ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
Revision: 1569
Committed: Thu May 26 13:55:04 2011 UTC (13 years, 11 months ago) by gezelter
File size: 22941 byte(s)
Log Message:
A few more fixes for the missing routines

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file SimInfo.hpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #ifndef BRAINS_SIMMODEL_HPP
50 #define BRAINS_SIMMODEL_HPP
51
52 #include <iostream>
53 #include <set>
54 #include <utility>
55 #include <vector>
56
57 #include "brains/PairList.hpp"
58 #include "io/Globals.hpp"
59 #include "math/Vector3.hpp"
60 #include "math/SquareMatrix3.hpp"
61 #include "types/MoleculeStamp.hpp"
62 #include "UseTheForce/ForceField.hpp"
63 #include "utils/PropertyMap.hpp"
64 #include "utils/LocalIndexManager.hpp"
65 #include "nonbonded/SwitchingFunction.hpp"
66
67 using namespace std;
68 namespace OpenMD{
69 //forward declaration
70 class SnapshotManager;
71 class Molecule;
72 class SelectionManager;
73 class StuntDouble;
74
75 /**
76 * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
77 *
78 * @brief One of the heavy-weight classes of OpenMD, SimInfo
79 * maintains objects and variables relating to the current
80 * simulation. This includes the master list of Molecules. The
81 * Molecule class maintains all of the concrete objects (Atoms,
82 * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
83 * Constraints). In both the single and parallel versions, Atoms and
84 * RigidBodies have both global and local indices.
85 */
86 class SimInfo {
87 public:
88 typedef map<int, Molecule*>::iterator MoleculeIterator;
89
90 /**
91 * Constructor of SimInfo
92 *
93 * @param molStampPairs MoleculeStamp Array. The first element of
94 * the pair is molecule stamp, the second element is the total
95 * number of molecules with the same molecule stamp in the system
96 *
97 * @param ff pointer of a concrete ForceField instance
98 *
99 * @param simParams
100 */
101 SimInfo(ForceField* ff, Globals* simParams);
102 virtual ~SimInfo();
103
104 /**
105 * Adds a molecule
106 *
107 * @return return true if adding successfully, return false if the
108 * molecule is already in SimInfo
109 *
110 * @param mol molecule to be added
111 */
112 bool addMolecule(Molecule* mol);
113
114 /**
115 * Removes a molecule from SimInfo
116 *
117 * @return true if removing successfully, return false if molecule
118 * is not in this SimInfo
119 */
120 bool removeMolecule(Molecule* mol);
121
122 /** Returns the total number of molecules in the system. */
123 int getNGlobalMolecules() {
124 return nGlobalMols_;
125 }
126
127 /** Returns the total number of atoms in the system. */
128 int getNGlobalAtoms() {
129 return nGlobalAtoms_;
130 }
131
132 /** Returns the total number of cutoff groups in the system. */
133 int getNGlobalCutoffGroups() {
134 return nGlobalCutoffGroups_;
135 }
136
137 /**
138 * Returns the total number of integrable objects (total number of
139 * rigid bodies plus the total number of atoms which do not belong
140 * to the rigid bodies) in the system
141 */
142 int getNGlobalIntegrableObjects() {
143 return nGlobalIntegrableObjects_;
144 }
145
146 /**
147 * Returns the total number of integrable objects (total number of
148 * rigid bodies plus the total number of atoms which do not belong
149 * to the rigid bodies) in the system
150 */
151 int getNGlobalRigidBodies() {
152 return nGlobalRigidBodies_;
153 }
154
155 int getNGlobalConstraints();
156 /**
157 * Returns the number of local molecules.
158 * @return the number of local molecules
159 */
160 int getNMolecules() {
161 return molecules_.size();
162 }
163
164 /** Returns the number of local atoms */
165 unsigned int getNAtoms() {
166 return nAtoms_;
167 }
168
169 /** Returns the number of local bonds */
170 unsigned int getNBonds(){
171 return nBonds_;
172 }
173
174 /** Returns the number of local bends */
175 unsigned int getNBends() {
176 return nBends_;
177 }
178
179 /** Returns the number of local torsions */
180 unsigned int getNTorsions() {
181 return nTorsions_;
182 }
183
184 /** Returns the number of local torsions */
185 unsigned int getNInversions() {
186 return nInversions_;
187 }
188 /** Returns the number of local rigid bodies */
189 unsigned int getNRigidBodies() {
190 return nRigidBodies_;
191 }
192
193 /** Returns the number of local integrable objects */
194 unsigned int getNIntegrableObjects() {
195 return nIntegrableObjects_;
196 }
197
198 /** Returns the number of local cutoff groups */
199 unsigned int getNCutoffGroups() {
200 return nCutoffGroups_;
201 }
202
203 /** Returns the total number of constraints in this SimInfo */
204 unsigned int getNConstraints() {
205 return nConstraints_;
206 }
207
208 /**
209 * Returns the first molecule in this SimInfo and intialize the iterator.
210 * @return the first molecule, return NULL if there is not molecule in this SimInfo
211 * @param i the iterator of molecule array (user shouldn't change it)
212 */
213 Molecule* beginMolecule(MoleculeIterator& i);
214
215 /**
216 * Returns the next avaliable Molecule based on the iterator.
217 * @return the next avaliable molecule, return NULL if reaching the end of the array
218 * @param i the iterator of molecule array
219 */
220 Molecule* nextMolecule(MoleculeIterator& i);
221
222 /** Returns the number of degrees of freedom */
223 int getNdf() {
224 return ndf_ - getFdf();
225 }
226
227 /** Returns the number of raw degrees of freedom */
228 int getNdfRaw() {
229 return ndfRaw_;
230 }
231
232 /** Returns the number of translational degrees of freedom */
233 int getNdfTrans() {
234 return ndfTrans_;
235 }
236
237 /** sets the current number of frozen degrees of freedom */
238 void setFdf(int fdf) {
239 fdf_local = fdf;
240 }
241
242 int getFdf();
243
244 //getNZconstraint and setNZconstraint ruin the coherence of
245 //SimInfo class, need refactoring
246
247 /** Returns the total number of z-constraint molecules in the system */
248 int getNZconstraint() {
249 return nZconstraint_;
250 }
251
252 /**
253 * Sets the number of z-constraint molecules in the system.
254 */
255 void setNZconstraint(int nZconstraint) {
256 nZconstraint_ = nZconstraint;
257 }
258
259 /** Returns the snapshot manager. */
260 SnapshotManager* getSnapshotManager() {
261 return sman_;
262 }
263
264 /** Sets the snapshot manager. */
265 void setSnapshotManager(SnapshotManager* sman);
266
267 /** Returns the force field */
268 ForceField* getForceField() {
269 return forceField_;
270 }
271
272 Globals* getSimParams() {
273 return simParams_;
274 }
275
276 /** Returns the velocity of center of mass of the whole system.*/
277 Vector3d getComVel();
278
279 /** Returns the center of the mass of the whole system.*/
280 Vector3d getCom();
281 /** Returns the center of the mass and Center of Mass velocity of
282 the whole system.*/
283 void getComAll(Vector3d& com,Vector3d& comVel);
284
285 /** Returns intertia tensor for the entire system and system
286 Angular Momentum.*/
287 void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
288
289 /** Returns system angular momentum */
290 Vector3d getAngularMomentum();
291
292 /** Returns volume of system as estimated by an ellipsoid defined
293 by the radii of gyration*/
294 void getGyrationalVolume(RealType &vol);
295 /** Overloaded version of gyrational volume that also returns
296 det(I) so dV/dr can be calculated*/
297 void getGyrationalVolume(RealType &vol, RealType &detI);
298
299 void update();
300 /**
301 * Do final bookkeeping before Force managers need their data.
302 */
303 void prepareTopology();
304
305
306 /** Returns the local index manager */
307 LocalIndexManager* getLocalIndexManager() {
308 return &localIndexMan_;
309 }
310
311 int getMoleculeStampId(int globalIndex) {
312 //assert(globalIndex < molStampIds_.size())
313 return molStampIds_[globalIndex];
314 }
315
316 /** Returns the molecule stamp */
317 MoleculeStamp* getMoleculeStamp(int id) {
318 return moleculeStamps_[id];
319 }
320
321 /** Return the total number of the molecule stamps */
322 int getNMoleculeStamp() {
323 return moleculeStamps_.size();
324 }
325 /**
326 * Finds a molecule with a specified global index
327 * @return a pointer point to found molecule
328 * @param index
329 */
330 Molecule* getMoleculeByGlobalIndex(int index) {
331 MoleculeIterator i;
332 i = molecules_.find(index);
333
334 return i != molecules_.end() ? i->second : NULL;
335 }
336
337 int getGlobalMolMembership(int id){
338 return globalMolMembership_[id];
339 }
340
341 /**
342 * returns a vector which maps the local atom index on this
343 * processor to the global atom index. With only one processor,
344 * these should be identical.
345 */
346 vector<int> getGlobalAtomIndices();
347
348 /**
349 * returns a vector which maps the local cutoff group index on
350 * this processor to the global cutoff group index. With only one
351 * processor, these should be identical.
352 */
353 vector<int> getGlobalGroupIndices();
354
355
356 string getFinalConfigFileName() {
357 return finalConfigFileName_;
358 }
359
360 void setFinalConfigFileName(const string& fileName) {
361 finalConfigFileName_ = fileName;
362 }
363
364 string getRawMetaData() {
365 return rawMetaData_;
366 }
367 void setRawMetaData(const string& rawMetaData) {
368 rawMetaData_ = rawMetaData;
369 }
370
371 string getDumpFileName() {
372 return dumpFileName_;
373 }
374
375 void setDumpFileName(const string& fileName) {
376 dumpFileName_ = fileName;
377 }
378
379 string getStatFileName() {
380 return statFileName_;
381 }
382
383 void setStatFileName(const string& fileName) {
384 statFileName_ = fileName;
385 }
386
387 string getRestFileName() {
388 return restFileName_;
389 }
390
391 void setRestFileName(const string& fileName) {
392 restFileName_ = fileName;
393 }
394
395 /**
396 * Sets GlobalGroupMembership
397 * @see #SimCreator::setGlobalIndex
398 */
399 void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
400 assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
401 globalGroupMembership_ = globalGroupMembership;
402 }
403
404 /**
405 * Sets GlobalMolMembership
406 * @see #SimCreator::setGlobalIndex
407 */
408 void setGlobalMolMembership(const vector<int>& globalMolMembership) {
409 assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
410 globalMolMembership_ = globalMolMembership;
411 }
412
413
414 bool isTopologyDone() {
415 return topologyDone_;
416 }
417
418 bool getCalcBoxDipole() {
419 return calcBoxDipole_;
420 }
421
422 bool getUseAtomicVirial() {
423 return useAtomicVirial_;
424 }
425
426 /**
427 * Adds property into property map
428 * @param genData GenericData to be added into PropertyMap
429 */
430 void addProperty(GenericData* genData);
431
432 /**
433 * Removes property from PropertyMap by name
434 * @param propName the name of property to be removed
435 */
436 void removeProperty(const string& propName);
437
438 /**
439 * clear all of the properties
440 */
441 void clearProperties();
442
443 /**
444 * Returns all names of properties
445 * @return all names of properties
446 */
447 vector<string> getPropertyNames();
448
449 /**
450 * Returns all of the properties in PropertyMap
451 * @return all of the properties in PropertyMap
452 */
453 vector<GenericData*> getProperties();
454
455 /**
456 * Returns property
457 * @param propName name of property
458 * @return a pointer point to property with propName. If no property named propName
459 * exists, return NULL
460 */
461 GenericData* getPropertyByName(const string& propName);
462
463 /**
464 * add all special interaction pairs (including excluded
465 * interactions) in a molecule into the appropriate lists.
466 */
467 void addInteractionPairs(Molecule* mol);
468
469 /**
470 * remove all special interaction pairs which belong to a molecule
471 * from the appropriate lists.
472 */
473 void removeInteractionPairs(Molecule* mol);
474
475 /** Returns the set of atom types present in this simulation */
476 set<AtomType*> getSimulatedAtomTypes();
477
478 friend ostream& operator <<(ostream& o, SimInfo& info);
479
480 void getCutoff(RealType& rcut, RealType& rsw);
481
482 private:
483
484 /** fill up the simtype struct and other simulation-related variables */
485 void setupSimVariables();
486
487
488 /** Determine if we need to accumulate the simulation box dipole */
489 void setupAccumulateBoxDipole();
490
491 /** Calculates the number of degress of freedom in the whole system */
492 void calcNdf();
493 void calcNdfRaw();
494 void calcNdfTrans();
495
496 /**
497 * Adds molecule stamp and the total number of the molecule with
498 * same molecule stamp in the whole system.
499 */
500 void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
501
502 // Other classes holdingn important information
503 ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
504 Globals* simParams_; /**< provides access to simulation parameters set by user */
505
506 /// Counts of local objects
507 int nAtoms_; /**< number of atoms in local processor */
508 int nBonds_; /**< number of bonds in local processor */
509 int nBends_; /**< number of bends in local processor */
510 int nTorsions_; /**< number of torsions in local processor */
511 int nInversions_; /**< number of inversions in local processor */
512 int nRigidBodies_; /**< number of rigid bodies in local processor */
513 int nIntegrableObjects_; /**< number of integrable objects in local processor */
514 int nCutoffGroups_; /**< number of cutoff groups in local processor */
515 int nConstraints_; /**< number of constraints in local processors */
516
517 /// Counts of global objects
518 int nGlobalMols_; /**< number of molecules in the system (GLOBAL) */
519 int nGlobalAtoms_; /**< number of atoms in the system (GLOBAL) */
520 int nGlobalCutoffGroups_; /**< number of cutoff groups in this system (GLOBAL) */
521 int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
522 int nGlobalRigidBodies_; /**< number of rigid bodies in this system (GLOBAL) */
523
524 /// Degress of freedom
525 int ndf_; /**< number of degress of freedom (excludes constraints) (LOCAL) */
526 int fdf_local; /**< number of frozen degrees of freedom (LOCAL) */
527 int fdf_; /**< number of frozen degrees of freedom (GLOBAL) */
528 int ndfRaw_; /**< number of degress of freedom (includes constraints), (LOCAL) */
529 int ndfTrans_; /**< number of translation degress of freedom, (LOCAL) */
530 int nZconstraint_; /**< number of z-constraint molecules (GLOBAL) */
531
532 /// logicals
533 bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
534 bool usesDirectionalAtoms_; /**< are there atoms with position AND orientation? */
535 bool usesMetallicAtoms_; /**< are there transition metal atoms? */
536 bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
537 bool usesAtomicVirial_; /**< are we computing atomic virials? */
538 bool requiresPrepair_; /**< does this simulation require a pre-pair loop? */
539 bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
540 bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
541
542 public:
543 bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
544 bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
545 bool usesMetallicAtoms() { return usesMetallicAtoms_; }
546 bool usesAtomicVirial() { return usesAtomicVirial_; }
547 bool requiresPrepair() { return requiresPrepair_; }
548 bool requiresSkipCorrection() { return requiresSkipCorrection_;}
549 bool requiresSelfCorrection() { return requiresSelfCorrection_;}
550
551 private:
552 /// Data structures holding primary simulation objects
553 map<int, Molecule*> molecules_; /**< map holding pointers to LOCAL molecules */
554
555 /// Stamps are templates for objects that are then used to create
556 /// groups of objects. For example, a molecule stamp contains
557 /// information on how to build that molecule (i.e. the topology,
558 /// the atoms, the bonds, etc.) Once the system is built, the
559 /// stamps are no longer useful.
560 vector<int> molStampIds_; /**< stamp id for molecules in the system */
561 vector<MoleculeStamp*> moleculeStamps_; /**< molecule stamps array */
562
563 /**
564 * A vector that maps between the global index of an atom, and the
565 * global index of cutoff group the atom belong to. It is filled
566 * by SimCreator once and only once, since it never changed during
567 * the simulation. It should be nGlobalAtoms_ in size.
568 */
569 vector<int> globalGroupMembership_;
570 public:
571 vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
572 private:
573
574 /**
575 * A vector that maps between the global index of an atom and the
576 * global index of the molecule the atom belongs to. It is filled
577 * by SimCreator once and only once, since it is never changed
578 * during the simulation. It shoudl be nGlobalAtoms_ in size.
579 */
580 vector<int> globalMolMembership_;
581
582 /**
583 * A vector that maps between the local index of an atom and the
584 * index of the AtomType.
585 */
586 vector<int> identArray_;
587 public:
588 vector<int> getIdentArray() { return identArray_; }
589 private:
590
591 /**
592 * A vector which contains the fractional contribution of an
593 * atom's mass to the total mass of the cutoffGroup that atom
594 * belongs to. In the case of single atom cutoff groups, the mass
595 * factor for that atom is 1. For massless atoms, the factor is
596 * also 1.
597 */
598 vector<RealType> massFactors_;
599 public:
600 vector<RealType> getMassFactors() { return massFactors_; }
601 private:
602
603
604 /// lists to handle atoms needing special treatment in the non-bonded interactions
605 PairList excludedInteractions_; /**< atoms excluded from interacting with each other */
606 PairList oneTwoInteractions_; /**< atoms that are directly Bonded */
607 PairList oneThreeInteractions_; /**< atoms sharing a Bend */
608 PairList oneFourInteractions_; /**< atoms sharing a Torsion */
609
610 PropertyMap properties_; /**< Generic Properties can be added */
611 SnapshotManager* sman_; /**< SnapshotManager (handles particle positions, etc.) */
612
613 /**
614 * The reason to have a local index manager is that when molecule
615 * is migrating to other processors, the atoms and the
616 * rigid-bodies will release their local indices to
617 * LocalIndexManager. Combining the information of molecule
618 * migrating to current processor, Migrator class can query the
619 * LocalIndexManager to make a efficient data moving plan.
620 */
621 LocalIndexManager localIndexMan_;
622
623 // unparsed MetaData block for storing in Dump and EOR files:
624 string rawMetaData_;
625
626 // file names
627 string finalConfigFileName_;
628 string dumpFileName_;
629 string statFileName_;
630 string restFileName_;
631
632
633 bool topologyDone_; /** flag to indicate whether the topology has
634 been scanned and all the relevant
635 bookkeeping has been done*/
636
637 bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
638 the simulation box dipole moment */
639
640 bool useAtomicVirial_; /**< flag to indicate whether or not we use
641 Atomic Virials to calculate the pressure */
642
643 public:
644 /**
645 * return an integral objects by its global index. In MPI
646 * version, if the StuntDouble with specified global index does
647 * not belong to local processor, a NULL will be return.
648 */
649 StuntDouble* getIOIndexToIntegrableObject(int index);
650 void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
651
652 private:
653 vector<StuntDouble*> IOIndexToIntegrableObject;
654
655 public:
656
657 /**
658 * Finds the processor where a molecule resides
659 * @return the id of the processor which contains the molecule
660 * @param globalIndex global Index of the molecule
661 */
662 int getMolToProc(int globalIndex) {
663 //assert(globalIndex < molToProcMap_.size());
664 return molToProcMap_[globalIndex];
665 }
666
667 /**
668 * Set MolToProcMap array
669 * @see #SimCreator::divideMolecules
670 */
671 void setMolToProcMap(const vector<int>& molToProcMap) {
672 molToProcMap_ = molToProcMap;
673 }
674
675 private:
676
677 /**
678 * The size of molToProcMap_ is equal to total number of molecules
679 * in the system. It maps a molecule to the processor on which it
680 * resides. it is filled by SimCreator once and only once.
681 */
682 vector<int> molToProcMap_;
683
684 };
685
686 } //namespace OpenMD
687 #endif //BRAINS_SIMMODEL_HPP
688

Properties

Name Value
svn:keywords Author Id Revision Date