ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.hpp (file contents), Revision 143 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
branches/development/src/brains/SimInfo.hpp (file contents), Revision 1581 by gezelter, Mon Jun 13 22:13:12 2011 UTC

# Line 1 | Line 1
1 < #ifndef __SIMINFO_H__
2 < #define __SIMINFO_H__
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimInfo.hpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <map>
50 < #include <string>
49 > #ifndef BRAINS_SIMMODEL_HPP
50 > #define BRAINS_SIMMODEL_HPP
51 >
52 > #include <iostream>
53 > #include <set>
54 > #include <utility>
55   #include <vector>
56  
57 < #include "primitives/Atom.hpp"
58 < #include "primitives/RigidBody.hpp"
59 < #include "primitives/Molecule.hpp"
60 < #include "brains/Exclude.hpp"
61 < #include "brains/SkipList.hpp"
62 < #include "primitives/AbstractClasses.hpp"
63 < #include "types/MakeStamps.hpp"
64 < #include "brains/SimState.hpp"
65 < #include "restraints/Restraints.hpp"
57 > #include "brains/PairList.hpp"
58 > #include "io/Globals.hpp"
59 > #include "math/Vector3.hpp"
60 > #include "math/SquareMatrix3.hpp"
61 > #include "types/MoleculeStamp.hpp"
62 > #include "UseTheForce/ForceField.hpp"
63 > #include "utils/PropertyMap.hpp"
64 > #include "utils/LocalIndexManager.hpp"
65 > #include "nonbonded/SwitchingFunction.hpp"
66  
67 < #define __C
68 < #include "brains/fSimulation.h"
69 < #include "utils/GenericData.hpp"
67 > using namespace std;
68 > namespace OpenMD{
69 >  //forward declaration
70 >  class SnapshotManager;
71 >  class Molecule;
72 >  class SelectionManager;
73 >  class StuntDouble;
74  
75 +  /**
76 +   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
77 +   *
78 +   * @brief One of the heavy-weight classes of OpenMD, SimInfo
79 +   * maintains objects and variables relating to the current
80 +   * simulation.  This includes the master list of Molecules.  The
81 +   * Molecule class maintains all of the concrete objects (Atoms,
82 +   * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
83 +   * Constraints). In both the single and parallel versions, Atoms and
84 +   * RigidBodies have both global and local indices.
85 +   */
86 +  class SimInfo {
87 +  public:
88 +    typedef map<int, Molecule*>::iterator  MoleculeIterator;
89 +    
90 +    /**
91 +     * Constructor of SimInfo
92 +     *
93 +     * @param molStampPairs MoleculeStamp Array. The first element of
94 +     * the pair is molecule stamp, the second element is the total
95 +     * number of molecules with the same molecule stamp in the system
96 +     *
97 +     * @param ff pointer of a concrete ForceField instance
98 +     *
99 +     * @param simParams
100 +     */
101 +    SimInfo(ForceField* ff, Globals* simParams);
102 +    virtual ~SimInfo();
103  
104 < //#include "Minimizer.hpp"
105 < //#include "minimizers/OOPSEMinimizer.hpp"
104 >    /**
105 >     * Adds a molecule
106 >     *
107 >     * @return return true if adding successfully, return false if the
108 >     * molecule is already in SimInfo
109 >     *
110 >     * @param mol molecule to be added
111 >     */
112 >    bool addMolecule(Molecule* mol);
113  
114 +    /**
115 +     * Removes a molecule from SimInfo
116 +     *
117 +     * @return true if removing successfully, return false if molecule
118 +     * is not in this SimInfo
119 +     */
120 +    bool removeMolecule(Molecule* mol);
121  
122 < double roundMe( double x );
123 < class OOPSEMinimizer;
124 < class SimInfo{
122 >    /** Returns the total number of molecules in the system. */
123 >    int getNGlobalMolecules() {
124 >      return nGlobalMols_;
125 >    }
126  
127 < public:
127 >    /** Returns the total number of atoms in the system. */
128 >    int getNGlobalAtoms() {
129 >      return nGlobalAtoms_;
130 >    }
131  
132 <  SimInfo();
133 <  ~SimInfo();
132 >    /** Returns the total number of cutoff groups in the system. */
133 >    int getNGlobalCutoffGroups() {
134 >      return nGlobalCutoffGroups_;
135 >    }
136  
137 <  int n_atoms; // the number of atoms
138 <  Atom **atoms; // the array of atom objects
137 >    /**
138 >     * Returns the total number of integrable objects (total number of
139 >     * rigid bodies plus the total number of atoms which do not belong
140 >     * to the rigid bodies) in the system
141 >     */
142 >    int getNGlobalIntegrableObjects() {
143 >      return nGlobalIntegrableObjects_;
144 >    }
145  
146 <  vector<RigidBody*> rigidBodies;  // A vector of rigid bodies
147 <  vector<StuntDouble*> integrableObjects;
148 <  
149 <  double tau[9]; // the stress tensor
146 >    /**
147 >     * Returns the total number of integrable objects (total number of
148 >     * rigid bodies plus the total number of atoms which do not belong
149 >     * to the rigid bodies) in the system
150 >     */
151 >    int getNGlobalRigidBodies() {
152 >      return nGlobalRigidBodies_;
153 >    }
154  
155 <  int n_bonds;    // number of bends
156 <  int n_bends;    // number of bends
157 <  int n_torsions; // number of torsions
158 <  int n_oriented; // number of of atoms with orientation
159 <  int ndf;        // number of actual degrees of freedom
160 <  int ndfRaw;     // number of settable degrees of freedom
161 <  int ndfTrans;   // number of translational degrees of freedom
162 <  int nZconstraints; // the number of zConstraints
155 >    int getNGlobalConstraints();
156 >    /**
157 >     * Returns the number of local molecules.
158 >     * @return the number of local molecules
159 >     */
160 >    int getNMolecules() {
161 >      return molecules_.size();
162 >    }
163  
164 <  int setTemp;   // boolean to set the temperature at each sampleTime
165 <  int resetIntegrator; // boolean to reset the integrator
164 >    /** Returns the number of local atoms */
165 >    unsigned int getNAtoms() {
166 >      return nAtoms_;
167 >    }
168  
169 <  int n_dipoles; // number of dipoles
169 >    /** Returns the number of effective cutoff groups on local processor */
170 >    unsigned int getNLocalCutoffGroups();
171  
172 <  int n_exclude;
173 <  Exclude* excludes;  // the exclude list for ignoring pairs in fortran
174 <  int nGlobalExcludes;
175 <  int* globalExcludes; // same as above, but these guys participate in
62 <                       // no long range forces.
172 >    /** Returns the number of local bonds */        
173 >    unsigned int getNBonds(){
174 >      return nBonds_;
175 >    }
176  
177 <  int* identArray;     // array of unique identifiers for the atoms
178 <  int* molMembershipArray;  // map of atom numbers onto molecule numbers
177 >    /** Returns the number of local bends */        
178 >    unsigned int getNBends() {
179 >      return nBends_;
180 >    }
181  
182 <  int n_constraints; // the number of constraints on the system
182 >    /** Returns the number of local torsions */        
183 >    unsigned int getNTorsions() {
184 >      return nTorsions_;
185 >    }
186  
187 <  int n_SRI;   // the number of short range interactions
187 >    /** Returns the number of local torsions */        
188 >    unsigned int getNInversions() {
189 >      return nInversions_;
190 >    }
191 >    /** Returns the number of local rigid bodies */        
192 >    unsigned int getNRigidBodies() {
193 >      return nRigidBodies_;
194 >    }
195  
196 <  double lrPot; // the potential energy from the long range calculations.
196 >    /** Returns the number of local integrable objects */
197 >    unsigned int getNIntegrableObjects() {
198 >      return nIntegrableObjects_;
199 >    }
200  
201 <  double Hmat[3][3];  // the periodic boundry conditions. The Hmat is the
202 <                      // column vectors of the x, y, and z box vectors.
203 <                      //   h1  h2  h3
204 <                      // [ Xx  Yx  Zx ]
77 <                      // [ Xy  Yy  Zy ]
78 <                      // [ Xz  Yz  Zz ]
79 <                      //  
80 <  double HmatInv[3][3];
201 >    /** Returns the number of local cutoff groups */
202 >    unsigned int getNCutoffGroups() {
203 >      return nCutoffGroups_;
204 >    }
205  
206 <  double boxL[3]; // The Lengths of the 3 column vectors of Hmat
207 <  double boxVol;
208 <  int orthoRhombic;
209 <  
206 >    /** Returns the total number of constraints in this SimInfo */
207 >    unsigned int getNConstraints() {
208 >      return nConstraints_;
209 >    }
210 >        
211 >    /**
212 >     * Returns the first molecule in this SimInfo and intialize the iterator.
213 >     * @return the first molecule, return NULL if there is not molecule in this SimInfo
214 >     * @param i the iterator of molecule array (user shouldn't change it)
215 >     */
216 >    Molecule* beginMolecule(MoleculeIterator& i);
217  
218 <  double dielectric;      // the dielectric of the medium for reaction field
218 >    /**
219 >     * Returns the next avaliable Molecule based on the iterator.
220 >     * @return the next avaliable molecule, return NULL if reaching the end of the array
221 >     * @param i the iterator of molecule array
222 >     */
223 >    Molecule* nextMolecule(MoleculeIterator& i);
224  
225 <  
226 <  int usePBC; // whether we use periodic boundry conditions.
227 <  int useDirectionalAtoms;
228 <  int useLennardJones;
93 <  int useElectrostatics;
94 <  int useCharges;
95 <  int useDipoles;
96 <  int useSticky;
97 <  int useGayBerne;
98 <  int useEAM;
99 <  int useShapes;
100 <  int useFLARB;
101 <  int useReactionField;
102 <  bool haveCutoffGroups;
103 <  bool useInitXSstate;
104 <  double orthoTolerance;
225 >    /** Returns the number of degrees of freedom */
226 >    int getNdf() {
227 >      return ndf_ - getFdf();
228 >    }
229  
230 <  double dt, run_time;           // the time step and total time
231 <  double sampleTime, statusTime; // the position and energy dump frequencies
232 <  double target_temp;            // the target temperature of the system
233 <  double thermalTime;            // the temp kick interval
110 <  double currentTime;            // Used primarily for correlation Functions
111 <  double resetTime;              // Use to reset the integrator periodically
112 <  short int have_target_temp;
230 >    /** Returns the number of raw degrees of freedom */
231 >    int getNdfRaw() {
232 >      return ndfRaw_;
233 >    }
234  
235 <  int n_mol;           // n_molecules;
236 <  Molecule* molecules; // the array of molecules
237 <  
238 <  int nComponents;           // the number of components in the system
118 <  int* componentsNmol;       // the number of molecules of each component
119 <  MoleculeStamp** compStamps;// the stamps matching the components
120 <  LinkedMolStamp* headStamp; // list of stamps used in the simulation
121 <  
122 <  
123 <  char ensemble[100]; // the enesemble of the simulation (NVT, NVE, etc. )
124 <  char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
125 <  BaseIntegrator *the_integrator; // the integrator of the simulation
235 >    /** Returns the number of translational degrees of freedom */
236 >    int getNdfTrans() {
237 >      return ndfTrans_;
238 >    }
239  
240 <  OOPSEMinimizer* the_minimizer; // the energy minimizer
241 <  Restraints* restraint;
242 <  bool has_minimizer;
240 >    /** sets the current number of frozen degrees of freedom */
241 >    void setFdf(int fdf) {
242 >      fdf_local = fdf;
243 >    }
244  
245 <  string finalName;  // the name of the eor file to be written
246 <  string sampleName; // the name of the dump file to be written
247 <  string statusName; // the name of the stat file to be written
245 >    int getFdf();
246 >    
247 >    //getNZconstraint and setNZconstraint ruin the coherence of
248 >    //SimInfo class, need refactoring
249 >        
250 >    /** Returns the total number of z-constraint molecules in the system */
251 >    int getNZconstraint() {
252 >      return nZconstraint_;
253 >    }
254  
255 <  int seed;                    //seed for random number generator
255 >    /**
256 >     * Sets the number of z-constraint molecules in the system.
257 >     */
258 >    void setNZconstraint(int nZconstraint) {
259 >      nZconstraint_ = nZconstraint;
260 >    }
261 >        
262 >    /** Returns the snapshot manager. */
263 >    SnapshotManager* getSnapshotManager() {
264 >      return sman_;
265 >    }
266  
267 <  int useSolidThermInt;  // is solid-state thermodynamic integration being used
268 <  int useLiquidThermInt; // is liquid thermodynamic integration being used
269 <  double thermIntLambda; // lambda for TI
270 <  double thermIntK;      // power of lambda for TI
271 <  double vRaw;           // unperturbed potential for TI
272 <  double vHarm;          // harmonic potential for TI
273 <  int i;                 // just an int
267 >    /** Sets the snapshot manager. */
268 >    void setSnapshotManager(SnapshotManager* sman);
269 >        
270 >    /** Returns the force field */
271 >    ForceField* getForceField() {
272 >      return forceField_;
273 >    }
274  
275 <  vector<double> mfact;
276 <  vector<int> FglobalGroupMembership;
277 <  int ngroup;
148 <  int* globalGroupMembership;
275 >    Globals* getSimParams() {
276 >      return simParams_;
277 >    }
278  
279 <  // refreshes the sim if things get changed (load balanceing, volume
280 <  // adjustment, etc.)
279 >    /** Returns the velocity of center of mass of the whole system.*/
280 >    Vector3d getComVel();
281  
282 <  void refreshSim( void );
283 <  
282 >    /** Returns the center of the mass of the whole system.*/
283 >    Vector3d getCom();
284 >    /** Returns the center of the mass and Center of Mass velocity of
285 >        the whole system.*/
286 >    void getComAll(Vector3d& com,Vector3d& comVel);
287  
288 <  // sets the internal function pointer to fortran.
288 >    /** Returns intertia tensor for the entire system and system
289 >        Angular Momentum.*/
290 >    void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
291 >    
292 >    /** Returns system angular momentum */
293 >    Vector3d getAngularMomentum();
294  
295 +    /** Returns volume of system as estimated by an ellipsoid defined
296 +        by the radii of gyration*/
297 +    void getGyrationalVolume(RealType &vol);
298 +    /** Overloaded version of gyrational volume that also returns
299 +        det(I) so dV/dr can be calculated*/
300 +    void getGyrationalVolume(RealType &vol, RealType &detI);
301  
302 <  int getNDF();
303 <  int getNDFraw();
304 <  int getNDFtranslational();
305 <  int getTotIntegrableObjects();
306 <  void setBox( double newBox[3] );
164 <  void setBoxM( double newBox[3][3] );
165 <  void getBoxM( double theBox[3][3] );
166 <  void scaleBox( double scale );
167 <  
168 <  void setDefaultRcut( double theRcut );
169 <  void setDefaultRcut( double theRcut, double theRsw );
170 <  void checkCutOffs( void );
302 >    void update();
303 >    /**
304 >     * Do final bookkeeping before Force managers need their data.
305 >     */
306 >    void prepareTopology();
307  
172  double getRcut( void )  { return rCut; }
173  double getRlist( void ) { return rList; }
174  double getRsw( void )   { return rSw; }
175  double getMaxCutoff( void ) { return maxCutoff; }
176  
177  void setTime( double theTime ) { currentTime = theTime; }
178  void incrTime( double the_dt ) { currentTime += the_dt; }
179  void decrTime( double the_dt ) { currentTime -= the_dt; }
180  double getTime( void ) { return currentTime; }
308  
309 <  void wrapVector( double thePos[3] );
310 <
311 <  SimState* getConfiguration( void ) { return myConfiguration; }
312 <  
186 <  void addProperty(GenericData* prop);
187 <  GenericData* getProperty(const string& propName);
188 <  //vector<GenericData*>& getProperties()  {return properties;}    
309 >    /** Returns the local index manager */
310 >    LocalIndexManager* getLocalIndexManager() {
311 >      return &localIndexMan_;
312 >    }
313  
314 <  int getSeed(void) {  return seed; }
315 <  void setSeed(int theSeed) {  seed = theSeed;}
314 >    int getMoleculeStampId(int globalIndex) {
315 >      //assert(globalIndex < molStampIds_.size())
316 >      return molStampIds_[globalIndex];
317 >    }
318  
319 < private:
319 >    /** Returns the molecule stamp */
320 >    MoleculeStamp* getMoleculeStamp(int id) {
321 >      return moleculeStamps_[id];
322 >    }
323  
324 <  SimState* myConfiguration;
324 >    /** Return the total number of the molecule stamps */
325 >    int getNMoleculeStamp() {
326 >      return moleculeStamps_.size();
327 >    }
328 >    /**
329 >     * Finds a molecule with a specified global index
330 >     * @return a pointer point to found molecule
331 >     * @param index
332 >     */
333 >    Molecule* getMoleculeByGlobalIndex(int index) {
334 >      MoleculeIterator i;
335 >      i = molecules_.find(index);
336  
337 <  int boxIsInit, haveRcut, haveRsw;
337 >      return i != molecules_.end() ? i->second : NULL;
338 >    }
339  
340 <  double rList, rCut; // variables for the neighborlist
341 <  double rSw;         // the switching radius
340 >    int getGlobalMolMembership(int id){
341 >      return globalMolMembership_[id];
342 >    }
343  
344 <  double maxCutoff;
344 >    /**
345 >     * returns a vector which maps the local atom index on this
346 >     * processor to the global atom index.  With only one processor,
347 >     * these should be identical.
348 >     */
349 >    vector<int> getGlobalAtomIndices();
350  
351 <  double distXY;
352 <  double distYZ;
353 <  double distZX;
354 <  
355 <  void calcHmatInv( void );
356 <  void calcBoxL();
210 <  double calcMaxCutOff();
351 >    /**
352 >     * returns a vector which maps the local cutoff group index on
353 >     * this processor to the global cutoff group index.  With only one
354 >     * processor, these should be identical.
355 >     */
356 >    vector<int> getGlobalGroupIndices();
357  
358 <  
359 <  //Addtional Properties of SimInfo
360 <  map<string, GenericData*> properties;
361 <  void getFortranGroupArrays(SimInfo* info,
216 <                             vector<int>& FglobalGroupMembership,
217 <                             vector<double>& mfact);
358 >        
359 >    string getFinalConfigFileName() {
360 >      return finalConfigFileName_;
361 >    }
362  
363 +    void setFinalConfigFileName(const string& fileName) {
364 +      finalConfigFileName_ = fileName;
365 +    }
366  
367 < };
367 >    string getRawMetaData() {
368 >      return rawMetaData_;
369 >    }
370 >    void setRawMetaData(const string& rawMetaData) {
371 >      rawMetaData_ = rawMetaData;
372 >    }
373 >        
374 >    string getDumpFileName() {
375 >      return dumpFileName_;
376 >    }
377 >        
378 >    void setDumpFileName(const string& fileName) {
379 >      dumpFileName_ = fileName;
380 >    }
381  
382 +    string getStatFileName() {
383 +      return statFileName_;
384 +    }
385 +        
386 +    void setStatFileName(const string& fileName) {
387 +      statFileName_ = fileName;
388 +    }
389 +        
390 +    string getRestFileName() {
391 +      return restFileName_;
392 +    }
393 +        
394 +    void setRestFileName(const string& fileName) {
395 +      restFileName_ = fileName;
396 +    }
397  
398 < #endif
398 >    /**
399 >     * Sets GlobalGroupMembership
400 >     * @see #SimCreator::setGlobalIndex
401 >     */  
402 >    void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
403 >      assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
404 >      globalGroupMembership_ = globalGroupMembership;
405 >    }
406 >
407 >    /**
408 >     * Sets GlobalMolMembership
409 >     * @see #SimCreator::setGlobalIndex
410 >     */        
411 >    void setGlobalMolMembership(const vector<int>& globalMolMembership) {
412 >      assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
413 >      globalMolMembership_ = globalMolMembership;
414 >    }
415 >
416 >
417 >    bool isTopologyDone() {
418 >      return topologyDone_;
419 >    }
420 >        
421 >    bool getCalcBoxDipole() {
422 >      return calcBoxDipole_;
423 >    }
424 >
425 >    bool getUseAtomicVirial() {
426 >      return useAtomicVirial_;
427 >    }
428 >
429 >    /**
430 >     * Adds property into property map
431 >     * @param genData GenericData to be added into PropertyMap
432 >     */
433 >    void addProperty(GenericData* genData);
434 >
435 >    /**
436 >     * Removes property from PropertyMap by name
437 >     * @param propName the name of property to be removed
438 >     */
439 >    void removeProperty(const string& propName);
440 >
441 >    /**
442 >     * clear all of the properties
443 >     */
444 >    void clearProperties();
445 >
446 >    /**
447 >     * Returns all names of properties
448 >     * @return all names of properties
449 >     */
450 >    vector<string> getPropertyNames();
451 >
452 >    /**
453 >     * Returns all of the properties in PropertyMap
454 >     * @return all of the properties in PropertyMap
455 >     */      
456 >    vector<GenericData*> getProperties();
457 >
458 >    /**
459 >     * Returns property
460 >     * @param propName name of property
461 >     * @return a pointer point to property with propName. If no property named propName
462 >     * exists, return NULL
463 >     */      
464 >    GenericData* getPropertyByName(const string& propName);
465 >
466 >    /**
467 >     * add all special interaction pairs (including excluded
468 >     * interactions) in a molecule into the appropriate lists.
469 >     */
470 >    void addInteractionPairs(Molecule* mol);
471 >
472 >    /**
473 >     * remove all special interaction pairs which belong to a molecule
474 >     * from the appropriate lists.
475 >     */
476 >    void removeInteractionPairs(Molecule* mol);
477 >
478 >    /** Returns the set of atom types present in this simulation */
479 >    set<AtomType*> getSimulatedAtomTypes();
480 >        
481 >    friend ostream& operator <<(ostream& o, SimInfo& info);
482 >
483 >    void getCutoff(RealType& rcut, RealType& rsw);
484 >        
485 >  private:
486 >
487 >    /** fill up the simtype struct and other simulation-related variables */
488 >    void setupSimVariables();
489 >
490 >
491 >    /** Determine if we need to accumulate the simulation box dipole */
492 >    void setupAccumulateBoxDipole();
493 >
494 >    /** Calculates the number of degress of freedom in the whole system */
495 >    void calcNdf();
496 >    void calcNdfRaw();
497 >    void calcNdfTrans();
498 >
499 >    /**
500 >     * Adds molecule stamp and the total number of the molecule with
501 >     * same molecule stamp in the whole system.
502 >     */
503 >    void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
504 >
505 >    // Other classes holdingn important information
506 >    ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
507 >    Globals* simParams_;     /**< provides access to simulation parameters set by user */
508 >
509 >    ///  Counts of local objects
510 >    int nAtoms_;              /**< number of atoms in local processor */
511 >    int nBonds_;              /**< number of bonds in local processor */
512 >    int nBends_;              /**< number of bends in local processor */
513 >    int nTorsions_;           /**< number of torsions in local processor */
514 >    int nInversions_;         /**< number of inversions in local processor */
515 >    int nRigidBodies_;        /**< number of rigid bodies in local processor */
516 >    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
517 >    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
518 >    int nConstraints_;        /**< number of constraints in local processors */
519 >        
520 >    /// Counts of global objects
521 >    int nGlobalMols_;              /**< number of molecules in the system (GLOBAL) */
522 >    int nGlobalAtoms_;             /**< number of atoms in the system (GLOBAL) */
523 >    int nGlobalCutoffGroups_;      /**< number of cutoff groups in this system (GLOBAL) */
524 >    int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
525 >    int nGlobalRigidBodies_;       /**< number of rigid bodies in this system (GLOBAL) */
526 >      
527 >    /// Degress of freedom
528 >    int ndf_;          /**< number of degress of freedom (excludes constraints) (LOCAL) */
529 >    int fdf_local;     /**< number of frozen degrees of freedom (LOCAL) */
530 >    int fdf_;          /**< number of frozen degrees of freedom (GLOBAL) */
531 >    int ndfRaw_;       /**< number of degress of freedom (includes constraints),  (LOCAL) */
532 >    int ndfTrans_;     /**< number of translation degress of freedom, (LOCAL) */
533 >    int nZconstraint_; /**< number of  z-constraint molecules (GLOBAL) */
534 >
535 >    /// logicals
536 >    bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
537 >    bool usesDirectionalAtoms_;   /**< are there atoms with position AND orientation? */
538 >    bool usesMetallicAtoms_;      /**< are there transition metal atoms? */
539 >    bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
540 >    bool usesAtomicVirial_;       /**< are we computing atomic virials? */
541 >    bool requiresPrepair_;        /**< does this simulation require a pre-pair loop? */
542 >    bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
543 >    bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
544 >
545 >  public:
546 >    bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
547 >    bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
548 >    bool usesMetallicAtoms() { return usesMetallicAtoms_; }
549 >    bool usesAtomicVirial() { return usesAtomicVirial_; }
550 >    bool requiresPrepair() { return requiresPrepair_; }
551 >    bool requiresSkipCorrection() { return requiresSkipCorrection_;}
552 >    bool requiresSelfCorrection() { return requiresSelfCorrection_;}
553 >
554 >  private:
555 >    /// Data structures holding primary simulation objects
556 >    map<int, Molecule*>  molecules_;  /**< map holding pointers to LOCAL molecules */
557 >
558 >    /// Stamps are templates for objects that are then used to create
559 >    /// groups of objects.  For example, a molecule stamp contains
560 >    /// information on how to build that molecule (i.e. the topology,
561 >    /// the atoms, the bonds, etc.)  Once the system is built, the
562 >    /// stamps are no longer useful.
563 >    vector<int> molStampIds_;                /**< stamp id for molecules in the system */
564 >    vector<MoleculeStamp*> moleculeStamps_;  /**< molecule stamps array */        
565 >
566 >    /**
567 >     * A vector that maps between the global index of an atom, and the
568 >     * global index of cutoff group the atom belong to.  It is filled
569 >     * by SimCreator once and only once, since it never changed during
570 >     * the simulation.  It should be nGlobalAtoms_ in size.
571 >     */
572 >    vector<int> globalGroupMembership_;
573 >  public:
574 >    vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
575 >  private:
576 >
577 >    /**
578 >     * A vector that maps between the global index of an atom and the
579 >     * global index of the molecule the atom belongs to.  It is filled
580 >     * by SimCreator once and only once, since it is never changed
581 >     * during the simulation. It shoudl be nGlobalAtoms_ in size.
582 >     */
583 >    vector<int> globalMolMembership_;
584 >
585 >    /**
586 >     * A vector that maps between the local index of an atom and the
587 >     * index of the AtomType.
588 >     */
589 >    vector<int> identArray_;
590 >  public:
591 >    vector<int> getIdentArray() { return identArray_; }
592 >  private:
593 >    
594 >    /**
595 >     * A vector which contains the fractional contribution of an
596 >     * atom's mass to the total mass of the cutoffGroup that atom
597 >     * belongs to.  In the case of single atom cutoff groups, the mass
598 >     * factor for that atom is 1.  For massless atoms, the factor is
599 >     * also 1.
600 >     */
601 >    vector<RealType> massFactors_;
602 >  public:
603 >    vector<RealType> getMassFactors() { return massFactors_; }
604 >
605 >    PairList getExcludedInteractions() { return excludedInteractions_; }
606 >    PairList getOneTwoInteractions() { return oneTwoInteractions_; }
607 >    PairList getOneThreeInteractions() { return oneThreeInteractions_; }
608 >    PairList getOneFourInteractions() { return oneFourInteractions_; }
609 >
610 >  private:
611 >              
612 >    /// lists to handle atoms needing special treatment in the non-bonded interactions
613 >    PairList excludedInteractions_;  /**< atoms excluded from interacting with each other */
614 >    PairList oneTwoInteractions_;    /**< atoms that are directly Bonded */
615 >    PairList oneThreeInteractions_;  /**< atoms sharing a Bend */    
616 >    PairList oneFourInteractions_;   /**< atoms sharing a Torsion */
617 >
618 >    PropertyMap properties_;       /**< Generic Properties can be added */
619 >    SnapshotManager* sman_;        /**< SnapshotManager (handles particle positions, etc.) */
620 >
621 >    /**
622 >     * The reason to have a local index manager is that when molecule
623 >     * is migrating to other processors, the atoms and the
624 >     * rigid-bodies will release their local indices to
625 >     * LocalIndexManager. Combining the information of molecule
626 >     * migrating to current processor, Migrator class can query the
627 >     * LocalIndexManager to make a efficient data moving plan.
628 >     */        
629 >    LocalIndexManager localIndexMan_;
630 >
631 >    // unparsed MetaData block for storing in Dump and EOR files:
632 >    string rawMetaData_;
633 >
634 >    // file names
635 >    string finalConfigFileName_;
636 >    string dumpFileName_;
637 >    string statFileName_;
638 >    string restFileName_;
639 >        
640 >
641 >    bool topologyDone_;  /** flag to indicate whether the topology has
642 >                             been scanned and all the relevant
643 >                             bookkeeping has been done*/
644 >    
645 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
646 >                            the simulation box dipole moment */
647 >    
648 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
649 >                              Atomic Virials to calculate the pressure */
650 >    
651 >  public:
652 >    /**
653 >     * return an integral objects by its global index. In MPI
654 >     * version, if the StuntDouble with specified global index does
655 >      * not belong to local processor, a NULL will be return.
656 >      */
657 >    StuntDouble* getIOIndexToIntegrableObject(int index);
658 >    void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
659 >    
660 >  private:
661 >    vector<StuntDouble*> IOIndexToIntegrableObject;
662 >    
663 >  public:
664 >                
665 >    /**
666 >     * Finds the processor where a molecule resides
667 >     * @return the id of the processor which contains the molecule
668 >     * @param globalIndex global Index of the molecule
669 >     */
670 >    int getMolToProc(int globalIndex) {
671 >      //assert(globalIndex < molToProcMap_.size());
672 >      return molToProcMap_[globalIndex];
673 >    }
674 >    
675 >    /**
676 >     * Set MolToProcMap array
677 >     * @see #SimCreator::divideMolecules
678 >     */
679 >    void setMolToProcMap(const vector<int>& molToProcMap) {
680 >      molToProcMap_ = molToProcMap;
681 >    }
682 >        
683 >  private:
684 >        
685 >    /**
686 >     * The size of molToProcMap_ is equal to total number of molecules
687 >     * in the system.  It maps a molecule to the processor on which it
688 >     * resides. it is filled by SimCreator once and only once.
689 >     */        
690 >    vector<int> molToProcMap_;
691 >
692 >  };
693 >
694 > } //namespace OpenMD
695 > #endif //BRAINS_SIMMODEL_HPP
696 >

Comparing:
trunk/src/brains/SimInfo.hpp (property svn:keywords), Revision 143 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
branches/development/src/brains/SimInfo.hpp (property svn:keywords), Revision 1581 by gezelter, Mon Jun 13 22:13:12 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines