ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
Revision: 1744
Committed: Tue Jun 5 18:07:08 2012 UTC (12 years, 10 months ago) by gezelter
File size: 24052 byte(s)
Log Message:
Fixes for minimization

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file SimInfo.hpp
45 * @author tlin
46 * @date 11/02/2004
47 * @version 1.0
48 */
49
50 #ifndef BRAINS_SIMMODEL_HPP
51 #define BRAINS_SIMMODEL_HPP
52
53 #include <iostream>
54 #include <set>
55 #include <utility>
56 #include <vector>
57
58 #include "brains/PairList.hpp"
59 #include "io/Globals.hpp"
60 #include "math/Vector3.hpp"
61 #include "math/SquareMatrix3.hpp"
62 #include "types/MoleculeStamp.hpp"
63 #include "brains/ForceField.hpp"
64 #include "utils/PropertyMap.hpp"
65 #include "utils/LocalIndexManager.hpp"
66 #include "nonbonded/SwitchingFunction.hpp"
67
68 using namespace std;
69 namespace OpenMD{
70 //forward declaration
71 class SnapshotManager;
72 class Molecule;
73 class SelectionManager;
74 class StuntDouble;
75
76 /**
77 * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
78 *
79 * @brief One of the heavy-weight classes of OpenMD, SimInfo
80 * maintains objects and variables relating to the current
81 * simulation. This includes the master list of Molecules. The
82 * Molecule class maintains all of the concrete objects (Atoms,
83 * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
84 * Constraints). In both the single and parallel versions, Atoms and
85 * RigidBodies have both global and local indices.
86 */
87 class SimInfo {
88 public:
89 typedef map<int, Molecule*>::iterator MoleculeIterator;
90
91 /**
92 * Constructor of SimInfo
93 *
94 * @param molStampPairs MoleculeStamp Array. The first element of
95 * the pair is molecule stamp, the second element is the total
96 * number of molecules with the same molecule stamp in the system
97 *
98 * @param ff pointer of a concrete ForceField instance
99 *
100 * @param simParams
101 */
102 SimInfo(ForceField* ff, Globals* simParams);
103 virtual ~SimInfo();
104
105 /**
106 * Adds a molecule
107 *
108 * @return return true if adding successfully, return false if the
109 * molecule is already in SimInfo
110 *
111 * @param mol molecule to be added
112 */
113 bool addMolecule(Molecule* mol);
114
115 /**
116 * Removes a molecule from SimInfo
117 *
118 * @return true if removing successfully, return false if molecule
119 * is not in this SimInfo
120 */
121 bool removeMolecule(Molecule* mol);
122
123 /** Returns the total number of molecules in the system. */
124 int getNGlobalMolecules() {
125 return nGlobalMols_;
126 }
127
128 /** Returns the total number of atoms in the system. */
129 int getNGlobalAtoms() {
130 return nGlobalAtoms_;
131 }
132
133 /** Returns the total number of cutoff groups in the system. */
134 int getNGlobalCutoffGroups() {
135 return nGlobalCutoffGroups_;
136 }
137
138 /**
139 * Returns the total number of integrable objects (total number of
140 * rigid bodies plus the total number of atoms which do not belong
141 * to the rigid bodies) in the system
142 */
143 int getNGlobalIntegrableObjects() {
144 return nGlobalIntegrableObjects_;
145 }
146
147 /**
148 * Returns the total number of integrable objects (total number of
149 * rigid bodies plus the total number of atoms which do not belong
150 * to the rigid bodies) in the system
151 */
152 int getNGlobalRigidBodies() {
153 return nGlobalRigidBodies_;
154 }
155
156 int getNGlobalConstraints();
157 /**
158 * Returns the number of local molecules.
159 * @return the number of local molecules
160 */
161 int getNMolecules() {
162 return molecules_.size();
163 }
164
165 /** Returns the number of local atoms */
166 unsigned int getNAtoms() {
167 return nAtoms_;
168 }
169
170 /** Returns the number of effective cutoff groups on local processor */
171 unsigned int getNLocalCutoffGroups();
172
173 /** Returns the number of local bonds */
174 unsigned int getNBonds(){
175 return nBonds_;
176 }
177
178 /** Returns the number of local bends */
179 unsigned int getNBends() {
180 return nBends_;
181 }
182
183 /** Returns the number of local torsions */
184 unsigned int getNTorsions() {
185 return nTorsions_;
186 }
187
188 /** Returns the number of local torsions */
189 unsigned int getNInversions() {
190 return nInversions_;
191 }
192 /** Returns the number of local rigid bodies */
193 unsigned int getNRigidBodies() {
194 return nRigidBodies_;
195 }
196
197 /** Returns the number of local integrable objects */
198 unsigned int getNIntegrableObjects() {
199 return nIntegrableObjects_;
200 }
201
202 /** Returns the number of local cutoff groups */
203 unsigned int getNCutoffGroups() {
204 return nCutoffGroups_;
205 }
206
207 /** Returns the total number of constraints in this SimInfo */
208 unsigned int getNConstraints() {
209 return nConstraints_;
210 }
211
212 /**
213 * Returns the first molecule in this SimInfo and intialize the iterator.
214 * @return the first molecule, return NULL if there is not molecule in this SimInfo
215 * @param i the iterator of molecule array (user shouldn't change it)
216 */
217 Molecule* beginMolecule(MoleculeIterator& i);
218
219 /**
220 * Returns the next avaliable Molecule based on the iterator.
221 * @return the next avaliable molecule, return NULL if reaching the end of the array
222 * @param i the iterator of molecule array
223 */
224 Molecule* nextMolecule(MoleculeIterator& i);
225
226 /** Returns the total number of fluctuating charges that are present */
227 int getNFluctuatingCharges() {
228 return nGlobalFluctuatingCharges_;
229 }
230
231 /** Returns the number of degrees of freedom */
232 int getNdf() {
233 return ndf_ - getFdf();
234 }
235
236 /** Returns the number of degrees of freedom (LOCAL) */
237 int getNdfLocal() {
238 return ndfLocal_;
239 }
240
241 /** Returns the number of raw degrees of freedom */
242 int getNdfRaw() {
243 return ndfRaw_;
244 }
245
246 /** Returns the number of translational degrees of freedom */
247 int getNdfTrans() {
248 return ndfTrans_;
249 }
250
251 /** sets the current number of frozen degrees of freedom */
252 void setFdf(int fdf) {
253 fdf_local = fdf;
254 }
255
256 int getFdf();
257
258 //getNZconstraint and setNZconstraint ruin the coherence of
259 //SimInfo class, need refactoring
260
261 /** Returns the total number of z-constraint molecules in the system */
262 int getNZconstraint() {
263 return nZconstraint_;
264 }
265
266 /**
267 * Sets the number of z-constraint molecules in the system.
268 */
269 void setNZconstraint(int nZconstraint) {
270 nZconstraint_ = nZconstraint;
271 }
272
273 /** Returns the snapshot manager. */
274 SnapshotManager* getSnapshotManager() {
275 return sman_;
276 }
277
278 /** Sets the snapshot manager. */
279 void setSnapshotManager(SnapshotManager* sman);
280
281 /** Returns the force field */
282 ForceField* getForceField() {
283 return forceField_;
284 }
285
286 Globals* getSimParams() {
287 return simParams_;
288 }
289
290 /** Returns the velocity of center of mass of the whole system.*/
291 Vector3d getComVel();
292
293 /** Returns the center of the mass of the whole system.*/
294 Vector3d getCom();
295 /** Returns the center of the mass and Center of Mass velocity of
296 the whole system.*/
297 void getComAll(Vector3d& com,Vector3d& comVel);
298
299 /** Returns intertia tensor for the entire system and system
300 Angular Momentum.*/
301 void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
302
303 /** Returns system angular momentum */
304 Vector3d getAngularMomentum();
305
306 /** Returns volume of system as estimated by an ellipsoid defined
307 by the radii of gyration*/
308 void getGyrationalVolume(RealType &vol);
309 /** Overloaded version of gyrational volume that also returns
310 det(I) so dV/dr can be calculated*/
311 void getGyrationalVolume(RealType &vol, RealType &detI);
312
313 void update();
314 /**
315 * Do final bookkeeping before Force managers need their data.
316 */
317 void prepareTopology();
318
319
320 /** Returns the local index manager */
321 LocalIndexManager* getLocalIndexManager() {
322 return &localIndexMan_;
323 }
324
325 int getMoleculeStampId(int globalIndex) {
326 //assert(globalIndex < molStampIds_.size())
327 return molStampIds_[globalIndex];
328 }
329
330 /** Returns the molecule stamp */
331 MoleculeStamp* getMoleculeStamp(int id) {
332 return moleculeStamps_[id];
333 }
334
335 /** Return the total number of the molecule stamps */
336 int getNMoleculeStamp() {
337 return moleculeStamps_.size();
338 }
339 /**
340 * Finds a molecule with a specified global index
341 * @return a pointer point to found molecule
342 * @param index
343 */
344 Molecule* getMoleculeByGlobalIndex(int index) {
345 MoleculeIterator i;
346 i = molecules_.find(index);
347
348 return i != molecules_.end() ? i->second : NULL;
349 }
350
351 int getGlobalMolMembership(int id){
352 return globalMolMembership_[id];
353 }
354
355 /**
356 * returns a vector which maps the local atom index on this
357 * processor to the global atom index. With only one processor,
358 * these should be identical.
359 */
360 vector<int> getGlobalAtomIndices();
361
362 /**
363 * returns a vector which maps the local cutoff group index on
364 * this processor to the global cutoff group index. With only one
365 * processor, these should be identical.
366 */
367 vector<int> getGlobalGroupIndices();
368
369
370 string getFinalConfigFileName() {
371 return finalConfigFileName_;
372 }
373
374 void setFinalConfigFileName(const string& fileName) {
375 finalConfigFileName_ = fileName;
376 }
377
378 string getRawMetaData() {
379 return rawMetaData_;
380 }
381 void setRawMetaData(const string& rawMetaData) {
382 rawMetaData_ = rawMetaData;
383 }
384
385 string getDumpFileName() {
386 return dumpFileName_;
387 }
388
389 void setDumpFileName(const string& fileName) {
390 dumpFileName_ = fileName;
391 }
392
393 string getStatFileName() {
394 return statFileName_;
395 }
396
397 void setStatFileName(const string& fileName) {
398 statFileName_ = fileName;
399 }
400
401 string getRestFileName() {
402 return restFileName_;
403 }
404
405 void setRestFileName(const string& fileName) {
406 restFileName_ = fileName;
407 }
408
409 /**
410 * Sets GlobalGroupMembership
411 * @see #SimCreator::setGlobalIndex
412 */
413 void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
414 assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
415 globalGroupMembership_ = globalGroupMembership;
416 }
417
418 /**
419 * Sets GlobalMolMembership
420 * @see #SimCreator::setGlobalIndex
421 */
422 void setGlobalMolMembership(const vector<int>& globalMolMembership) {
423 assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
424 globalMolMembership_ = globalMolMembership;
425 }
426
427
428 bool isTopologyDone() {
429 return topologyDone_;
430 }
431
432 bool getCalcBoxDipole() {
433 return calcBoxDipole_;
434 }
435
436 bool getUseAtomicVirial() {
437 return useAtomicVirial_;
438 }
439
440 /**
441 * Adds property into property map
442 * @param genData GenericData to be added into PropertyMap
443 */
444 void addProperty(GenericData* genData);
445
446 /**
447 * Removes property from PropertyMap by name
448 * @param propName the name of property to be removed
449 */
450 void removeProperty(const string& propName);
451
452 /**
453 * clear all of the properties
454 */
455 void clearProperties();
456
457 /**
458 * Returns all names of properties
459 * @return all names of properties
460 */
461 vector<string> getPropertyNames();
462
463 /**
464 * Returns all of the properties in PropertyMap
465 * @return all of the properties in PropertyMap
466 */
467 vector<GenericData*> getProperties();
468
469 /**
470 * Returns property
471 * @param propName name of property
472 * @return a pointer point to property with propName. If no property named propName
473 * exists, return NULL
474 */
475 GenericData* getPropertyByName(const string& propName);
476
477 /**
478 * add all special interaction pairs (including excluded
479 * interactions) in a molecule into the appropriate lists.
480 */
481 void addInteractionPairs(Molecule* mol);
482
483 /**
484 * remove all special interaction pairs which belong to a molecule
485 * from the appropriate lists.
486 */
487 void removeInteractionPairs(Molecule* mol);
488
489 /** Returns the set of atom types present in this simulation */
490 set<AtomType*> getSimulatedAtomTypes();
491
492 friend ostream& operator <<(ostream& o, SimInfo& info);
493
494 void getCutoff(RealType& rcut, RealType& rsw);
495
496 private:
497
498 /** fill up the simtype struct and other simulation-related variables */
499 void setupSimVariables();
500
501
502 /** Determine if we need to accumulate the simulation box dipole */
503 void setupAccumulateBoxDipole();
504
505 /** Calculates the number of degress of freedom in the whole system */
506 void calcNdf();
507 void calcNdfRaw();
508 void calcNdfTrans();
509
510 /**
511 * Adds molecule stamp and the total number of the molecule with
512 * same molecule stamp in the whole system.
513 */
514 void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
515
516 // Other classes holdingn important information
517 ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
518 Globals* simParams_; /**< provides access to simulation parameters set by user */
519
520 /// Counts of local objects
521 int nAtoms_; /**< number of atoms in local processor */
522 int nBonds_; /**< number of bonds in local processor */
523 int nBends_; /**< number of bends in local processor */
524 int nTorsions_; /**< number of torsions in local processor */
525 int nInversions_; /**< number of inversions in local processor */
526 int nRigidBodies_; /**< number of rigid bodies in local processor */
527 int nIntegrableObjects_; /**< number of integrable objects in local processor */
528 int nCutoffGroups_; /**< number of cutoff groups in local processor */
529 int nConstraints_; /**< number of constraints in local processors */
530 int nFluctuatingCharges_; /**< number of fluctuating charges in local processor */
531
532 /// Counts of global objects
533 int nGlobalMols_; /**< number of molecules in the system (GLOBAL) */
534 int nGlobalAtoms_; /**< number of atoms in the system (GLOBAL) */
535 int nGlobalCutoffGroups_; /**< number of cutoff groups in this system (GLOBAL) */
536 int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
537 int nGlobalRigidBodies_; /**< number of rigid bodies in this system (GLOBAL) */
538 int nGlobalFluctuatingCharges_;/**< number of fluctuating charges in this system (GLOBAL) */
539
540
541 /// Degress of freedom
542 int ndf_; /**< number of degress of freedom (excludes constraints) (LOCAL) */
543 int ndfLocal_; /**< number of degrees of freedom (LOCAL, excludes constraints) */
544 int fdf_local; /**< number of frozen degrees of freedom (LOCAL) */
545 int fdf_; /**< number of frozen degrees of freedom (GLOBAL) */
546 int ndfRaw_; /**< number of degress of freedom (includes constraints), (LOCAL) */
547 int ndfTrans_; /**< number of translation degress of freedom, (LOCAL) */
548 int nZconstraint_; /**< number of z-constraint molecules (GLOBAL) */
549
550 /// logicals
551 bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
552 bool usesDirectionalAtoms_; /**< are there atoms with position AND orientation? */
553 bool usesMetallicAtoms_; /**< are there transition metal atoms? */
554 bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
555 bool usesFluctuatingCharges_; /**< are there fluctuating charges? */
556 bool usesAtomicVirial_; /**< are we computing atomic virials? */
557 bool requiresPrepair_; /**< does this simulation require a pre-pair loop? */
558 bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
559 bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
560
561 public:
562 bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
563 bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
564 bool usesFluctuatingCharges() { return usesFluctuatingCharges_; }
565 bool usesAtomicVirial() { return usesAtomicVirial_; }
566 bool requiresPrepair() { return requiresPrepair_; }
567 bool requiresSkipCorrection() { return requiresSkipCorrection_;}
568 bool requiresSelfCorrection() { return requiresSelfCorrection_;}
569
570 private:
571 /// Data structures holding primary simulation objects
572 map<int, Molecule*> molecules_; /**< map holding pointers to LOCAL molecules */
573
574 /// Stamps are templates for objects that are then used to create
575 /// groups of objects. For example, a molecule stamp contains
576 /// information on how to build that molecule (i.e. the topology,
577 /// the atoms, the bonds, etc.) Once the system is built, the
578 /// stamps are no longer useful.
579 vector<int> molStampIds_; /**< stamp id for molecules in the system */
580 vector<MoleculeStamp*> moleculeStamps_; /**< molecule stamps array */
581
582 /**
583 * A vector that maps between the global index of an atom, and the
584 * global index of cutoff group the atom belong to. It is filled
585 * by SimCreator once and only once, since it never changed during
586 * the simulation. It should be nGlobalAtoms_ in size.
587 */
588 vector<int> globalGroupMembership_;
589 public:
590 vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
591 private:
592
593 /**
594 * A vector that maps between the global index of an atom and the
595 * global index of the molecule the atom belongs to. It is filled
596 * by SimCreator once and only once, since it is never changed
597 * during the simulation. It shoudl be nGlobalAtoms_ in size.
598 */
599 vector<int> globalMolMembership_;
600
601 /**
602 * A vector that maps between the local index of an atom and the
603 * index of the AtomType.
604 */
605 vector<int> identArray_;
606 public:
607 vector<int> getIdentArray() { return identArray_; }
608 private:
609
610 /**
611 * A vector which contains the fractional contribution of an
612 * atom's mass to the total mass of the cutoffGroup that atom
613 * belongs to. In the case of single atom cutoff groups, the mass
614 * factor for that atom is 1. For massless atoms, the factor is
615 * also 1.
616 */
617 vector<RealType> massFactors_;
618 public:
619 vector<RealType> getMassFactors() { return massFactors_; }
620
621 PairList* getExcludedInteractions() { return &excludedInteractions_; }
622 PairList* getOneTwoInteractions() { return &oneTwoInteractions_; }
623 PairList* getOneThreeInteractions() { return &oneThreeInteractions_; }
624 PairList* getOneFourInteractions() { return &oneFourInteractions_; }
625
626 private:
627
628 /// lists to handle atoms needing special treatment in the non-bonded interactions
629 PairList excludedInteractions_; /**< atoms excluded from interacting with each other */
630 PairList oneTwoInteractions_; /**< atoms that are directly Bonded */
631 PairList oneThreeInteractions_; /**< atoms sharing a Bend */
632 PairList oneFourInteractions_; /**< atoms sharing a Torsion */
633
634 PropertyMap properties_; /**< Generic Properties can be added */
635 SnapshotManager* sman_; /**< SnapshotManager (handles particle positions, etc.) */
636
637 /**
638 * The reason to have a local index manager is that when molecule
639 * is migrating to other processors, the atoms and the
640 * rigid-bodies will release their local indices to
641 * LocalIndexManager. Combining the information of molecule
642 * migrating to current processor, Migrator class can query the
643 * LocalIndexManager to make a efficient data moving plan.
644 */
645 LocalIndexManager localIndexMan_;
646
647 // unparsed MetaData block for storing in Dump and EOR files:
648 string rawMetaData_;
649
650 // file names
651 string finalConfigFileName_;
652 string dumpFileName_;
653 string statFileName_;
654 string restFileName_;
655
656
657 bool topologyDone_; /** flag to indicate whether the topology has
658 been scanned and all the relevant
659 bookkeeping has been done*/
660
661 bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
662 the simulation box dipole moment */
663
664 bool useAtomicVirial_; /**< flag to indicate whether or not we use
665 Atomic Virials to calculate the pressure */
666
667 public:
668 /**
669 * return an integral objects by its global index. In MPI
670 * version, if the StuntDouble with specified global index does
671 * not belong to local processor, a NULL will be return.
672 */
673 StuntDouble* getIOIndexToIntegrableObject(int index);
674 void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
675
676 private:
677 vector<StuntDouble*> IOIndexToIntegrableObject;
678
679 public:
680
681 /**
682 * Finds the processor where a molecule resides
683 * @return the id of the processor which contains the molecule
684 * @param globalIndex global Index of the molecule
685 */
686 int getMolToProc(int globalIndex) {
687 //assert(globalIndex < molToProcMap_.size());
688 return molToProcMap_[globalIndex];
689 }
690
691 /**
692 * Set MolToProcMap array
693 * @see #SimCreator::divideMolecules
694 */
695 void setMolToProcMap(const vector<int>& molToProcMap) {
696 molToProcMap_ = molToProcMap;
697 }
698
699 private:
700
701 /**
702 * The size of molToProcMap_ is equal to total number of molecules
703 * in the system. It maps a molecule to the processor on which it
704 * resides. it is filled by SimCreator once and only once.
705 */
706 vector<int> molToProcMap_;
707
708 };
709
710 } //namespace OpenMD
711 #endif //BRAINS_SIMMODEL_HPP
712

Properties

Name Value
svn:keywords Author Id Revision Date