlobalCutoffGroups_;
136 >    }
137  
138 <  int n_atoms; // the number of atoms
139 <  Atom **atoms; // the array of atom objects
138 >    /**
139 >     * Returns the total number of integrable objects (total number of
140 >     * rigid bodies plus the total number of atoms which do not belong
141 >     * to the rigid bodies) in the system
142 >     */
143 >    int getNGlobalIntegrableObjects() {
144 >      return nGlobalIntegrableObjects_;
145 >    }
146  
147 <  vector<RigidBody*> rigidBodies;  // A vector of rigid bodies
148 <  vector<StuntDouble*> integrableObjects;
149 <  
150 <  double tau[9]; // the stress tensor
147 >    /**
148 >     * Returns the total number of integrable objects (total number of
149 >     * rigid bodies plus the total number of atoms which do not belong
150 >     * to the rigid bodies) in the system
151 >     */
152 >    int getNGlobalRigidBodies() {
153 >      return nGlobalRigidBodies_;
154 >    }
155  
156 <  int n_bonds;    // number of bends
157 <  int n_bends;    // number of bends
158 <  int n_torsions; // number of torsions
159 <  int n_oriented; // number of of atoms with orientation
160 <  int ndf;        // number of actual degrees of freedom
161 <  int ndfRaw;     // number of settable degrees of freedom
162 <  int ndfTrans;   // number of translational degrees of freedom
163 <  int nZconstraints; // the number of zConstraints
156 >    int getNGlobalConstraints();
157 >    /**
158 >     * Returns the number of local molecules.
159 >     * @return the number of local molecules
160 >     */
161 >    int getNMolecules() {
162 >      return molecules_.size();
163 >    }
164  
165 <  int setTemp;   // boolean to set the temperature at each sampleTime
166 <  int resetIntegrator; // boolean to reset the integrator
165 >    /** Returns the number of local atoms */
166 >    unsigned int getNAtoms() {
167 >      return nAtoms_;
168 >    }
169  
170 <  int n_dipoles; // number of dipoles
170 >    /** Returns the number of effective cutoff groups on local processor */
171 >    unsigned int getNLocalCutoffGroups();
172  
173 <  int n_exclude;
174 <  Exclude* excludes;  // the exclude list for ignoring pairs in fortran
175 <  int nGlobalExcludes;
176 <  int* globalExcludes; // same as above, but these guys participate in
63 <                       // no long range forces.
173 >    /** Returns the number of local bonds */        
174 >    unsigned int getNBonds(){
175 >      return nBonds_;
176 >    }
177  
178 <  int* identArray;     // array of unique identifiers for the atoms
179 <  int* molMembershipArray;  // map of atom numbers onto molecule numbers
178 >    /** Returns the number of local bends */        
179 >    unsigned int getNBends() {
180 >      return nBends_;
181 >    }
182  
183 <  int n_constraints; // the number of constraints on the system
183 >    /** Returns the number of local torsions */        
184 >    unsigned int getNTorsions() {
185 >      return nTorsions_;
186 >    }
187  
188 <  int n_SRI;   // the number of short range interactions
188 >    /** Returns the number of local torsions */        
189 >    unsigned int getNInversions() {
190 >      return nInversions_;
191 >    }
192 >    /** Returns the number of local rigid bodies */        
193 >    unsigned int getNRigidBodies() {
194 >      return nRigidBodies_;
195 >    }
196  
197 <  double lrPot; // the potential energy from the long range calculations.
197 >    /** Returns the number of local integrable objects */
198 >    unsigned int getNIntegrableObjects() {
199 >      return nIntegrableObjects_;
200 >    }
201  
202 <  double Hmat[3][3];  // the periodic boundry conditions. The Hmat is the
203 <                      // column vectors of the x, y, and z box vectors.
204 <                      //   h1  h2  h3
205 <                      // [ Xx  Yx  Zx ]
78 <                      // [ Xy  Yy  Zy ]
79 <                      // [ Xz  Yz  Zz ]
80 <                      //  
81 <  double HmatInv[3][3];
202 >    /** Returns the number of local cutoff groups */
203 >    unsigned int getNCutoffGroups() {
204 >      return nCutoffGroups_;
205 >    }
206  
207 <  double boxL[3]; // The Lengths of the 3 column vectors of Hmat
208 <  double boxVol;
209 <  int orthoRhombic;
210 <  
207 >    /** Returns the total number of constraints in this SimInfo */
208 >    unsigned int getNConstraints() {
209 >      return nConstraints_;
210 >    }
211 >        
212 >    /**
213 >     * Returns the first molecule in this SimInfo and intialize the iterator.
214 >     * @return the first molecule, return NULL if there is not molecule in this SimInfo
215 >     * @param i the iterator of molecule array (user shouldn't change it)
216 >     */
217 >    Molecule* beginMolecule(MoleculeIterator& i);
218  
219 <  double dielectric;      // the dielectric of the medium for reaction field
219 >    /**
220 >     * Returns the next avaliable Molecule based on the iterator.
221 >     * @return the next avaliable molecule, return NULL if reaching the end of the array
222 >     * @param i the iterator of molecule array
223 >     */
224 >    Molecule* nextMolecule(MoleculeIterator& i);
225  
226 <  
227 <  int usePBC; // whether we use periodic boundry conditions.
228 <  int useLJ;
229 <  int useSticky;
94 <  int useCharges;
95 <  int useDipoles;
96 <  int useReactionField;
97 <  int useGB;
98 <  int useEAM;
99 <  bool haveCutoffGroups;
100 <  bool useInitXSstate;
101 <  double orthoTolerance;
226 >    /** Returns the total number of fluctuating charges that are present */
227 >    int getNFluctuatingCharges() {
228 >      return nGlobalFluctuatingCharges_;
229 >    }
230  
231 <  double dt, run_time;           // the time step and total time
232 <  double sampleTime, statusTime; // the position and energy dump frequencies
233 <  double target_temp;            // the target temperature of the system
234 <  double thermalTime;            // the temp kick interval
107 <  double currentTime;            // Used primarily for correlation Functions
108 <  double resetTime;              // Use to reset the integrator periodically
109 <  short int have_target_temp;
231 >    /** Returns the number of degrees of freedom */
232 >    int getNdf() {
233 >      return ndf_ - getFdf();
234 >    }
235  
236 <  int n_mol;           // n_molecules;
237 <  Molecule* molecules; // the array of molecules
238 <  
239 <  int nComponents;           // the number of components in the system
115 <  int* componentsNmol;       // the number of molecules of each component
116 <  MoleculeStamp** compStamps;// the stamps matching the components
117 <  LinkedMolStamp* headStamp; // list of stamps used in the simulation
118 <  
119 <  
120 <  char ensemble[100]; // the enesemble of the simulation (NVT, NVE, etc. )
121 <  char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
122 <  BaseIntegrator *the_integrator; // the integrator of the simulation
236 >    /** Returns the number of degrees of freedom (LOCAL) */
237 >    int getNdfLocal() {
238 >      return ndfLocal_;
239 >    }
240  
241 <  OOPSEMinimizer* the_minimizer; // the energy minimizer
242 <  Restraints* restraint;
243 <  bool has_minimizer;
241 >    /** Returns the number of raw degrees of freedom */
242 >    int getNdfRaw() {
243 >      return ndfRaw_;
244 >    }
245  
246 <  string finalName;  // the name of the eor file to be written
247 <  string sampleName; // the name of the dump file to be written
248 <  string statusName; // the name of the stat file to be written
246 >    /** Returns the number of translational degrees of freedom */
247 >    int getNdfTrans() {
248 >      return ndfTrans_;
249 >    }
250  
251 <  int seed;                    //seed for random number generator
251 >    /** sets the current number of frozen degrees of freedom */
252 >    void setFdf(int fdf) {
253 >      fdf_local = fdf;
254 >    }
255  
256 <  int useSolidThermInt;  // is solid-state thermodynamic integration being used
257 <  int useLiquidThermInt; // is liquid thermodynamic integration being used
258 <  double thermIntLambda; // lambda for TI
259 <  double thermIntK;      // power of lambda for TI
260 <  double vRaw;           // unperturbed potential for TI
261 <  double vHarm;          // harmonic potential for TI
262 <  int i;                 // just an int
256 >    int getFdf();
257 >    
258 >    //getNZconstraint and setNZconstraint ruin the coherence of
259 >    //SimInfo class, need refactoring
260 >        
261 >    /** Returns the total number of z-constraint molecules in the system */
262 >    int getNZconstraint() {
263 >      return nZconstraint_;
264 >    }
265  
266 <  vector<double> mfact;
267 <  vector<int> FglobalGroupMembership;
268 <  int ngroup;
269 <  int* globalGroupMembership;
266 >    /**
267 >     * Sets the number of z-constraint molecules in the system.
268 >     */
269 >    void setNZconstraint(int nZconstraint) {
270 >      nZconstraint_ = nZconstraint;
271 >    }
272 >        
273 >    /** Returns the snapshot manager. */
274 >    SnapshotManager* getSnapshotManager() {
275 >      return sman_;
276 >    }
277  
278 <  // refreshes the sim if things get changed (load balanceing, volume
279 <  // adjustment, etc.)
278 >    /** Sets the snapshot manager. */
279 >    void setSnapshotManager(SnapshotManager* sman);
280 >        
281 >    /** Returns the force field */
282 >    ForceField* getForceField() {
283 >      return forceField_;
284 >    }
285  
286 <  void refreshSim( void );
287 <  
286 >    Globals* getSimParams() {
287 >      return simParams_;
288 >    }
289  
290 <  // sets the internal function pointer to fortran.
290 >    /** Returns the velocity of center of mass of the whole system.*/
291 >    Vector3d getComVel();
292  
293 <  void setInternal( setFortranSim_TD fSetup,
294 <                    setFortranBox_TD fBox,
295 <                    notifyFortranCutOff_TD fCut){
296 <    setFsimulation = fSetup;
297 <    setFortranBoxSize = fBox;
160 <    notifyFortranCutOffs = fCut;
161 <  }
293 >    /** Returns the center of the mass of the whole system.*/
294 >    Vector3d getCom();
295 >    /** Returns the center of the mass and Center of Mass velocity of
296 >        the whole system.*/
297 >    void getComAll(Vector3d& com,Vector3d& comVel);
298  
299 <  int getNDF();
300 <  int getNDFraw();
301 <  int getNDFtranslational();
302 <  int getTotIntegrableObjects();
303 <  void setBox( double newBox[3] );
304 <  void setBoxM( double newBox[3][3] );
169 <  void getBoxM( double theBox[3][3] );
170 <  void scaleBox( double scale );
171 <  
172 <  void setDefaultRcut( double theRcut );
173 <  void setDefaultRcut( double theRcut, double theRsw );
174 <  void checkCutOffs( void );
299 >    /** Returns intertia tensor for the entire system and system
300 >        Angular Momentum.*/
301 >    void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
302 >    
303 >    /** Returns system angular momentum */
304 >    Vector3d getAngularMomentum();
305  
306 <  double getRcut( void )  { return rCut; }
307 <  double getRlist( void ) { return rList; }
308 <  double getRsw( void )   { return rSw; }
309 <  double getMaxCutoff( void ) { return maxCutoff; }
310 <  
311 <  void setTime( double theTime ) { currentTime = theTime; }
182 <  void incrTime( double the_dt ) { currentTime += the_dt; }
183 <  void decrTime( double the_dt ) { currentTime -= the_dt; }
184 <  double getTime( void ) { return currentTime; }
306 >    /** Returns volume of system as estimated by an ellipsoid defined
307 >        by the radii of gyration*/
308 >    void getGyrationalVolume(RealType &vol);
309 >    /** Overloaded version of gyrational volume that also returns
310 >        det(I) so dV/dr can be calculated*/
311 >    void getGyrationalVolume(RealType &vol, RealType &detI);
312  
313 <  void wrapVector( double thePos[3] );
313 >    void update();
314 >    /**
315 >     * Do final bookkeeping before Force managers need their data.
316 >     */
317 >    void prepareTopology();
318  
188  SimState* getConfiguration( void ) { return myConfiguration; }
189  
190  void addProperty(GenericData* prop);
191  GenericData* getProperty(const string& propName);
192  //vector<GenericData*>& getProperties()  {return properties;}    
319  
320 <  int getSeed(void) {  return seed; }
321 <  void setSeed(int theSeed) {  seed = theSeed;}
320 >    /** Returns the local index manager */
321 >    LocalIndexManager* getLocalIndexManager() {
322 >      return &localIndexMan_;
323 >    }
324  
325 < private:
325 >    int getMoleculeStampId(int globalIndex) {
326 >      //assert(globalIndex < molStampIds_.size())
327 >      return molStampIds_[globalIndex];
328 >    }
329  
330 <  SimState* myConfiguration;
330 >    /** Returns the molecule stamp */
331 >    MoleculeStamp* getMoleculeStamp(int id) {
332 >      return moleculeStamps_[id];
333 >    }
334  
335 <  int boxIsInit, haveRcut, haveRsw;
335 >    /** Return the total number of the molecule stamps */
336 >    int getNMoleculeStamp() {
337 >      return moleculeStamps_.size();
338 >    }
339 >    /**
340 >     * Finds a molecule with a specified global index
341 >     * @return a pointer point to found molecule
342 >     * @param index
343 >     */
344 >    Molecule* getMoleculeByGlobalIndex(int index) {
345 >      MoleculeIterator i;
346 >      i = molecules_.find(index);
347  
348 <  double rList, rCut; // variables for the neighborlist
349 <  double rSw;         // the switching radius
348 >      return i != molecules_.end() ? i->second : NULL;
349 >    }
350  
351 <  double maxCutoff;
351 >    int getGlobalMolMembership(int id){
352 >      return globalMolMembership_[id];
353 >    }
354  
355 <  double distXY;
356 <  double distYZ;
357 <  double distZX;
358 <  
359 <  void calcHmatInv( void );
360 <  void calcBoxL();
214 <  double calcMaxCutOff();
355 >    /**
356 >     * returns a vector which maps the local atom index on this
357 >     * processor to the global atom index.  With only one processor,
358 >     * these should be identical.
359 >     */
360 >    vector<int> getGlobalAtomIndices();
361  
362 <  // private function to initialize the fortran side of the simulation
363 <  setFortranSim_TD setFsimulation;
362 >    /**
363 >     * returns a vector which maps the local cutoff group index on
364 >     * this processor to the global cutoff group index.  With only one
365 >     * processor, these should be identical.
366 >     */
367 >    vector<int> getGlobalGroupIndices();
368  
369 <  setFortranBox_TD setFortranBoxSize;
370 <  
371 <  notifyFortranCutOff_TD notifyFortranCutOffs;
372 <  
223 <  //Addtional Properties of SimInfo
224 <  map<string, GenericData*> properties;
225 <  void getFortranGroupArrays(SimInfo* info,
226 <                             vector<int>& FglobalGroupMembership,
227 <                             vector<double>& mfact);
369 >        
370 >    string getFinalConfigFileName() {
371 >      return finalConfigFileName_;
372 >    }
373  
374 +    void setFinalConfigFileName(const string& fileName) {
375 +      finalConfigFileName_ = fileName;
376 +    }
377  
378 < };
378 >    string getRawMetaData() {
379 >      return rawMetaData_;
380 >    }
381 >    void setRawMetaData(const string& rawMetaData) {
382 >      rawMetaData_ = rawMetaData;
383 >    }
384 >        
385 >    string getDumpFileName() {
386 >      return dumpFileName_;
387 >    }
388 >        
389 >    void setDumpFileName(const string& fileName) {
390 >      dumpFileName_ = fileName;
391 >    }
392  
393 +    string getStatFileName() {
394 +      return statFileName_;
395 +    }
396 +        
397 +    void setStatFileName(const string& fileName) {
398 +      statFileName_ = fileName;
399 +    }
400 +        
401 +    string getRestFileName() {
402 +      return restFileName_;
403 +    }
404 +        
405 +    void setRestFileName(const string& fileName) {
406 +      restFileName_ = fileName;
407 +    }
408  
409 < #endif
409 >    /**
410 >     * Sets GlobalGroupMembership
411 >     * @see #SimCreator::setGlobalIndex
412 >     */  
413 >    void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
414 >      assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
415 >      globalGroupMembership_ = globalGroupMembership;
416 >    }
417 >
418 >    /**
419 >     * Sets GlobalMolMembership
420 >     * @see #SimCreator::setGlobalIndex
421 >     */        
422 >    void setGlobalMolMembership(const vector<int>& globalMolMembership) {
423 >      assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
424 >      globalMolMembership_ = globalMolMembership;
425 >    }
426 >
427 >
428 >    bool isTopologyDone() {
429 >      return topologyDone_;
430 >    }
431 >        
432 >    bool getCalcBoxDipole() {
433 >      return calcBoxDipole_;
434 >    }
435 >
436 >    bool getUseAtomicVirial() {
437 >      return useAtomicVirial_;
438 >    }
439 >
440 >    /**
441 >     * Adds property into property map
442 >     * @param genData GenericData to be added into PropertyMap
443 >     */
444 >    void addProperty(GenericData* genData);
445 >
446 >    /**
447 >     * Removes property from PropertyMap by name
448 >     * @param propName the name of property to be removed
449 >     */
450 >    void removeProperty(const string& propName);
451 >
452 >    /**
453 >     * clear all of the properties
454 >     */
455 >    void clearProperties();
456 >
457 >    /**
458 >     * Returns all names of properties
459 >     * @return all names of properties
460 >     */
461 >    vector<string> getPropertyNames();
462 >
463 >    /**
464 >     * Returns all of the properties in PropertyMap
465 >     * @return all of the properties in PropertyMap
466 >     */      
467 >    vector<GenericData*> getProperties();
468 >
469 >    /**
470 >     * Returns property
471 >     * @param propName name of property
472 >     * @return a pointer point to property with propName. If no property named propName
473 >     * exists, return NULL
474 >     */      
475 >    GenericData* getPropertyByName(const string& propName);
476 >
477 >    /**
478 >     * add all special interaction pairs (including excluded
479 >     * interactions) in a molecule into the appropriate lists.
480 >     */
481 >    void addInteractionPairs(Molecule* mol);
482 >
483 >    /**
484 >     * remove all special interaction pairs which belong to a molecule
485 >     * from the appropriate lists.
486 >     */
487 >    void removeInteractionPairs(Molecule* mol);
488 >
489 >    /** Returns the set of atom types present in this simulation */
490 >    set<AtomType*> getSimulatedAtomTypes();
491 >        
492 >    friend ostream& operator <<(ostream& o, SimInfo& info);
493 >
494 >    void getCutoff(RealType& rcut, RealType& rsw);
495 >        
496 >  private:
497 >
498 >    /** fill up the simtype struct and other simulation-related variables */
499 >    void setupSimVariables();
500 >
501 >
502 >    /** Determine if we need to accumulate the simulation box dipole */
503 >    void setupAccumulateBoxDipole();
504 >
505 >    /** Calculates the number of degress of freedom in the whole system */
506 >    void calcNdf();
507 >    void calcNdfRaw();
508 >    void calcNdfTrans();
509 >
510 >    /**
511 >     * Adds molecule stamp and the total number of the molecule with
512 >     * same molecule stamp in the whole system.
513 >     */
514 >    void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
515 >
516 >    // Other classes holdingn important information
517 >    ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
518 >    Globals* simParams_;     /**< provides access to simulation parameters set by user */
519 >
520 >    ///  Counts of local objects
521 >    int nAtoms_;              /**< number of atoms in local processor */
522 >    int nBonds_;              /**< number of bonds in local processor */
523 >    int nBends_;              /**< number of bends in local processor */
524 >    int nTorsions_;           /**< number of torsions in local processor */
525 >    int nInversions_;         /**< number of inversions in local processor */
526 >    int nRigidBodies_;        /**< number of rigid bodies in local processor */
527 >    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
528 >    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
529 >    int nConstraints_;        /**< number of constraints in local processors */
530 >    int nFluctuatingCharges_; /**< number of fluctuating charges in local processor */
531 >        
532 >    /// Counts of global objects
533 >    int nGlobalMols_;              /**< number of molecules in the system (GLOBAL) */
534 >    int nGlobalAtoms_;             /**< number of atoms in the system (GLOBAL) */
535 >    int nGlobalCutoffGroups_;      /**< number of cutoff groups in this system (GLOBAL) */
536 >    int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
537 >    int nGlobalRigidBodies_;       /**< number of rigid bodies in this system (GLOBAL) */
538 >    int nGlobalFluctuatingCharges_;/**< number of fluctuating charges in this system (GLOBAL) */
539 >    
540 >      
541 >    /// Degress of freedom
542 >    int ndf_;          /**< number of degress of freedom (excludes constraints) (LOCAL) */
543 >    int ndfLocal_;     /**< number of degrees of freedom (LOCAL, excludes constraints) */
544 >    int fdf_local;     /**< number of frozen degrees of freedom (LOCAL) */
545 >    int fdf_;          /**< number of frozen degrees of freedom (GLOBAL) */
546 >    int ndfRaw_;       /**< number of degress of freedom (includes constraints),  (LOCAL) */
547 >    int ndfTrans_;     /**< number of translation degress of freedom, (LOCAL) */
548 >    int nZconstraint_; /**< number of  z-constraint molecules (GLOBAL) */
549 >
550 >    /// logicals
551 >    bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
552 >    bool usesDirectionalAtoms_;   /**< are there atoms with position AND orientation? */
553 >    bool usesMetallicAtoms_;      /**< are there transition metal atoms? */
554 >    bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
555 >    bool usesFluctuatingCharges_; /**< are there fluctuating charges? */
556 >    bool usesAtomicVirial_;       /**< are we computing atomic virials? */
557 >    bool requiresPrepair_;        /**< does this simulation require a pre-pair loop? */
558 >    bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
559 >    bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
560 >
561 >  public:
562 >    bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
563 >    bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
564 >    bool usesFluctuatingCharges() { return usesFluctuatingCharges_; }
565 >    bool usesAtomicVirial() { return usesAtomicVirial_; }
566 >    bool requiresPrepair() { return requiresPrepair_; }
567 >    bool requiresSkipCorrection() { return requiresSkipCorrection_;}
568 >    bool requiresSelfCorrection() { return requiresSelfCorrection_;}
569 >
570 >  private:
571 >    /// Data structures holding primary simulation objects
572 >    map<int, Molecule*>  molecules_;  /**< map holding pointers to LOCAL molecules */
573 >
574 >    /// Stamps are templates for objects that are then used to create
575 >    /// groups of objects.  For example, a molecule stamp contains
576 >    /// information on how to build that molecule (i.e. the topology,
577 >    /// the atoms, the bonds, etc.)  Once the system is built, the
578 >    /// stamps are no longer useful.
579 >    vector<int> molStampIds_;                /**< stamp id for molecules in the system */
580 >    vector<MoleculeStamp*> moleculeStamps_;  /**< molecule stamps array */        
581 >
582 >    /**
583 >     * A vector that maps between the global index of an atom, and the
584 >     * global index of cutoff group the atom belong to.  It is filled
585 >     * by SimCreator once and only once, since it never changed during
586 >     * the simulation.  It should be nGlobalAtoms_ in size.
587 >     */
588 >    vector<int> globalGroupMembership_;
589 >  public:
590 >    vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
591 >  private:
592 >
593 >    /**
594 >     * A vector that maps between the global index of an atom and the
595 >     * global index of the molecule the atom belongs to.  It is filled
596 >     * by SimCreator once and only once, since it is never changed
597 >     * during the simulation. It shoudl be nGlobalAtoms_ in size.
598 >     */
599 >    vector<int> globalMolMembership_;
600 >
601 >    /**
602 >     * A vector that maps between the local index of an atom and the
603 >     * index of the AtomType.
604 >     */
605 >    vector<int> identArray_;
606 >  public:
607 >    vector<int> getIdentArray() { return identArray_; }
608 >  private:
609 >    
610 >    /**
611 >     * A vector which contains the fractional contribution of an
612 >     * atom's mass to the total mass of the cutoffGroup that atom
613 >     * belongs to.  In the case of single atom cutoff groups, the mass
614 >     * factor for that atom is 1.  For massless atoms, the factor is
615 >     * also 1.
616 >     */
617 >    vector<RealType> massFactors_;
618 >  public:
619 >    vector<RealType> getMassFactors() { return massFactors_; }
620 >
621 >    PairList* getExcludedInteractions() { return &excludedInteractions_; }
622 >    PairList* getOneTwoInteractions() { return &oneTwoInteractions_; }
623 >    PairList* getOneThreeInteractions() { return &oneThreeInteractions_; }
624 >    PairList* getOneFourInteractions() { return &oneFourInteractions_; }
625 >
626 >  private:
627 >              
628 >    /// lists to handle atoms needing special treatment in the non-bonded interactions
629 >    PairList excludedInteractions_;  /**< atoms excluded from interacting with each other */
630 >    PairList oneTwoInteractions_;    /**< atoms that are directly Bonded */
631 >    PairList oneThreeInteractions_;  /**< atoms sharing a Bend */    
632 >    PairList oneFourInteractions_;   /**< atoms sharing a Torsion */
633 >
634 >    PropertyMap properties_;       /**< Generic Properties can be added */
635 >    SnapshotManager* sman_;        /**< SnapshotManager (handles particle positions, etc.) */
636 >
637 >    /**
638 >     * The reason to have a local index manager is that when molecule
639 >     * is migrating to other processors, the atoms and the
640 >     * rigid-bodies will release their local indices to
641 >     * LocalIndexManager. Combining the information of molecule
642 >     * migrating to current processor, Migrator class can query the
643 >     * LocalIndexManager to make a efficient data moving plan.
644 >     */        
645 >    LocalIndexManager localIndexMan_;
646 >
647 >    // unparsed MetaData block for storing in Dump and EOR files:
648 >    string rawMetaData_;
649 >
650 >    // file names
651 >    string finalConfigFileName_;
652 >    string dumpFileName_;
653 >    string statFileName_;
654 >    string restFileName_;
655 >        
656 >
657 >    bool topologyDone_;  /** flag to indicate whether the topology has
658 >                             been scanned and all the relevant
659 >                             bookkeeping has been done*/
660 >    
661 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
662 >                            the simulation box dipole moment */
663 >    
664 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
665 >                              Atomic Virials to calculate the pressure */
666 >    
667 >  public:
668 >    /**
669 >     * return an integral objects by its global index. In MPI
670 >     * version, if the StuntDouble with specified global index does
671 >      * not belong to local processor, a NULL will be return.
672 >      */
673 >    StuntDouble* getIOIndexToIntegrableObject(int index);
674 >    void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
675 >    
676 >  private:
677 >    vector<StuntDouble*> IOIndexToIntegrableObject;
678 >    
679 >  public:
680 >                
681 >    /**
682 >     * Finds the processor where a molecule resides
683 >     * @return the id of the processor which contains the molecule
684 >     * @param globalIndex global Index of the molecule
685 >     */
686 >    int getMolToProc(int globalIndex) {
687 >      //assert(globalIndex < molToProcMap_.size());
688 >      return molToProcMap_[globalIndex];
689 >    }
690 >    
691 >    /**
692 >     * Set MolToProcMap array
693 >     * @see #SimCreator::divideMolecules
694 >     */
695 >    void setMolToProcMap(const vector<int>& molToProcMap) {
696 >      molToProcMap_ = molToProcMap;
697 >    }
698 >        
699 >  private:
700 >        
701 >    /**
702 >     * The size of molToProcMap_ is equal to total number of molecules
703 >     * in the system.  It maps a molecule to the processor on which it
704 >     * resides. it is filled by SimCreator once and only once.
705 >     */        
706 >    vector<int> molToProcMap_;
707 >
708 >  };
709 >
710 > } //namespace OpenMD
711 > #endif //BRAINS_SIMMODEL_HPP
712 >

Comparing:
trunk/src/brains/SimInfo.hpp (property svn:keywords), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/SimInfo.hpp (property svn:keywords), Revision 1744 by gezelter, Tue Jun 5 18:07:08 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines