ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.hpp (file contents), Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
branches/development/src/brains/SimInfo.hpp (file contents), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include <utility>
56   #include <vector>
57  
58 < #include "brains/Exclude.hpp"
58 > #include "brains/PairList.hpp"
59   #include "io/Globals.hpp"
60   #include "math/Vector3.hpp"
61 + #include "math/SquareMatrix3.hpp"
62   #include "types/MoleculeStamp.hpp"
63   #include "UseTheForce/ForceField.hpp"
64   #include "utils/PropertyMap.hpp"
65   #include "utils/LocalIndexManager.hpp"
66 + #include "nonbonded/SwitchingFunction.hpp"
67  
68 < //another nonsense macro declaration
69 < #define __C
70 < #include "brains/fSimulation.h"
68 > using namespace std;
69 > namespace OpenMD{
70 >  //forward declaration
71 >  class SnapshotManager;
72 >  class Molecule;
73 >  class SelectionManager;
74 >  class StuntDouble;
75  
76 < namespace oopse{
76 >  /**
77 >   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
78 >   *
79 >   * @brief One of the heavy-weight classes of OpenMD, SimInfo
80 >   * maintains objects and variables relating to the current
81 >   * simulation.  This includes the master list of Molecules.  The
82 >   * Molecule class maintains all of the concrete objects (Atoms,
83 >   * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
84 >   * Constraints). In both the single and parallel versions, Atoms and
85 >   * RigidBodies have both global and local indices.
86 >   */
87 >  class SimInfo {
88 >  public:
89 >    typedef map<int, Molecule*>::iterator  MoleculeIterator;
90 >    
91 >    /**
92 >     * Constructor of SimInfo
93 >     *
94 >     * @param molStampPairs MoleculeStamp Array. The first element of
95 >     * the pair is molecule stamp, the second element is the total
96 >     * number of molecules with the same molecule stamp in the system
97 >     *
98 >     * @param ff pointer of a concrete ForceField instance
99 >     *
100 >     * @param simParams
101 >     */
102 >    SimInfo(ForceField* ff, Globals* simParams);
103 >    virtual ~SimInfo();
104  
105 < //forward decalration
106 < class SnapshotManager;
107 < class Molecule;
108 < class SelectionManager;
109 < /**
110 < * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
111 < * @brief As one of the heavy weight class of OOPSE, SimInfo
112 < * One of the major changes in SimInfo class is the data struct. It only maintains a list of molecules.
113 < * And the Molecule class will maintain all of the concrete objects (atoms, bond, bend, torsions, rigid bodies,
80 < * cutoff groups, constrains).
81 < * Another major change is the index. No matter single version or parallel version,  atoms and
82 < * rigid bodies have both global index and local index. Local index is not important to molecule as well as
83 < * cutoff group.
84 < */
85 < class SimInfo {
86 <    public:
87 <        typedef std::map<int, Molecule*>::iterator  MoleculeIterator;
105 >    /**
106 >     * Adds a molecule
107 >     *
108 >     * @return return true if adding successfully, return false if the
109 >     * molecule is already in SimInfo
110 >     *
111 >     * @param mol molecule to be added
112 >     */
113 >    bool addMolecule(Molecule* mol);
114  
115 <        /**
116 <         * Constructor of SimInfo
117 <         * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
118 <         * second element is the total number of molecules with the same molecule stamp in the system
119 <         * @param ff pointer of a concrete ForceField instance
120 <         * @param simParams
121 <         * @note
96 <         */
97 <        SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, ForceField* ff, Globals* simParams);
98 <        virtual ~SimInfo();
115 >    /**
116 >     * Removes a molecule from SimInfo
117 >     *
118 >     * @return true if removing successfully, return false if molecule
119 >     * is not in this SimInfo
120 >     */
121 >    bool removeMolecule(Molecule* mol);
122  
123 <        /**
124 <         * Adds a molecule
125 <         * @return return true if adding successfully, return false if the molecule is already in SimInfo
126 <         * @param mol molecule to be added
104 <         */
105 <        bool addMolecule(Molecule* mol);
123 >    /** Returns the total number of molecules in the system. */
124 >    int getNGlobalMolecules() {
125 >      return nGlobalMols_;
126 >    }
127  
128 <        /**
129 <         * Removes a molecule from SimInfo
130 <         * @return true if removing successfully, return false if molecule is not in this SimInfo
131 <         */
111 <        bool removeMolecule(Molecule* mol);
128 >    /** Returns the total number of atoms in the system. */
129 >    int getNGlobalAtoms() {
130 >      return nGlobalAtoms_;
131 >    }
132  
133 <        /** Returns the total number of molecules in the system. */
134 <        int getNGlobalMolecules() {
135 <            return nGlobalMols_;
136 <        }
133 >    /** Returns the total number of cutoff groups in the system. */
134 >    int getNGlobalCutoffGroups() {
135 >      return nGlobalCutoffGroups_;
136 >    }
137  
138 <        /** Returns the total number of atoms in the system. */
139 <        int getNGlobalAtoms() {
140 <            return nGlobalAtoms_;
141 <        }
138 >    /**
139 >     * Returns the total number of integrable objects (total number of
140 >     * rigid bodies plus the total number of atoms which do not belong
141 >     * to the rigid bodies) in the system
142 >     */
143 >    int getNGlobalIntegrableObjects() {
144 >      return nGlobalIntegrableObjects_;
145 >    }
146  
147 <        /** Returns the total number of cutoff groups in the system. */
148 <        int getNGlobalCutoffGroups() {
149 <            return nGlobalCutoffGroups_;
150 <        }
147 >    /**
148 >     * Returns the total number of integrable objects (total number of
149 >     * rigid bodies plus the total number of atoms which do not belong
150 >     * to the rigid bodies) in the system
151 >     */
152 >    int getNGlobalRigidBodies() {
153 >      return nGlobalRigidBodies_;
154 >    }
155  
156 <        /**
157 <         * Returns the total number of integrable objects (total number of rigid bodies plus the total number
158 <         * of atoms which do not belong to the rigid bodies) in the system
159 <         */
160 <        int getNGlobalIntegrableObjects() {
161 <            return nGlobalIntegrableObjects_;
162 <        }
156 >    int getNGlobalConstraints();
157 >    /**
158 >     * Returns the number of local molecules.
159 >     * @return the number of local molecules
160 >     */
161 >    int getNMolecules() {
162 >      return molecules_.size();
163 >    }
164  
165 <        /**
166 <         * Returns the total number of integrable objects (total number of rigid bodies plus the total number
167 <         * of atoms which do not belong to the rigid bodies) in the system
168 <         */
140 <        int getNGlobalRigidBodies() {
141 <            return nGlobalRigidBodies_;
142 <        }
165 >    /** Returns the number of local atoms */
166 >    unsigned int getNAtoms() {
167 >      return nAtoms_;
168 >    }
169  
170 <        int getNGlobalConstraints();
171 <        /**
146 <         * Returns the number of local molecules.
147 <         * @return the number of local molecules
148 <         */
149 <        int getNMolecules() {
150 <            return molecules_.size();
151 <        }
170 >    /** Returns the number of effective cutoff groups on local processor */
171 >    unsigned int getNLocalCutoffGroups();
172  
173 <        /** Returns the number of local atoms */
174 <        unsigned int getNAtoms() {
175 <            return nAtoms_;
176 <        }
173 >    /** Returns the number of local bonds */        
174 >    unsigned int getNBonds(){
175 >      return nBonds_;
176 >    }
177  
178 <        /** Returns the number of local bonds */        
179 <        unsigned int getNBonds(){
180 <            return nBonds_;
181 <        }
178 >    /** Returns the number of local bends */        
179 >    unsigned int getNBends() {
180 >      return nBends_;
181 >    }
182  
183 <        /** Returns the number of local bends */        
184 <        unsigned int getNBends() {
185 <            return nBends_;
186 <        }
183 >    /** Returns the number of local torsions */        
184 >    unsigned int getNTorsions() {
185 >      return nTorsions_;
186 >    }
187  
188 <        /** Returns the number of local torsions */        
189 <        unsigned int getNTorsions() {
190 <            return nTorsions_;
191 <        }
188 >    /** Returns the number of local torsions */        
189 >    unsigned int getNInversions() {
190 >      return nInversions_;
191 >    }
192 >    /** Returns the number of local rigid bodies */        
193 >    unsigned int getNRigidBodies() {
194 >      return nRigidBodies_;
195 >    }
196  
197 <        /** Returns the number of local rigid bodies */        
198 <        unsigned int getNRigidBodies() {
199 <            return nRigidBodies_;
200 <        }
197 >    /** Returns the number of local integrable objects */
198 >    unsigned int getNIntegrableObjects() {
199 >      return nIntegrableObjects_;
200 >    }
201  
202 <        /** Returns the number of local integrable objects */
203 <        unsigned int getNIntegrableObjects() {
204 <            return nIntegrableObjects_;
205 <        }
202 >    /** Returns the number of local cutoff groups */
203 >    unsigned int getNCutoffGroups() {
204 >      return nCutoffGroups_;
205 >    }
206  
207 <        /** Returns the number of local cutoff groups */
208 <        unsigned int getNCutoffGroups() {
209 <            return nCutoffGroups_;
210 <        }
187 <
188 <        /** Returns the total number of constraints in this SimInfo */
189 <        unsigned int getNConstraints() {
190 <            return nConstraints_;
191 <        }
207 >    /** Returns the total number of constraints in this SimInfo */
208 >    unsigned int getNConstraints() {
209 >      return nConstraints_;
210 >    }
211          
212 <        /**
213 <         * Returns the first molecule in this SimInfo and intialize the iterator.
214 <         * @return the first molecule, return NULL if there is not molecule in this SimInfo
215 <         * @param i the iterator of molecule array (user shouldn't change it)
216 <         */
217 <        Molecule* beginMolecule(MoleculeIterator& i);
212 >    /**
213 >     * Returns the first molecule in this SimInfo and intialize the iterator.
214 >     * @return the first molecule, return NULL if there is not molecule in this SimInfo
215 >     * @param i the iterator of molecule array (user shouldn't change it)
216 >     */
217 >    Molecule* beginMolecule(MoleculeIterator& i);
218  
219 <        /**
220 <          * Returns the next avaliable Molecule based on the iterator.
221 <          * @return the next avaliable molecule, return NULL if reaching the end of the array
222 <          * @param i the iterator of molecule array
223 <          */
224 <        Molecule* nextMolecule(MoleculeIterator& i);
219 >    /**
220 >     * Returns the next avaliable Molecule based on the iterator.
221 >     * @return the next avaliable molecule, return NULL if reaching the end of the array
222 >     * @param i the iterator of molecule array
223 >     */
224 >    Molecule* nextMolecule(MoleculeIterator& i);
225  
226 <        /** Returns the number of degrees of freedom */
227 <        int getNdf() {
228 <            return ndf_;
229 <        }
226 >    /** Returns the number of degrees of freedom */
227 >    int getNdf() {
228 >      return ndf_ - getFdf();
229 >    }
230  
231 <        /** Returns the number of raw degrees of freedom */
232 <        int getNdfRaw() {
233 <            return ndfRaw_;
234 <        }
231 >    /** Returns the number of raw degrees of freedom */
232 >    int getNdfRaw() {
233 >      return ndfRaw_;
234 >    }
235  
236 <        /** Returns the number of translational degrees of freedom */
237 <        int getNdfTrans() {
238 <            return ndfTrans_;
239 <        }
236 >    /** Returns the number of translational degrees of freedom */
237 >    int getNdfTrans() {
238 >      return ndfTrans_;
239 >    }
240  
241 <        //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
241 >    /** sets the current number of frozen degrees of freedom */
242 >    void setFdf(int fdf) {
243 >      fdf_local = fdf;
244 >    }
245 >
246 >    int getFdf();
247 >    
248 >    //getNZconstraint and setNZconstraint ruin the coherence of
249 >    //SimInfo class, need refactoring
250          
251 <        /** Returns the total number of z-constraint molecules in the system */
252 <        int getNZconstraint() {
253 <            return nZconstraint_;
254 <        }
251 >    /** Returns the total number of z-constraint molecules in the system */
252 >    int getNZconstraint() {
253 >      return nZconstraint_;
254 >    }
255  
256 <        /**
257 <         * Sets the number of z-constraint molecules in the system.
258 <         */
259 <        void setNZconstraint(int nZconstraint) {
260 <            nZconstraint_ = nZconstraint;
261 <        }
256 >    /**
257 >     * Sets the number of z-constraint molecules in the system.
258 >     */
259 >    void setNZconstraint(int nZconstraint) {
260 >      nZconstraint_ = nZconstraint;
261 >    }
262          
263 <        /** Returns the snapshot manager. */
264 <        SnapshotManager* getSnapshotManager() {
265 <            return sman_;
266 <        }
263 >    /** Returns the snapshot manager. */
264 >    SnapshotManager* getSnapshotManager() {
265 >      return sman_;
266 >    }
267  
268 <        /** Sets the snapshot manager. */
269 <        void setSnapshotManager(SnapshotManager* sman);
268 >    /** Sets the snapshot manager. */
269 >    void setSnapshotManager(SnapshotManager* sman);
270          
271 <        /** Returns the force field */
272 <        ForceField* getForceField() {
273 <            return forceField_;
274 <        }
271 >    /** Returns the force field */
272 >    ForceField* getForceField() {
273 >      return forceField_;
274 >    }
275  
276 <        Globals* getSimParams() {
277 <            return simParams_;
278 <        }
276 >    Globals* getSimParams() {
277 >      return simParams_;
278 >    }
279  
280 <        /** Returns the velocity of center of mass of the whole system.*/
281 <        Vector3d getComVel();
280 >    /** Returns the velocity of center of mass of the whole system.*/
281 >    Vector3d getComVel();
282  
283 <        /** Returns the center of the mass of the whole system.*/
284 <        Vector3d getCom();
283 >    /** Returns the center of the mass of the whole system.*/
284 >    Vector3d getCom();
285 >    /** Returns the center of the mass and Center of Mass velocity of
286 >        the whole system.*/
287 >    void getComAll(Vector3d& com,Vector3d& comVel);
288  
289 <        /** main driver function to interact with fortran during the initialization and molecule migration */
290 <        void update();
289 >    /** Returns intertia tensor for the entire system and system
290 >        Angular Momentum.*/
291 >    void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
292 >    
293 >    /** Returns system angular momentum */
294 >    Vector3d getAngularMomentum();
295  
296 <        /** Returns the local index manager */
297 <        LocalIndexManager* getLocalIndexManager() {
298 <            return &localIndexMan_;
299 <        }
296 >    /** Returns volume of system as estimated by an ellipsoid defined
297 >        by the radii of gyration*/
298 >    void getGyrationalVolume(RealType &vol);
299 >    /** Overloaded version of gyrational volume that also returns
300 >        det(I) so dV/dr can be calculated*/
301 >    void getGyrationalVolume(RealType &vol, RealType &detI);
302  
303 <        int getMoleculeStampId(int globalIndex) {
304 <            //assert(globalIndex < molStampIds_.size())
305 <            return molStampIds_[globalIndex];
306 <        }
303 >    void update();
304 >    /**
305 >     * Do final bookkeeping before Force managers need their data.
306 >     */
307 >    void prepareTopology();
308  
272        /** Returns the molecule stamp */
273        MoleculeStamp* getMoleculeStamp(int id) {
274            return moleculeStamps_[id];
275        }
309  
310 <        /** Return the total number of the molecule stamps */
311 <        int getNMoleculeStamp() {
312 <            return moleculeStamps_.size();
313 <        }
281 <        /**
282 <         * Finds a molecule with a specified global index
283 <         * @return a pointer point to found molecule
284 <         * @param index
285 <         */
286 <        Molecule* getMoleculeByGlobalIndex(int index) {
287 <            MoleculeIterator i;
288 <            i = molecules_.find(index);
310 >    /** Returns the local index manager */
311 >    LocalIndexManager* getLocalIndexManager() {
312 >      return &localIndexMan_;
313 >    }
314  
315 <            return i != molecules_.end() ? i->second : NULL;
316 <        }
315 >    int getMoleculeStampId(int globalIndex) {
316 >      //assert(globalIndex < molStampIds_.size())
317 >      return molStampIds_[globalIndex];
318 >    }
319  
320 <        /** Calculate the maximum cutoff radius based on the atom types */
321 <        double calcMaxCutoffRadius();
320 >    /** Returns the molecule stamp */
321 >    MoleculeStamp* getMoleculeStamp(int id) {
322 >      return moleculeStamps_[id];
323 >    }
324  
325 <        double getRcut() {
326 <            return rcut_;
327 <        }
325 >    /** Return the total number of the molecule stamps */
326 >    int getNMoleculeStamp() {
327 >      return moleculeStamps_.size();
328 >    }
329 >    /**
330 >     * Finds a molecule with a specified global index
331 >     * @return a pointer point to found molecule
332 >     * @param index
333 >     */
334 >    Molecule* getMoleculeByGlobalIndex(int index) {
335 >      MoleculeIterator i;
336 >      i = molecules_.find(index);
337  
338 <        double getRsw() {
339 <            return rsw_;
302 <        }
303 <        
304 <        std::string getFinalConfigFileName() {
305 <            return finalConfigFileName_;
306 <        }
307 <        
308 <        void setFinalConfigFileName(const std::string& fileName) {
309 <            finalConfigFileName_ = fileName;
310 <        }
338 >      return i != molecules_.end() ? i->second : NULL;
339 >    }
340  
341 <        std::string getDumpFileName() {
342 <            return dumpFileName_;
343 <        }
315 <        
316 <        void setDumpFileName(const std::string& fileName) {
317 <            dumpFileName_ = fileName;
318 <        }
341 >    int getGlobalMolMembership(int id){
342 >      return globalMolMembership_[id];
343 >    }
344  
345 <        std::string getStatFileName() {
346 <            return statFileName_;
347 <        }
345 >    /**
346 >     * returns a vector which maps the local atom index on this
347 >     * processor to the global atom index.  With only one processor,
348 >     * these should be identical.
349 >     */
350 >    vector<int> getGlobalAtomIndices();
351 >
352 >    /**
353 >     * returns a vector which maps the local cutoff group index on
354 >     * this processor to the global cutoff group index.  With only one
355 >     * processor, these should be identical.
356 >     */
357 >    vector<int> getGlobalGroupIndices();
358 >
359          
360 <        void setStatFileName(const std::string& fileName) {
361 <            statFileName_ = fileName;
362 <        }
360 >    string getFinalConfigFileName() {
361 >      return finalConfigFileName_;
362 >    }
363  
364 <        /**
365 <         * Sets GlobalGroupMembership
366 <         * @see #SimCreator::setGlobalIndex
331 <         */  
332 <        void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
333 <            assert(globalGroupMembership.size() == nGlobalAtoms_);
334 <            globalGroupMembership_ = globalGroupMembership;
335 <        }
364 >    void setFinalConfigFileName(const string& fileName) {
365 >      finalConfigFileName_ = fileName;
366 >    }
367  
368 <        /**
369 <         * Sets GlobalMolMembership
370 <         * @see #SimCreator::setGlobalIndex
371 <         */        
372 <        void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
373 <            assert(globalMolMembership.size() == nGlobalAtoms_);
374 <            globalMolMembership_ = globalMolMembership;
375 <        }
368 >    string getRawMetaData() {
369 >      return rawMetaData_;
370 >    }
371 >    void setRawMetaData(const string& rawMetaData) {
372 >      rawMetaData_ = rawMetaData;
373 >    }
374 >        
375 >    string getDumpFileName() {
376 >      return dumpFileName_;
377 >    }
378 >        
379 >    void setDumpFileName(const string& fileName) {
380 >      dumpFileName_ = fileName;
381 >    }
382  
383 +    string getStatFileName() {
384 +      return statFileName_;
385 +    }
386 +        
387 +    void setStatFileName(const string& fileName) {
388 +      statFileName_ = fileName;
389 +    }
390 +        
391 +    string getRestFileName() {
392 +      return restFileName_;
393 +    }
394 +        
395 +    void setRestFileName(const string& fileName) {
396 +      restFileName_ = fileName;
397 +    }
398  
399 <        bool isFortranInitialized() {
400 <            return fortranInitialized_;
401 <        }
399 >    /**
400 >     * Sets GlobalGroupMembership
401 >     * @see #SimCreator::setGlobalIndex
402 >     */  
403 >    void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
404 >      assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
405 >      globalGroupMembership_ = globalGroupMembership;
406 >    }
407 >
408 >    /**
409 >     * Sets GlobalMolMembership
410 >     * @see #SimCreator::setGlobalIndex
411 >     */        
412 >    void setGlobalMolMembership(const vector<int>& globalMolMembership) {
413 >      assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
414 >      globalMolMembership_ = globalMolMembership;
415 >    }
416 >
417 >
418 >    bool isTopologyDone() {
419 >      return topologyDone_;
420 >    }
421          
422 <        //below functions are just forward functions
423 <        //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
424 <        //the other hand, has-a relation need composing.
354 <        /**
355 <         * Adds property into property map
356 <         * @param genData GenericData to be added into PropertyMap
357 <         */
358 <        void addProperty(GenericData* genData);
422 >    bool getCalcBoxDipole() {
423 >      return calcBoxDipole_;
424 >    }
425  
426 <        /**
427 <         * Removes property from PropertyMap by name
428 <         * @param propName the name of property to be removed
363 <         */
364 <        void removeProperty(const std::string& propName);
426 >    bool getUseAtomicVirial() {
427 >      return useAtomicVirial_;
428 >    }
429  
430 <        /**
431 <         * clear all of the properties
432 <         */
433 <        void clearProperties();
430 >    /**
431 >     * Adds property into property map
432 >     * @param genData GenericData to be added into PropertyMap
433 >     */
434 >    void addProperty(GenericData* genData);
435  
436 <        /**
437 <         * Returns all names of properties
438 <         * @return all names of properties
439 <         */
440 <        std::vector<std::string> getPropertyNames();
436 >    /**
437 >     * Removes property from PropertyMap by name
438 >     * @param propName the name of property to be removed
439 >     */
440 >    void removeProperty(const string& propName);
441  
442 <        /**
443 <         * Returns all of the properties in PropertyMap
444 <         * @return all of the properties in PropertyMap
445 <         */      
381 <        std::vector<GenericData*> getProperties();
442 >    /**
443 >     * clear all of the properties
444 >     */
445 >    void clearProperties();
446  
447 <        /**
448 <         * Returns property
449 <         * @param propName name of property
450 <         * @return a pointer point to property with propName. If no property named propName
451 <         * exists, return NULL
388 <         */      
389 <        GenericData* getPropertyByName(const std::string& propName);
447 >    /**
448 >     * Returns all names of properties
449 >     * @return all names of properties
450 >     */
451 >    vector<string> getPropertyNames();
452  
453 <        /**
454 <         * add all exclude pairs of a molecule into exclude list.
455 <         */
456 <        void addExcludePairs(Molecule* mol);
453 >    /**
454 >     * Returns all of the properties in PropertyMap
455 >     * @return all of the properties in PropertyMap
456 >     */      
457 >    vector<GenericData*> getProperties();
458  
459 <        /**
460 <         * remove all exclude pairs which belong to a molecule from exclude list
461 <         */
459 >    /**
460 >     * Returns property
461 >     * @param propName name of property
462 >     * @return a pointer point to property with propName. If no property named propName
463 >     * exists, return NULL
464 >     */      
465 >    GenericData* getPropertyByName(const string& propName);
466  
467 <        void removeExcludePairs(Molecule* mol);
467 >    /**
468 >     * add all special interaction pairs (including excluded
469 >     * interactions) in a molecule into the appropriate lists.
470 >     */
471 >    void addInteractionPairs(Molecule* mol);
472  
473 +    /**
474 +     * remove all special interaction pairs which belong to a molecule
475 +     * from the appropriate lists.
476 +     */
477 +    void removeInteractionPairs(Molecule* mol);
478  
479 <        /** Returns the unique atom types of local processor in an array */
480 <        std::set<AtomType*> getUniqueAtomTypes();
479 >    /** Returns the set of atom types present in this simulation */
480 >    set<AtomType*> getSimulatedAtomTypes();
481          
482 <        friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
482 >    friend ostream& operator <<(ostream& o, SimInfo& info);
483  
484 <        void getCutoff(double& rcut, double& rsw);
484 >    void getCutoff(RealType& rcut, RealType& rsw);
485          
486 <    private:
486 >  private:
487  
488 <        /** fill up the simtype struct*/
489 <        void setupSimType();
488 >    /** fill up the simtype struct and other simulation-related variables */
489 >    void setupSimVariables();
490  
415        /**
416         * Setup Fortran Simulation
417         * @see #setupFortranParallel
418         */
419        void setupFortranSim();
491  
492 <        /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
493 <        void setupCutoff();
492 >    /** Determine if we need to accumulate the simulation box dipole */
493 >    void setupAccumulateBoxDipole();
494  
495 <        /** Calculates the number of degress of freedom in the whole system */
496 <        void calcNdf();
497 <        void calcNdfRaw();
498 <        void calcNdfTrans();
495 >    /** Calculates the number of degress of freedom in the whole system */
496 >    void calcNdf();
497 >    void calcNdfRaw();
498 >    void calcNdfTrans();
499  
500 <        /**
501 <         * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
502 <         * system.
503 <         */
504 <        void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
500 >    /**
501 >     * Adds molecule stamp and the total number of the molecule with
502 >     * same molecule stamp in the whole system.
503 >     */
504 >    void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
505  
506 <        ForceField* forceField_;      
507 <        Globals* simParams_;
506 >    // Other classes holdingn important information
507 >    ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
508 >    Globals* simParams_;     /**< provides access to simulation parameters set by user */
509  
510 <        std::map<int, Molecule*>  molecules_; /**< Molecule array */
510 >    ///  Counts of local objects
511 >    int nAtoms_;              /**< number of atoms in local processor */
512 >    int nBonds_;              /**< number of bonds in local processor */
513 >    int nBends_;              /**< number of bends in local processor */
514 >    int nTorsions_;           /**< number of torsions in local processor */
515 >    int nInversions_;         /**< number of inversions in local processor */
516 >    int nRigidBodies_;        /**< number of rigid bodies in local processor */
517 >    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
518 >    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
519 >    int nConstraints_;        /**< number of constraints in local processors */
520          
521 <        //degress of freedom
522 <        int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
523 <        int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
524 <        int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
525 <        int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
526 <        
527 <        //number of global objects
528 <        int nGlobalMols_;       /**< number of molecules in the system */
529 <        int nGlobalAtoms_;   /**< number of atoms in the system */
530 <        int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
531 <        int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
532 <        int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
533 <        /**
534 <         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
454 <         * corresponding content is the global index of cutoff group this atom belong to.
455 <         * It is filled by SimCreator once and only once, since it never changed during the simulation.
456 <         */
457 <        std::vector<int> globalGroupMembership_;
458 <
459 <        /**
460 <         * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
461 <         * corresponding content is the global index of molecule this atom belong to.
462 <         * It is filled by SimCreator once and only once, since it is never changed during the simulation.
463 <         */
464 <        std::vector<int> globalMolMembership_;        
521 >    /// Counts of global objects
522 >    int nGlobalMols_;              /**< number of molecules in the system (GLOBAL) */
523 >    int nGlobalAtoms_;             /**< number of atoms in the system (GLOBAL) */
524 >    int nGlobalCutoffGroups_;      /**< number of cutoff groups in this system (GLOBAL) */
525 >    int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
526 >    int nGlobalRigidBodies_;       /**< number of rigid bodies in this system (GLOBAL) */
527 >      
528 >    /// Degress of freedom
529 >    int ndf_;          /**< number of degress of freedom (excludes constraints) (LOCAL) */
530 >    int fdf_local;     /**< number of frozen degrees of freedom (LOCAL) */
531 >    int fdf_;          /**< number of frozen degrees of freedom (GLOBAL) */
532 >    int ndfRaw_;       /**< number of degress of freedom (includes constraints),  (LOCAL) */
533 >    int ndfTrans_;     /**< number of translation degress of freedom, (LOCAL) */
534 >    int nZconstraint_; /**< number of  z-constraint molecules (GLOBAL) */
535  
536 <        
537 <        std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
538 <        std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
539 <        
540 <        //number of local objects
541 <        int nAtoms_;                        /**< number of atoms in local processor */
542 <        int nBonds_;                        /**< number of bonds in local processor */
543 <        int nBends_;                        /**< number of bends in local processor */
544 <        int nTorsions_;                    /**< number of torsions in local processor */
475 <        int nRigidBodies_;              /**< number of rigid bodies in local processor */
476 <        int nIntegrableObjects_;    /**< number of integrable objects in local processor */
477 <        int nCutoffGroups_;             /**< number of cutoff groups in local processor */
478 <        int nConstraints_;              /**< number of constraints in local processors */
536 >    /// logicals
537 >    bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
538 >    bool usesDirectionalAtoms_;   /**< are there atoms with position AND orientation? */
539 >    bool usesMetallicAtoms_;      /**< are there transition metal atoms? */
540 >    bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
541 >    bool usesAtomicVirial_;       /**< are we computing atomic virials? */
542 >    bool requiresPrepair_;        /**< does this simulation require a pre-pair loop? */
543 >    bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
544 >    bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
545  
546 <        simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
547 <        Exclude exclude_;      
548 <        PropertyMap properties_;                  /**< Generic Property */
549 <        SnapshotManager* sman_;               /**< SnapshotManager */
546 >  public:
547 >    bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
548 >    bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
549 >    bool usesMetallicAtoms() { return usesMetallicAtoms_; }
550 >    bool usesAtomicVirial() { return usesAtomicVirial_; }
551 >    bool requiresPrepair() { return requiresPrepair_; }
552 >    bool requiresSkipCorrection() { return requiresSkipCorrection_;}
553 >    bool requiresSelfCorrection() { return requiresSelfCorrection_;}
554  
555 <        /**
556 <         * The reason to have a local index manager is that when molecule is migrating to other processors,
557 <         * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
488 <         * information of molecule migrating to current processor, Migrator class can query  the LocalIndexManager
489 <         * to make a efficient data moving plan.
490 <         */        
491 <        LocalIndexManager localIndexMan_;
555 >  private:
556 >    /// Data structures holding primary simulation objects
557 >    map<int, Molecule*>  molecules_;  /**< map holding pointers to LOCAL molecules */
558  
559 <        //file names
560 <        std::string finalConfigFileName_;
561 <        std::string dumpFileName_;
562 <        std::string statFileName_;
559 >    /// Stamps are templates for objects that are then used to create
560 >    /// groups of objects.  For example, a molecule stamp contains
561 >    /// information on how to build that molecule (i.e. the topology,
562 >    /// the atoms, the bonds, etc.)  Once the system is built, the
563 >    /// stamps are no longer useful.
564 >    vector<int> molStampIds_;                /**< stamp id for molecules in the system */
565 >    vector<MoleculeStamp*> moleculeStamps_;  /**< molecule stamps array */        
566  
567 <        double rcut_;       /**< cutoff radius*/
568 <        double rsw_;        /**< radius of switching function*/
567 >    /**
568 >     * A vector that maps between the global index of an atom, and the
569 >     * global index of cutoff group the atom belong to.  It is filled
570 >     * by SimCreator once and only once, since it never changed during
571 >     * the simulation.  It should be nGlobalAtoms_ in size.
572 >     */
573 >    vector<int> globalGroupMembership_;
574 >  public:
575 >    vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
576 >  private:
577  
578 <        bool fortranInitialized_; /**< flag indicate whether fortran side is initialized */
578 >    /**
579 >     * A vector that maps between the global index of an atom and the
580 >     * global index of the molecule the atom belongs to.  It is filled
581 >     * by SimCreator once and only once, since it is never changed
582 >     * during the simulation. It shoudl be nGlobalAtoms_ in size.
583 >     */
584 >    vector<int> globalMolMembership_;
585  
586 < #ifdef IS_MPI
587 <    //in Parallel version, we need MolToProc
588 <    public:
589 <                
590 <        /**
591 <         * Finds the processor where a molecule resides
592 <         * @return the id of the processor which contains the molecule
593 <         * @param globalIndex global Index of the molecule
594 <         */
595 <        int getMolToProc(int globalIndex) {
596 <            //assert(globalIndex < molToProcMap_.size());
597 <            return molToProcMap_[globalIndex];
598 <        }
586 >    /**
587 >     * A vector that maps between the local index of an atom and the
588 >     * index of the AtomType.
589 >     */
590 >    vector<int> identArray_;
591 >  public:
592 >    vector<int> getIdentArray() { return identArray_; }
593 >  private:
594 >    
595 >    /**
596 >     * A vector which contains the fractional contribution of an
597 >     * atom's mass to the total mass of the cutoffGroup that atom
598 >     * belongs to.  In the case of single atom cutoff groups, the mass
599 >     * factor for that atom is 1.  For massless atoms, the factor is
600 >     * also 1.
601 >     */
602 >    vector<RealType> massFactors_;
603 >  public:
604 >    vector<RealType> getMassFactors() { return massFactors_; }
605  
606 <        /**
607 <         * Set MolToProcMap array
608 <         * @see #SimCreator::divideMolecules
609 <         */
610 <        void setMolToProcMap(const std::vector<int>& molToProcMap) {
611 <            molToProcMap_ = molToProcMap;
612 <        }
606 >    PairList* getExcludedInteractions() { return &excludedInteractions_; }
607 >    PairList* getOneTwoInteractions() { return &oneTwoInteractions_; }
608 >    PairList* getOneThreeInteractions() { return &oneThreeInteractions_; }
609 >    PairList* getOneFourInteractions() { return &oneFourInteractions_; }
610 >
611 >  private:
612 >              
613 >    /// lists to handle atoms needing special treatment in the non-bonded interactions
614 >    PairList excludedInteractions_;  /**< atoms excluded from interacting with each other */
615 >    PairList oneTwoInteractions_;    /**< atoms that are directly Bonded */
616 >    PairList oneThreeInteractions_;  /**< atoms sharing a Bend */    
617 >    PairList oneFourInteractions_;   /**< atoms sharing a Torsion */
618 >
619 >    PropertyMap properties_;       /**< Generic Properties can be added */
620 >    SnapshotManager* sman_;        /**< SnapshotManager (handles particle positions, etc.) */
621 >
622 >    /**
623 >     * The reason to have a local index manager is that when molecule
624 >     * is migrating to other processors, the atoms and the
625 >     * rigid-bodies will release their local indices to
626 >     * LocalIndexManager. Combining the information of molecule
627 >     * migrating to current processor, Migrator class can query the
628 >     * LocalIndexManager to make a efficient data moving plan.
629 >     */        
630 >    LocalIndexManager localIndexMan_;
631 >
632 >    // unparsed MetaData block for storing in Dump and EOR files:
633 >    string rawMetaData_;
634 >
635 >    // file names
636 >    string finalConfigFileName_;
637 >    string dumpFileName_;
638 >    string statFileName_;
639 >    string restFileName_;
640          
525    private:
641  
642 <        void setupFortranParallel();
642 >    bool topologyDone_;  /** flag to indicate whether the topology has
643 >                             been scanned and all the relevant
644 >                             bookkeeping has been done*/
645 >    
646 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
647 >                            the simulation box dipole moment */
648 >    
649 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
650 >                              Atomic Virials to calculate the pressure */
651 >    
652 >  public:
653 >    /**
654 >     * return an integral objects by its global index. In MPI
655 >     * version, if the StuntDouble with specified global index does
656 >      * not belong to local processor, a NULL will be return.
657 >      */
658 >    StuntDouble* getIOIndexToIntegrableObject(int index);
659 >    void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
660 >    
661 >  private:
662 >    vector<StuntDouble*> IOIndexToIntegrableObject;
663 >    
664 >  public:
665 >                
666 >    /**
667 >     * Finds the processor where a molecule resides
668 >     * @return the id of the processor which contains the molecule
669 >     * @param globalIndex global Index of the molecule
670 >     */
671 >    int getMolToProc(int globalIndex) {
672 >      //assert(globalIndex < molToProcMap_.size());
673 >      return molToProcMap_[globalIndex];
674 >    }
675 >    
676 >    /**
677 >     * Set MolToProcMap array
678 >     * @see #SimCreator::divideMolecules
679 >     */
680 >    void setMolToProcMap(const vector<int>& molToProcMap) {
681 >      molToProcMap_ = molToProcMap;
682 >    }
683          
684 <        /**
685 <         * The size of molToProcMap_ is equal to total number of molecules in the system.
686 <         *  It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
687 <         * once.
688 <         */        
689 <        std::vector<int> molToProcMap_;
684 >  private:
685 >        
686 >    /**
687 >     * The size of molToProcMap_ is equal to total number of molecules
688 >     * in the system.  It maps a molecule to the processor on which it
689 >     * resides. it is filled by SimCreator once and only once.
690 >     */        
691 >    vector<int> molToProcMap_;
692  
693 < #endif
693 >  };
694  
695 < };
539 <
540 < } //namespace oopse
695 > } //namespace OpenMD
696   #endif //BRAINS_SIMMODEL_HPP
697  

Comparing:
trunk/src/brains/SimInfo.hpp (property svn:keywords), Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
branches/development/src/brains/SimInfo.hpp (property svn:keywords), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines