ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
Revision: 1577
Committed: Wed Jun 8 20:26:56 2011 UTC (13 years, 10 months ago) by gezelter
File size: 23348 byte(s)
Log Message:
bug fixes

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file SimInfo.hpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #ifndef BRAINS_SIMMODEL_HPP
50 #define BRAINS_SIMMODEL_HPP
51
52 #include <iostream>
53 #include <set>
54 #include <utility>
55 #include <vector>
56
57 #include "brains/PairList.hpp"
58 #include "io/Globals.hpp"
59 #include "math/Vector3.hpp"
60 #include "math/SquareMatrix3.hpp"
61 #include "types/MoleculeStamp.hpp"
62 #include "UseTheForce/ForceField.hpp"
63 #include "utils/PropertyMap.hpp"
64 #include "utils/LocalIndexManager.hpp"
65 #include "nonbonded/SwitchingFunction.hpp"
66
67 using namespace std;
68 namespace OpenMD{
69 //forward declaration
70 class SnapshotManager;
71 class Molecule;
72 class SelectionManager;
73 class StuntDouble;
74
75 /**
76 * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
77 *
78 * @brief One of the heavy-weight classes of OpenMD, SimInfo
79 * maintains objects and variables relating to the current
80 * simulation. This includes the master list of Molecules. The
81 * Molecule class maintains all of the concrete objects (Atoms,
82 * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
83 * Constraints). In both the single and parallel versions, Atoms and
84 * RigidBodies have both global and local indices.
85 */
86 class SimInfo {
87 public:
88 typedef map<int, Molecule*>::iterator MoleculeIterator;
89
90 /**
91 * Constructor of SimInfo
92 *
93 * @param molStampPairs MoleculeStamp Array. The first element of
94 * the pair is molecule stamp, the second element is the total
95 * number of molecules with the same molecule stamp in the system
96 *
97 * @param ff pointer of a concrete ForceField instance
98 *
99 * @param simParams
100 */
101 SimInfo(ForceField* ff, Globals* simParams);
102 virtual ~SimInfo();
103
104 /**
105 * Adds a molecule
106 *
107 * @return return true if adding successfully, return false if the
108 * molecule is already in SimInfo
109 *
110 * @param mol molecule to be added
111 */
112 bool addMolecule(Molecule* mol);
113
114 /**
115 * Removes a molecule from SimInfo
116 *
117 * @return true if removing successfully, return false if molecule
118 * is not in this SimInfo
119 */
120 bool removeMolecule(Molecule* mol);
121
122 /** Returns the total number of molecules in the system. */
123 int getNGlobalMolecules() {
124 return nGlobalMols_;
125 }
126
127 /** Returns the total number of atoms in the system. */
128 int getNGlobalAtoms() {
129 return nGlobalAtoms_;
130 }
131
132 /** Returns the total number of cutoff groups in the system. */
133 int getNGlobalCutoffGroups() {
134 return nGlobalCutoffGroups_;
135 }
136
137 /**
138 * Returns the total number of integrable objects (total number of
139 * rigid bodies plus the total number of atoms which do not belong
140 * to the rigid bodies) in the system
141 */
142 int getNGlobalIntegrableObjects() {
143 return nGlobalIntegrableObjects_;
144 }
145
146 /**
147 * Returns the total number of integrable objects (total number of
148 * rigid bodies plus the total number of atoms which do not belong
149 * to the rigid bodies) in the system
150 */
151 int getNGlobalRigidBodies() {
152 return nGlobalRigidBodies_;
153 }
154
155 int getNGlobalConstraints();
156 /**
157 * Returns the number of local molecules.
158 * @return the number of local molecules
159 */
160 int getNMolecules() {
161 return molecules_.size();
162 }
163
164 /** Returns the number of local atoms */
165 unsigned int getNAtoms() {
166 return nAtoms_;
167 }
168
169 /** Returns the number of effective cutoff groups on local processor */
170 unsigned int getNLocalCutoffGroups();
171
172 /** Returns the number of local bonds */
173 unsigned int getNBonds(){
174 return nBonds_;
175 }
176
177 /** Returns the number of local bends */
178 unsigned int getNBends() {
179 return nBends_;
180 }
181
182 /** Returns the number of local torsions */
183 unsigned int getNTorsions() {
184 return nTorsions_;
185 }
186
187 /** Returns the number of local torsions */
188 unsigned int getNInversions() {
189 return nInversions_;
190 }
191 /** Returns the number of local rigid bodies */
192 unsigned int getNRigidBodies() {
193 return nRigidBodies_;
194 }
195
196 /** Returns the number of local integrable objects */
197 unsigned int getNIntegrableObjects() {
198 return nIntegrableObjects_;
199 }
200
201 /** Returns the number of local cutoff groups */
202 unsigned int getNCutoffGroups() {
203 return nCutoffGroups_;
204 }
205
206 /** Returns the total number of constraints in this SimInfo */
207 unsigned int getNConstraints() {
208 return nConstraints_;
209 }
210
211 /**
212 * Returns the first molecule in this SimInfo and intialize the iterator.
213 * @return the first molecule, return NULL if there is not molecule in this SimInfo
214 * @param i the iterator of molecule array (user shouldn't change it)
215 */
216 Molecule* beginMolecule(MoleculeIterator& i);
217
218 /**
219 * Returns the next avaliable Molecule based on the iterator.
220 * @return the next avaliable molecule, return NULL if reaching the end of the array
221 * @param i the iterator of molecule array
222 */
223 Molecule* nextMolecule(MoleculeIterator& i);
224
225 /** Returns the number of degrees of freedom */
226 int getNdf() {
227 return ndf_ - getFdf();
228 }
229
230 /** Returns the number of raw degrees of freedom */
231 int getNdfRaw() {
232 return ndfRaw_;
233 }
234
235 /** Returns the number of translational degrees of freedom */
236 int getNdfTrans() {
237 return ndfTrans_;
238 }
239
240 /** sets the current number of frozen degrees of freedom */
241 void setFdf(int fdf) {
242 fdf_local = fdf;
243 }
244
245 int getFdf();
246
247 //getNZconstraint and setNZconstraint ruin the coherence of
248 //SimInfo class, need refactoring
249
250 /** Returns the total number of z-constraint molecules in the system */
251 int getNZconstraint() {
252 return nZconstraint_;
253 }
254
255 /**
256 * Sets the number of z-constraint molecules in the system.
257 */
258 void setNZconstraint(int nZconstraint) {
259 nZconstraint_ = nZconstraint;
260 }
261
262 /** Returns the snapshot manager. */
263 SnapshotManager* getSnapshotManager() {
264 return sman_;
265 }
266
267 /** Sets the snapshot manager. */
268 void setSnapshotManager(SnapshotManager* sman);
269
270 /** Returns the force field */
271 ForceField* getForceField() {
272 return forceField_;
273 }
274
275 Globals* getSimParams() {
276 return simParams_;
277 }
278
279 /** Returns the velocity of center of mass of the whole system.*/
280 Vector3d getComVel();
281
282 /** Returns the center of the mass of the whole system.*/
283 Vector3d getCom();
284 /** Returns the center of the mass and Center of Mass velocity of
285 the whole system.*/
286 void getComAll(Vector3d& com,Vector3d& comVel);
287
288 /** Returns intertia tensor for the entire system and system
289 Angular Momentum.*/
290 void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
291
292 /** Returns system angular momentum */
293 Vector3d getAngularMomentum();
294
295 /** Returns volume of system as estimated by an ellipsoid defined
296 by the radii of gyration*/
297 void getGyrationalVolume(RealType &vol);
298 /** Overloaded version of gyrational volume that also returns
299 det(I) so dV/dr can be calculated*/
300 void getGyrationalVolume(RealType &vol, RealType &detI);
301
302 void update();
303 /**
304 * Do final bookkeeping before Force managers need their data.
305 */
306 void prepareTopology();
307
308
309 /** Returns the local index manager */
310 LocalIndexManager* getLocalIndexManager() {
311 return &localIndexMan_;
312 }
313
314 int getMoleculeStampId(int globalIndex) {
315 //assert(globalIndex < molStampIds_.size())
316 return molStampIds_[globalIndex];
317 }
318
319 /** Returns the molecule stamp */
320 MoleculeStamp* getMoleculeStamp(int id) {
321 return moleculeStamps_[id];
322 }
323
324 /** Return the total number of the molecule stamps */
325 int getNMoleculeStamp() {
326 return moleculeStamps_.size();
327 }
328 /**
329 * Finds a molecule with a specified global index
330 * @return a pointer point to found molecule
331 * @param index
332 */
333 Molecule* getMoleculeByGlobalIndex(int index) {
334 MoleculeIterator i;
335 i = molecules_.find(index);
336
337 return i != molecules_.end() ? i->second : NULL;
338 }
339
340 int getGlobalMolMembership(int id){
341 return globalMolMembership_[id];
342 }
343
344 /**
345 * returns a vector which maps the local atom index on this
346 * processor to the global atom index. With only one processor,
347 * these should be identical.
348 */
349 vector<int> getGlobalAtomIndices();
350
351 /**
352 * returns a vector which maps the local cutoff group index on
353 * this processor to the global cutoff group index. With only one
354 * processor, these should be identical.
355 */
356 vector<int> getGlobalGroupIndices();
357
358
359 string getFinalConfigFileName() {
360 return finalConfigFileName_;
361 }
362
363 void setFinalConfigFileName(const string& fileName) {
364 finalConfigFileName_ = fileName;
365 }
366
367 string getRawMetaData() {
368 return rawMetaData_;
369 }
370 void setRawMetaData(const string& rawMetaData) {
371 rawMetaData_ = rawMetaData;
372 }
373
374 string getDumpFileName() {
375 return dumpFileName_;
376 }
377
378 void setDumpFileName(const string& fileName) {
379 dumpFileName_ = fileName;
380 }
381
382 string getStatFileName() {
383 return statFileName_;
384 }
385
386 void setStatFileName(const string& fileName) {
387 statFileName_ = fileName;
388 }
389
390 string getRestFileName() {
391 return restFileName_;
392 }
393
394 void setRestFileName(const string& fileName) {
395 restFileName_ = fileName;
396 }
397
398 /**
399 * Sets GlobalGroupMembership
400 * @see #SimCreator::setGlobalIndex
401 */
402 void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
403 assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
404 globalGroupMembership_ = globalGroupMembership;
405 }
406
407 /**
408 * Sets GlobalMolMembership
409 * @see #SimCreator::setGlobalIndex
410 */
411 void setGlobalMolMembership(const vector<int>& globalMolMembership) {
412 assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
413 globalMolMembership_ = globalMolMembership;
414 }
415
416
417 bool isTopologyDone() {
418 return topologyDone_;
419 }
420
421 bool getCalcBoxDipole() {
422 return calcBoxDipole_;
423 }
424
425 bool getUseAtomicVirial() {
426 return useAtomicVirial_;
427 }
428
429 /**
430 * Adds property into property map
431 * @param genData GenericData to be added into PropertyMap
432 */
433 void addProperty(GenericData* genData);
434
435 /**
436 * Removes property from PropertyMap by name
437 * @param propName the name of property to be removed
438 */
439 void removeProperty(const string& propName);
440
441 /**
442 * clear all of the properties
443 */
444 void clearProperties();
445
446 /**
447 * Returns all names of properties
448 * @return all names of properties
449 */
450 vector<string> getPropertyNames();
451
452 /**
453 * Returns all of the properties in PropertyMap
454 * @return all of the properties in PropertyMap
455 */
456 vector<GenericData*> getProperties();
457
458 /**
459 * Returns property
460 * @param propName name of property
461 * @return a pointer point to property with propName. If no property named propName
462 * exists, return NULL
463 */
464 GenericData* getPropertyByName(const string& propName);
465
466 /**
467 * add all special interaction pairs (including excluded
468 * interactions) in a molecule into the appropriate lists.
469 */
470 void addInteractionPairs(Molecule* mol);
471
472 /**
473 * remove all special interaction pairs which belong to a molecule
474 * from the appropriate lists.
475 */
476 void removeInteractionPairs(Molecule* mol);
477
478 /** Returns the set of atom types present in this simulation */
479 set<AtomType*> getSimulatedAtomTypes();
480
481 friend ostream& operator <<(ostream& o, SimInfo& info);
482
483 void getCutoff(RealType& rcut, RealType& rsw);
484
485 private:
486
487 /** fill up the simtype struct and other simulation-related variables */
488 void setupSimVariables();
489
490
491 /** Determine if we need to accumulate the simulation box dipole */
492 void setupAccumulateBoxDipole();
493
494 /** Calculates the number of degress of freedom in the whole system */
495 void calcNdf();
496 void calcNdfRaw();
497 void calcNdfTrans();
498
499 /**
500 * Adds molecule stamp and the total number of the molecule with
501 * same molecule stamp in the whole system.
502 */
503 void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
504
505 // Other classes holdingn important information
506 ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
507 Globals* simParams_; /**< provides access to simulation parameters set by user */
508
509 /// Counts of local objects
510 int nAtoms_; /**< number of atoms in local processor */
511 int nBonds_; /**< number of bonds in local processor */
512 int nBends_; /**< number of bends in local processor */
513 int nTorsions_; /**< number of torsions in local processor */
514 int nInversions_; /**< number of inversions in local processor */
515 int nRigidBodies_; /**< number of rigid bodies in local processor */
516 int nIntegrableObjects_; /**< number of integrable objects in local processor */
517 int nCutoffGroups_; /**< number of cutoff groups in local processor */
518 int nConstraints_; /**< number of constraints in local processors */
519
520 /// Counts of global objects
521 int nGlobalMols_; /**< number of molecules in the system (GLOBAL) */
522 int nGlobalAtoms_; /**< number of atoms in the system (GLOBAL) */
523 int nGlobalCutoffGroups_; /**< number of cutoff groups in this system (GLOBAL) */
524 int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
525 int nGlobalRigidBodies_; /**< number of rigid bodies in this system (GLOBAL) */
526
527 /// Degress of freedom
528 int ndf_; /**< number of degress of freedom (excludes constraints) (LOCAL) */
529 int fdf_local; /**< number of frozen degrees of freedom (LOCAL) */
530 int fdf_; /**< number of frozen degrees of freedom (GLOBAL) */
531 int ndfRaw_; /**< number of degress of freedom (includes constraints), (LOCAL) */
532 int ndfTrans_; /**< number of translation degress of freedom, (LOCAL) */
533 int nZconstraint_; /**< number of z-constraint molecules (GLOBAL) */
534
535 /// logicals
536 bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
537 bool usesDirectionalAtoms_; /**< are there atoms with position AND orientation? */
538 bool usesMetallicAtoms_; /**< are there transition metal atoms? */
539 bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
540 bool usesAtomicVirial_; /**< are we computing atomic virials? */
541 bool requiresPrepair_; /**< does this simulation require a pre-pair loop? */
542 bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
543 bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
544
545 public:
546 bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
547 bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
548 bool usesMetallicAtoms() { return usesMetallicAtoms_; }
549 bool usesAtomicVirial() { return usesAtomicVirial_; }
550 bool requiresPrepair() { return requiresPrepair_; }
551 bool requiresSkipCorrection() { return requiresSkipCorrection_;}
552 bool requiresSelfCorrection() { return requiresSelfCorrection_;}
553
554 private:
555 /// Data structures holding primary simulation objects
556 map<int, Molecule*> molecules_; /**< map holding pointers to LOCAL molecules */
557
558 /// Stamps are templates for objects that are then used to create
559 /// groups of objects. For example, a molecule stamp contains
560 /// information on how to build that molecule (i.e. the topology,
561 /// the atoms, the bonds, etc.) Once the system is built, the
562 /// stamps are no longer useful.
563 vector<int> molStampIds_; /**< stamp id for molecules in the system */
564 vector<MoleculeStamp*> moleculeStamps_; /**< molecule stamps array */
565
566 /**
567 * A vector that maps between the global index of an atom, and the
568 * global index of cutoff group the atom belong to. It is filled
569 * by SimCreator once and only once, since it never changed during
570 * the simulation. It should be nGlobalAtoms_ in size.
571 */
572 vector<int> globalGroupMembership_;
573 public:
574 vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
575 private:
576
577 /**
578 * A vector that maps between the global index of an atom and the
579 * global index of the molecule the atom belongs to. It is filled
580 * by SimCreator once and only once, since it is never changed
581 * during the simulation. It shoudl be nGlobalAtoms_ in size.
582 */
583 vector<int> globalMolMembership_;
584
585 /**
586 * A vector that maps between the local index of an atom and the
587 * index of the AtomType.
588 */
589 vector<int> identArray_;
590 public:
591 vector<int> getIdentArray() { return identArray_; }
592 private:
593
594 /**
595 * A vector which contains the fractional contribution of an
596 * atom's mass to the total mass of the cutoffGroup that atom
597 * belongs to. In the case of single atom cutoff groups, the mass
598 * factor for that atom is 1. For massless atoms, the factor is
599 * also 1.
600 */
601 vector<RealType> massFactors_;
602 public:
603 vector<RealType> getMassFactors() { return massFactors_; }
604
605 PairList getExcludedInteractions() { return excludedInteractions_; }
606 PairList getOneTwoInteractions() { return oneTwoInteractions_; }
607 PairList getOneThreeInteractions() { return oneThreeInteractions_; }
608 PairList getOneFourInteractions() { return oneFourInteractions_; }
609
610 private:
611
612
613 /// lists to handle atoms needing special treatment in the non-bonded interactions
614 PairList excludedInteractions_; /**< atoms excluded from interacting with each other */
615 PairList oneTwoInteractions_; /**< atoms that are directly Bonded */
616 PairList oneThreeInteractions_; /**< atoms sharing a Bend */
617 PairList oneFourInteractions_; /**< atoms sharing a Torsion */
618
619 PropertyMap properties_; /**< Generic Properties can be added */
620 SnapshotManager* sman_; /**< SnapshotManager (handles particle positions, etc.) */
621
622 /**
623 * The reason to have a local index manager is that when molecule
624 * is migrating to other processors, the atoms and the
625 * rigid-bodies will release their local indices to
626 * LocalIndexManager. Combining the information of molecule
627 * migrating to current processor, Migrator class can query the
628 * LocalIndexManager to make a efficient data moving plan.
629 */
630 LocalIndexManager localIndexMan_;
631
632 // unparsed MetaData block for storing in Dump and EOR files:
633 string rawMetaData_;
634
635 // file names
636 string finalConfigFileName_;
637 string dumpFileName_;
638 string statFileName_;
639 string restFileName_;
640
641
642 bool topologyDone_; /** flag to indicate whether the topology has
643 been scanned and all the relevant
644 bookkeeping has been done*/
645
646 bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
647 the simulation box dipole moment */
648
649 bool useAtomicVirial_; /**< flag to indicate whether or not we use
650 Atomic Virials to calculate the pressure */
651
652 public:
653 /**
654 * return an integral objects by its global index. In MPI
655 * version, if the StuntDouble with specified global index does
656 * not belong to local processor, a NULL will be return.
657 */
658 StuntDouble* getIOIndexToIntegrableObject(int index);
659 void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
660
661 private:
662 vector<StuntDouble*> IOIndexToIntegrableObject;
663
664 public:
665
666 /**
667 * Finds the processor where a molecule resides
668 * @return the id of the processor which contains the molecule
669 * @param globalIndex global Index of the molecule
670 */
671 int getMolToProc(int globalIndex) {
672 //assert(globalIndex < molToProcMap_.size());
673 return molToProcMap_[globalIndex];
674 }
675
676 /**
677 * Set MolToProcMap array
678 * @see #SimCreator::divideMolecules
679 */
680 void setMolToProcMap(const vector<int>& molToProcMap) {
681 molToProcMap_ = molToProcMap;
682 }
683
684 private:
685
686 /**
687 * The size of molToProcMap_ is equal to total number of molecules
688 * in the system. It maps a molecule to the processor on which it
689 * resides. it is filled by SimCreator once and only once.
690 */
691 vector<int> molToProcMap_;
692
693 };
694
695 } //namespace OpenMD
696 #endif //BRAINS_SIMMODEL_HPP
697

Properties

Name Value
svn:keywords Author Id Revision Date