ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
Revision: 1808
Committed: Mon Oct 22 20:42:10 2012 UTC (12 years, 6 months ago) by gezelter
File size: 22862 byte(s)
Log Message:
A bug fix in the electric field for the new electrostatic code.  Also comment fixes for Doxygen 

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file SimInfo.hpp
45 * @author tlin
46 * @date 11/02/2004
47 * @version 1.0
48 */
49
50 #ifndef BRAINS_SIMMODEL_HPP
51 #define BRAINS_SIMMODEL_HPP
52
53 #include <iostream>
54 #include <set>
55 #include <utility>
56 #include <vector>
57
58 #include "brains/PairList.hpp"
59 #include "io/Globals.hpp"
60 #include "math/Vector3.hpp"
61 #include "math/SquareMatrix3.hpp"
62 #include "types/MoleculeStamp.hpp"
63 #include "brains/ForceField.hpp"
64 #include "utils/PropertyMap.hpp"
65 #include "utils/LocalIndexManager.hpp"
66 #include "nonbonded/SwitchingFunction.hpp"
67
68 using namespace std;
69 namespace OpenMD{
70 //forward declaration
71 class SnapshotManager;
72 class Molecule;
73 class SelectionManager;
74 class StuntDouble;
75
76 /**
77 * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
78 *
79 * @brief One of the heavy-weight classes of OpenMD, SimInfo
80 * maintains objects and variables relating to the current
81 * simulation. This includes the master list of Molecules. The
82 * Molecule class maintains all of the concrete objects (Atoms,
83 * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
84 * Constraints). In both the single and parallel versions, Atoms and
85 * RigidBodies have both global and local indices.
86 */
87 class SimInfo {
88 public:
89 typedef map<int, Molecule*>::iterator MoleculeIterator;
90
91 /**
92 * Constructor of SimInfo
93 *
94 * @param ff pointer to a concrete ForceField instance
95 *
96 * @param simParams pointer to the simulation parameters in a Globals object
97 */
98 SimInfo(ForceField* ff, Globals* simParams);
99 virtual ~SimInfo();
100
101 /**
102 * Adds a molecule
103 *
104 * @return return true if adding successfully, return false if the
105 * molecule is already in SimInfo
106 *
107 * @param mol Molecule to be added
108 */
109 bool addMolecule(Molecule* mol);
110
111 /**
112 * Removes a molecule from SimInfo
113 *
114 * @return true if removing successfully, return false if molecule
115 * is not in this SimInfo
116 */
117 bool removeMolecule(Molecule* mol);
118
119 /** Returns the total number of molecules in the system. */
120 int getNGlobalMolecules() {
121 return nGlobalMols_;
122 }
123
124 /** Returns the total number of atoms in the system. */
125 int getNGlobalAtoms() {
126 return nGlobalAtoms_;
127 }
128
129 /** Returns the total number of cutoff groups in the system. */
130 int getNGlobalCutoffGroups() {
131 return nGlobalCutoffGroups_;
132 }
133
134 /**
135 * Returns the total number of integrable objects (total number of
136 * rigid bodies plus the total number of atoms which do not belong
137 * to the rigid bodies) in the system
138 */
139 int getNGlobalIntegrableObjects() {
140 return nGlobalIntegrableObjects_;
141 }
142
143 /**
144 * Returns the total number of integrable objects (total number of
145 * rigid bodies plus the total number of atoms which do not belong
146 * to the rigid bodies) in the system
147 */
148 int getNGlobalRigidBodies() {
149 return nGlobalRigidBodies_;
150 }
151
152 int getNGlobalConstraints();
153 /**
154 * Returns the number of local molecules.
155 * @return the number of local molecules
156 */
157 int getNMolecules() {
158 return molecules_.size();
159 }
160
161 /** Returns the number of local atoms */
162 unsigned int getNAtoms() {
163 return nAtoms_;
164 }
165
166 /** Returns the number of effective cutoff groups on local processor */
167 unsigned int getNLocalCutoffGroups();
168
169 /** Returns the number of local bonds */
170 unsigned int getNBonds(){
171 return nBonds_;
172 }
173
174 /** Returns the number of local bends */
175 unsigned int getNBends() {
176 return nBends_;
177 }
178
179 /** Returns the number of local torsions */
180 unsigned int getNTorsions() {
181 return nTorsions_;
182 }
183
184 /** Returns the number of local torsions */
185 unsigned int getNInversions() {
186 return nInversions_;
187 }
188 /** Returns the number of local rigid bodies */
189 unsigned int getNRigidBodies() {
190 return nRigidBodies_;
191 }
192
193 /** Returns the number of local integrable objects */
194 unsigned int getNIntegrableObjects() {
195 return nIntegrableObjects_;
196 }
197
198 /** Returns the number of local cutoff groups */
199 unsigned int getNCutoffGroups() {
200 return nCutoffGroups_;
201 }
202
203 /** Returns the total number of constraints in this SimInfo */
204 unsigned int getNConstraints() {
205 return nConstraints_;
206 }
207
208 /**
209 * Returns the first molecule in this SimInfo and intialize the iterator.
210 * @return the first molecule, return NULL if there is not molecule in this SimInfo
211 * @param i the iterator of molecule array (user shouldn't change it)
212 */
213 Molecule* beginMolecule(MoleculeIterator& i);
214
215 /**
216 * Returns the next avaliable Molecule based on the iterator.
217 * @return the next avaliable molecule, return NULL if reaching the end of the array
218 * @param i the iterator of molecule array
219 */
220 Molecule* nextMolecule(MoleculeIterator& i);
221
222 /** Returns the total number of fluctuating charges that are present */
223 int getNFluctuatingCharges() {
224 return nGlobalFluctuatingCharges_;
225 }
226
227 /** Returns the number of degrees of freedom */
228 int getNdf() {
229 return ndf_ - getFdf();
230 }
231
232 /** Returns the number of degrees of freedom (LOCAL) */
233 int getNdfLocal() {
234 return ndfLocal_;
235 }
236
237 /** Returns the number of raw degrees of freedom */
238 int getNdfRaw() {
239 return ndfRaw_;
240 }
241
242 /** Returns the number of translational degrees of freedom */
243 int getNdfTrans() {
244 return ndfTrans_;
245 }
246
247 /** sets the current number of frozen degrees of freedom */
248 void setFdf(int fdf) {
249 fdf_local = fdf;
250 }
251
252 int getFdf();
253
254 //getNZconstraint and setNZconstraint ruin the coherence of
255 //SimInfo class, need refactoring
256
257 /** Returns the total number of z-constraint molecules in the system */
258 int getNZconstraint() {
259 return nZconstraint_;
260 }
261
262 /**
263 * Sets the number of z-constraint molecules in the system.
264 */
265 void setNZconstraint(int nZconstraint) {
266 nZconstraint_ = nZconstraint;
267 }
268
269 /** Returns the snapshot manager. */
270 SnapshotManager* getSnapshotManager() {
271 return sman_;
272 }
273
274 /** Sets the snapshot manager. */
275 void setSnapshotManager(SnapshotManager* sman);
276
277 /** Returns the force field */
278 ForceField* getForceField() {
279 return forceField_;
280 }
281
282 Globals* getSimParams() {
283 return simParams_;
284 }
285
286 void update();
287 /**
288 * Do final bookkeeping before Force managers need their data.
289 */
290 void prepareTopology();
291
292
293 /** Returns the local index manager */
294 LocalIndexManager* getLocalIndexManager() {
295 return &localIndexMan_;
296 }
297
298 int getMoleculeStampId(int globalIndex) {
299 //assert(globalIndex < molStampIds_.size())
300 return molStampIds_[globalIndex];
301 }
302
303 /** Returns the molecule stamp */
304 MoleculeStamp* getMoleculeStamp(int id) {
305 return moleculeStamps_[id];
306 }
307
308 /** Return the total number of the molecule stamps */
309 int getNMoleculeStamp() {
310 return moleculeStamps_.size();
311 }
312 /**
313 * Finds a molecule with a specified global index
314 * @return a pointer point to found molecule
315 * @param index
316 */
317 Molecule* getMoleculeByGlobalIndex(int index) {
318 MoleculeIterator i;
319 i = molecules_.find(index);
320
321 return i != molecules_.end() ? i->second : NULL;
322 }
323
324 int getGlobalMolMembership(int id){
325 return globalMolMembership_[id];
326 }
327
328 /**
329 * returns a vector which maps the local atom index on this
330 * processor to the global atom index. With only one processor,
331 * these should be identical.
332 */
333 vector<int> getGlobalAtomIndices();
334
335 /**
336 * returns a vector which maps the local cutoff group index on
337 * this processor to the global cutoff group index. With only one
338 * processor, these should be identical.
339 */
340 vector<int> getGlobalGroupIndices();
341
342
343 string getFinalConfigFileName() {
344 return finalConfigFileName_;
345 }
346
347 void setFinalConfigFileName(const string& fileName) {
348 finalConfigFileName_ = fileName;
349 }
350
351 string getRawMetaData() {
352 return rawMetaData_;
353 }
354 void setRawMetaData(const string& rawMetaData) {
355 rawMetaData_ = rawMetaData;
356 }
357
358 string getDumpFileName() {
359 return dumpFileName_;
360 }
361
362 void setDumpFileName(const string& fileName) {
363 dumpFileName_ = fileName;
364 }
365
366 string getStatFileName() {
367 return statFileName_;
368 }
369
370 void setStatFileName(const string& fileName) {
371 statFileName_ = fileName;
372 }
373
374 string getRestFileName() {
375 return restFileName_;
376 }
377
378 void setRestFileName(const string& fileName) {
379 restFileName_ = fileName;
380 }
381
382 /**
383 * Sets GlobalGroupMembership
384 */
385 void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
386 assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
387 globalGroupMembership_ = globalGroupMembership;
388 }
389
390 /**
391 * Sets GlobalMolMembership
392 */
393 void setGlobalMolMembership(const vector<int>& globalMolMembership) {
394 assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
395 globalMolMembership_ = globalMolMembership;
396 }
397
398
399 bool isTopologyDone() {
400 return topologyDone_;
401 }
402
403 bool getCalcBoxDipole() {
404 return calcBoxDipole_;
405 }
406
407 bool getUseAtomicVirial() {
408 return useAtomicVirial_;
409 }
410
411 /**
412 * Adds property into property map
413 * @param genData GenericData to be added into PropertyMap
414 */
415 void addProperty(GenericData* genData);
416
417 /**
418 * Removes property from PropertyMap by name
419 * @param propName the name of property to be removed
420 */
421 void removeProperty(const string& propName);
422
423 /**
424 * clear all of the properties
425 */
426 void clearProperties();
427
428 /**
429 * Returns all names of properties
430 * @return all names of properties
431 */
432 vector<string> getPropertyNames();
433
434 /**
435 * Returns all of the properties in PropertyMap
436 * @return all of the properties in PropertyMap
437 */
438 vector<GenericData*> getProperties();
439
440 /**
441 * Returns property
442 * @param propName name of property
443 * @return a pointer point to property with propName. If no property named propName
444 * exists, return NULL
445 */
446 GenericData* getPropertyByName(const string& propName);
447
448 /**
449 * add all special interaction pairs (including excluded
450 * interactions) in a molecule into the appropriate lists.
451 */
452 void addInteractionPairs(Molecule* mol);
453
454 /**
455 * remove all special interaction pairs which belong to a molecule
456 * from the appropriate lists.
457 */
458 void removeInteractionPairs(Molecule* mol);
459
460 /** Returns the set of atom types present in this simulation */
461 set<AtomType*> getSimulatedAtomTypes();
462
463 friend ostream& operator <<(ostream& o, SimInfo& info);
464
465 void getCutoff(RealType& rcut, RealType& rsw);
466
467 private:
468
469 /** fill up the simtype struct and other simulation-related variables */
470 void setupSimVariables();
471
472
473 /** Determine if we need to accumulate the simulation box dipole */
474 void setupAccumulateBoxDipole();
475
476 /** Calculates the number of degress of freedom in the whole system */
477 void calcNdf();
478 void calcNdfRaw();
479 void calcNdfTrans();
480
481 /**
482 * Adds molecule stamp and the total number of the molecule with
483 * same molecule stamp in the whole system.
484 */
485 void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
486
487 // Other classes holdingn important information
488 ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
489 Globals* simParams_; /**< provides access to simulation parameters set by user */
490
491 /// Counts of local objects
492 int nAtoms_; /**< number of atoms in local processor */
493 int nBonds_; /**< number of bonds in local processor */
494 int nBends_; /**< number of bends in local processor */
495 int nTorsions_; /**< number of torsions in local processor */
496 int nInversions_; /**< number of inversions in local processor */
497 int nRigidBodies_; /**< number of rigid bodies in local processor */
498 int nIntegrableObjects_; /**< number of integrable objects in local processor */
499 int nCutoffGroups_; /**< number of cutoff groups in local processor */
500 int nConstraints_; /**< number of constraints in local processors */
501 int nFluctuatingCharges_; /**< number of fluctuating charges in local processor */
502
503 /// Counts of global objects
504 int nGlobalMols_; /**< number of molecules in the system (GLOBAL) */
505 int nGlobalAtoms_; /**< number of atoms in the system (GLOBAL) */
506 int nGlobalCutoffGroups_; /**< number of cutoff groups in this system (GLOBAL) */
507 int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
508 int nGlobalRigidBodies_; /**< number of rigid bodies in this system (GLOBAL) */
509 int nGlobalFluctuatingCharges_;/**< number of fluctuating charges in this system (GLOBAL) */
510
511
512 /// Degress of freedom
513 int ndf_; /**< number of degress of freedom (excludes constraints) (LOCAL) */
514 int ndfLocal_; /**< number of degrees of freedom (LOCAL, excludes constraints) */
515 int fdf_local; /**< number of frozen degrees of freedom (LOCAL) */
516 int fdf_; /**< number of frozen degrees of freedom (GLOBAL) */
517 int ndfRaw_; /**< number of degress of freedom (includes constraints), (LOCAL) */
518 int ndfTrans_; /**< number of translation degress of freedom, (LOCAL) */
519 int nZconstraint_; /**< number of z-constraint molecules (GLOBAL) */
520
521 /// logicals
522 bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
523 bool usesDirectionalAtoms_; /**< are there atoms with position AND orientation? */
524 bool usesMetallicAtoms_; /**< are there transition metal atoms? */
525 bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
526 bool usesFluctuatingCharges_; /**< are there fluctuating charges? */
527 bool usesAtomicVirial_; /**< are we computing atomic virials? */
528 bool requiresPrepair_; /**< does this simulation require a pre-pair loop? */
529 bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
530 bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
531
532 public:
533 bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
534 bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
535 bool usesFluctuatingCharges() { return usesFluctuatingCharges_; }
536 bool usesAtomicVirial() { return usesAtomicVirial_; }
537 bool requiresPrepair() { return requiresPrepair_; }
538 bool requiresSkipCorrection() { return requiresSkipCorrection_;}
539 bool requiresSelfCorrection() { return requiresSelfCorrection_;}
540
541 private:
542 /// Data structures holding primary simulation objects
543 map<int, Molecule*> molecules_; /**< map holding pointers to LOCAL molecules */
544
545 /// Stamps are templates for objects that are then used to create
546 /// groups of objects. For example, a molecule stamp contains
547 /// information on how to build that molecule (i.e. the topology,
548 /// the atoms, the bonds, etc.) Once the system is built, the
549 /// stamps are no longer useful.
550 vector<int> molStampIds_; /**< stamp id for molecules in the system */
551 vector<MoleculeStamp*> moleculeStamps_; /**< molecule stamps array */
552
553 /**
554 * A vector that maps between the global index of an atom, and the
555 * global index of cutoff group the atom belong to. It is filled
556 * by SimCreator once and only once, since it never changed during
557 * the simulation. It should be nGlobalAtoms_ in size.
558 */
559 vector<int> globalGroupMembership_;
560 public:
561 vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
562 private:
563
564 /**
565 * A vector that maps between the global index of an atom and the
566 * global index of the molecule the atom belongs to. It is filled
567 * by SimCreator once and only once, since it is never changed
568 * during the simulation. It shoudl be nGlobalAtoms_ in size.
569 */
570 vector<int> globalMolMembership_;
571
572 /**
573 * A vector that maps between the local index of an atom and the
574 * index of the AtomType.
575 */
576 vector<int> identArray_;
577 public:
578 vector<int> getIdentArray() { return identArray_; }
579 private:
580
581 /**
582 * A vector which contains the fractional contribution of an
583 * atom's mass to the total mass of the cutoffGroup that atom
584 * belongs to. In the case of single atom cutoff groups, the mass
585 * factor for that atom is 1. For massless atoms, the factor is
586 * also 1.
587 */
588 vector<RealType> massFactors_;
589 public:
590 vector<RealType> getMassFactors() { return massFactors_; }
591
592 PairList* getExcludedInteractions() { return &excludedInteractions_; }
593 PairList* getOneTwoInteractions() { return &oneTwoInteractions_; }
594 PairList* getOneThreeInteractions() { return &oneThreeInteractions_; }
595 PairList* getOneFourInteractions() { return &oneFourInteractions_; }
596
597 private:
598
599 /// lists to handle atoms needing special treatment in the non-bonded interactions
600 PairList excludedInteractions_; /**< atoms excluded from interacting with each other */
601 PairList oneTwoInteractions_; /**< atoms that are directly Bonded */
602 PairList oneThreeInteractions_; /**< atoms sharing a Bend */
603 PairList oneFourInteractions_; /**< atoms sharing a Torsion */
604
605 PropertyMap properties_; /**< Generic Properties can be added */
606 SnapshotManager* sman_; /**< SnapshotManager (handles particle positions, etc.) */
607
608 /**
609 * The reason to have a local index manager is that when molecule
610 * is migrating to other processors, the atoms and the
611 * rigid-bodies will release their local indices to
612 * LocalIndexManager. Combining the information of molecule
613 * migrating to current processor, Migrator class can query the
614 * LocalIndexManager to make a efficient data moving plan.
615 */
616 LocalIndexManager localIndexMan_;
617
618 // unparsed MetaData block for storing in Dump and EOR files:
619 string rawMetaData_;
620
621 // file names
622 string finalConfigFileName_;
623 string dumpFileName_;
624 string statFileName_;
625 string restFileName_;
626
627
628 bool topologyDone_; /** flag to indicate whether the topology has
629 been scanned and all the relevant
630 bookkeeping has been done*/
631
632 bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
633 the simulation box dipole moment */
634
635 bool useAtomicVirial_; /**< flag to indicate whether or not we use
636 Atomic Virials to calculate the pressure */
637
638 public:
639 /**
640 * return an integral objects by its global index. In MPI
641 * version, if the StuntDouble with specified global index does
642 * not belong to local processor, a NULL will be return.
643 */
644 StuntDouble* getIOIndexToIntegrableObject(int index);
645 void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
646
647 private:
648 vector<StuntDouble*> IOIndexToIntegrableObject;
649
650 public:
651
652 /**
653 * Finds the processor where a molecule resides
654 * @return the id of the processor which contains the molecule
655 * @param globalIndex global Index of the molecule
656 */
657 int getMolToProc(int globalIndex) {
658 //assert(globalIndex < molToProcMap_.size());
659 return molToProcMap_[globalIndex];
660 }
661
662 /**
663 * Set MolToProcMap array
664 */
665 void setMolToProcMap(const vector<int>& molToProcMap) {
666 molToProcMap_ = molToProcMap;
667 }
668
669 private:
670
671 /**
672 * The size of molToProcMap_ is equal to total number of molecules
673 * in the system. It maps a molecule to the processor on which it
674 * resides. it is filled by SimCreator once and only once.
675 */
676 vector<int> molToProcMap_;
677
678 };
679
680 } //namespace OpenMD
681 #endif //BRAINS_SIMMODEL_HPP
682

Properties

Name Value
svn:keywords Author Id Revision Date