ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.hpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.hpp (file contents), Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
branches/development/src/brains/SimInfo.hpp (file contents), Revision 1569 by gezelter, Thu May 26 13:55:04 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 54 | Line 54
54   #include <utility>
55   #include <vector>
56  
57 < #include "brains/Exclude.hpp"
57 > #include "brains/PairList.hpp"
58   #include "io/Globals.hpp"
59   #include "math/Vector3.hpp"
60   #include "math/SquareMatrix3.hpp"
# Line 62 | Line 62
62   #include "UseTheForce/ForceField.hpp"
63   #include "utils/PropertyMap.hpp"
64   #include "utils/LocalIndexManager.hpp"
65 + #include "nonbonded/SwitchingFunction.hpp"
66  
67 < //another nonsense macro declaration
68 < #define __C
69 < #include "brains/fSimulation.h"
69 <
70 < namespace oopse{
71 <
72 <  //forward decalration
67 > using namespace std;
68 > namespace OpenMD{
69 >  //forward declaration
70    class SnapshotManager;
71    class Molecule;
72    class SelectionManager;
73 +  class StuntDouble;
74 +
75    /**
76 <   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
77 <   * @brief As one of the heavy weight class of OOPSE, SimInfo
78 <   * One of the major changes in SimInfo class is the data struct. It only maintains a list of molecules.
79 <   * And the Molecule class will maintain all of the concrete objects (atoms, bond, bend, torsions, rigid bodies,
80 <   * cutoff groups, constrains).
81 <   * Another major change is the index. No matter single version or parallel version,  atoms and
82 <   * rigid bodies have both global index and local index. Local index is not important to molecule as well as
83 <   * cutoff group.
76 >   * @class SimInfo SimInfo.hpp "brains/SimInfo.hpp"
77 >   *
78 >   * @brief One of the heavy-weight classes of OpenMD, SimInfo
79 >   * maintains objects and variables relating to the current
80 >   * simulation.  This includes the master list of Molecules.  The
81 >   * Molecule class maintains all of the concrete objects (Atoms,
82 >   * Bond, Bend, Torsions, Inversions, RigidBodies, CutoffGroups,
83 >   * Constraints). In both the single and parallel versions, Atoms and
84 >   * RigidBodies have both global and local indices.
85     */
86    class SimInfo {
87    public:
88 <    typedef std::map<int, Molecule*>::iterator  MoleculeIterator;
89 <
88 >    typedef map<int, Molecule*>::iterator  MoleculeIterator;
89 >    
90      /**
91       * Constructor of SimInfo
92 <     * @param molStampPairs MoleculeStamp Array. The first element of the pair is molecule stamp, the
93 <     * second element is the total number of molecules with the same molecule stamp in the system
92 >     *
93 >     * @param molStampPairs MoleculeStamp Array. The first element of
94 >     * the pair is molecule stamp, the second element is the total
95 >     * number of molecules with the same molecule stamp in the system
96 >     *
97       * @param ff pointer of a concrete ForceField instance
98 +     *
99       * @param simParams
96     * @note
100       */
101      SimInfo(ForceField* ff, Globals* simParams);
102      virtual ~SimInfo();
103  
104      /**
105       * Adds a molecule
106 <     * @return return true if adding successfully, return false if the molecule is already in SimInfo
106 >     *
107 >     * @return return true if adding successfully, return false if the
108 >     * molecule is already in SimInfo
109 >     *
110       * @param mol molecule to be added
111       */
112      bool addMolecule(Molecule* mol);
113  
114      /**
115       * Removes a molecule from SimInfo
116 <     * @return true if removing successfully, return false if molecule is not in this SimInfo
116 >     *
117 >     * @return true if removing successfully, return false if molecule
118 >     * is not in this SimInfo
119       */
120      bool removeMolecule(Molecule* mol);
121  
# Line 127 | Line 135 | namespace oopse{
135      }
136  
137      /**
138 <     * Returns the total number of integrable objects (total number of rigid bodies plus the total number
139 <     * of atoms which do not belong to the rigid bodies) in the system
138 >     * Returns the total number of integrable objects (total number of
139 >     * rigid bodies plus the total number of atoms which do not belong
140 >     * to the rigid bodies) in the system
141       */
142      int getNGlobalIntegrableObjects() {
143        return nGlobalIntegrableObjects_;
144      }
145  
146      /**
147 <     * Returns the total number of integrable objects (total number of rigid bodies plus the total number
148 <     * of atoms which do not belong to the rigid bodies) in the system
147 >     * Returns the total number of integrable objects (total number of
148 >     * rigid bodies plus the total number of atoms which do not belong
149 >     * to the rigid bodies) in the system
150       */
151      int getNGlobalRigidBodies() {
152        return nGlobalRigidBodies_;
# Line 171 | Line 181 | namespace oopse{
181        return nTorsions_;
182      }
183  
184 +    /** Returns the number of local torsions */        
185 +    unsigned int getNInversions() {
186 +      return nInversions_;
187 +    }
188      /** Returns the number of local rigid bodies */        
189      unsigned int getNRigidBodies() {
190        return nRigidBodies_;
# Line 207 | Line 221 | namespace oopse{
221  
222      /** Returns the number of degrees of freedom */
223      int getNdf() {
224 <      return ndf_;
224 >      return ndf_ - getFdf();
225      }
226  
227      /** Returns the number of raw degrees of freedom */
# Line 220 | Line 234 | namespace oopse{
234        return ndfTrans_;
235      }
236  
237 <    //getNZconstraint and setNZconstraint ruin the coherent of SimInfo class, need refactorying
237 >    /** sets the current number of frozen degrees of freedom */
238 >    void setFdf(int fdf) {
239 >      fdf_local = fdf;
240 >    }
241 >
242 >    int getFdf();
243 >    
244 >    //getNZconstraint and setNZconstraint ruin the coherence of
245 >    //SimInfo class, need refactoring
246          
247      /** Returns the total number of z-constraint molecules in the system */
248      int getNZconstraint() {
# Line 256 | Line 278 | namespace oopse{
278  
279      /** Returns the center of the mass of the whole system.*/
280      Vector3d getCom();
281 <   /** Returns the center of the mass and Center of Mass velocity of the whole system.*/
281 >    /** Returns the center of the mass and Center of Mass velocity of
282 >        the whole system.*/
283      void getComAll(Vector3d& com,Vector3d& comVel);
284  
285 <    /** Returns intertia tensor for the entire system and system Angular Momentum.*/
285 >    /** Returns intertia tensor for the entire system and system
286 >        Angular Momentum.*/
287      void getInertiaTensor(Mat3x3d &intertiaTensor,Vector3d &angularMomentum);
288      
289      /** Returns system angular momentum */
290      Vector3d getAngularMomentum();
291  
292 <    /** main driver function to interact with fortran during the initialization and molecule migration */
292 >    /** Returns volume of system as estimated by an ellipsoid defined
293 >        by the radii of gyration*/
294 >    void getGyrationalVolume(RealType &vol);
295 >    /** Overloaded version of gyrational volume that also returns
296 >        det(I) so dV/dr can be calculated*/
297 >    void getGyrationalVolume(RealType &vol, RealType &detI);
298 >
299      void update();
300 +    /**
301 +     * Do final bookkeeping before Force managers need their data.
302 +     */
303 +    void prepareTopology();
304  
305 +
306      /** Returns the local index manager */
307      LocalIndexManager* getLocalIndexManager() {
308        return &localIndexMan_;
# Line 299 | Line 334 | namespace oopse{
334        return i != molecules_.end() ? i->second : NULL;
335      }
336  
337 <    double getRcut() {
338 <      return rcut_;
337 >    int getGlobalMolMembership(int id){
338 >      return globalMolMembership_[id];
339      }
340  
341 <    double getRsw() {
342 <      return rsw_;
343 <    }
341 >    /**
342 >     * returns a vector which maps the local atom index on this
343 >     * processor to the global atom index.  With only one processor,
344 >     * these should be identical.
345 >     */
346 >    vector<int> getGlobalAtomIndices();
347  
348 <    double getList() {
349 <      return rlist_;
350 <    }
348 >    /**
349 >     * returns a vector which maps the local cutoff group index on
350 >     * this processor to the global cutoff group index.  With only one
351 >     * processor, these should be identical.
352 >     */
353 >    vector<int> getGlobalGroupIndices();
354 >
355          
356 <    std::string getFinalConfigFileName() {
356 >    string getFinalConfigFileName() {
357        return finalConfigFileName_;
358      }
359 <        
360 <    void setFinalConfigFileName(const std::string& fileName) {
359 >
360 >    void setFinalConfigFileName(const string& fileName) {
361        finalConfigFileName_ = fileName;
362      }
363  
364 <    std::string getDumpFileName() {
364 >    string getRawMetaData() {
365 >      return rawMetaData_;
366 >    }
367 >    void setRawMetaData(const string& rawMetaData) {
368 >      rawMetaData_ = rawMetaData;
369 >    }
370 >        
371 >    string getDumpFileName() {
372        return dumpFileName_;
373      }
374          
375 <    void setDumpFileName(const std::string& fileName) {
375 >    void setDumpFileName(const string& fileName) {
376        dumpFileName_ = fileName;
377      }
378  
379 <    std::string getStatFileName() {
379 >    string getStatFileName() {
380        return statFileName_;
381      }
382          
383 <    void setStatFileName(const std::string& fileName) {
383 >    void setStatFileName(const string& fileName) {
384        statFileName_ = fileName;
385      }
386          
387 <    std::string getRestFileName() {
387 >    string getRestFileName() {
388        return restFileName_;
389      }
390          
391 <    void setRestFileName(const std::string& fileName) {
391 >    void setRestFileName(const string& fileName) {
392        restFileName_ = fileName;
393      }
394  
# Line 347 | Line 396 | namespace oopse{
396       * Sets GlobalGroupMembership
397       * @see #SimCreator::setGlobalIndex
398       */  
399 <    void setGlobalGroupMembership(const std::vector<int>& globalGroupMembership) {
400 <      assert(globalGroupMembership.size() == nGlobalAtoms_);
399 >    void setGlobalGroupMembership(const vector<int>& globalGroupMembership) {
400 >      assert(globalGroupMembership.size() == static_cast<size_t>(nGlobalAtoms_));
401        globalGroupMembership_ = globalGroupMembership;
402      }
403  
# Line 356 | Line 405 | namespace oopse{
405       * Sets GlobalMolMembership
406       * @see #SimCreator::setGlobalIndex
407       */        
408 <    void setGlobalMolMembership(const std::vector<int>& globalMolMembership) {
409 <      assert(globalMolMembership.size() == nGlobalAtoms_);
408 >    void setGlobalMolMembership(const vector<int>& globalMolMembership) {
409 >      assert(globalMolMembership.size() == static_cast<size_t>(nGlobalAtoms_));
410        globalMolMembership_ = globalMolMembership;
411      }
412  
413  
414 <    bool isFortranInitialized() {
415 <      return fortranInitialized_;
414 >    bool isTopologyDone() {
415 >      return topologyDone_;
416      }
417          
418 <    //below functions are just forward functions
419 <    //To compose or to inherit is always a hot debate. In general, is-a relation need subclassing, in the
420 <    //the other hand, has-a relation need composing.
418 >    bool getCalcBoxDipole() {
419 >      return calcBoxDipole_;
420 >    }
421 >
422 >    bool getUseAtomicVirial() {
423 >      return useAtomicVirial_;
424 >    }
425 >
426      /**
427       * Adds property into property map
428       * @param genData GenericData to be added into PropertyMap
# Line 379 | Line 433 | namespace oopse{
433       * Removes property from PropertyMap by name
434       * @param propName the name of property to be removed
435       */
436 <    void removeProperty(const std::string& propName);
436 >    void removeProperty(const string& propName);
437  
438      /**
439       * clear all of the properties
# Line 390 | Line 444 | namespace oopse{
444       * Returns all names of properties
445       * @return all names of properties
446       */
447 <    std::vector<std::string> getPropertyNames();
447 >    vector<string> getPropertyNames();
448  
449      /**
450       * Returns all of the properties in PropertyMap
451       * @return all of the properties in PropertyMap
452       */      
453 <    std::vector<GenericData*> getProperties();
453 >    vector<GenericData*> getProperties();
454  
455      /**
456       * Returns property
# Line 404 | Line 458 | namespace oopse{
458       * @return a pointer point to property with propName. If no property named propName
459       * exists, return NULL
460       */      
461 <    GenericData* getPropertyByName(const std::string& propName);
461 >    GenericData* getPropertyByName(const string& propName);
462  
463      /**
464 <     * add all exclude pairs of a molecule into exclude list.
464 >     * add all special interaction pairs (including excluded
465 >     * interactions) in a molecule into the appropriate lists.
466       */
467 <    void addExcludePairs(Molecule* mol);
467 >    void addInteractionPairs(Molecule* mol);
468  
469      /**
470 <     * remove all exclude pairs which belong to a molecule from exclude list
470 >     * remove all special interaction pairs which belong to a molecule
471 >     * from the appropriate lists.
472       */
473 +    void removeInteractionPairs(Molecule* mol);
474  
475 <    void removeExcludePairs(Molecule* mol);
476 <
420 <
421 <    /** Returns the unique atom types of local processor in an array */
422 <    std::set<AtomType*> getUniqueAtomTypes();
475 >    /** Returns the set of atom types present in this simulation */
476 >    set<AtomType*> getSimulatedAtomTypes();
477          
478 <    friend std::ostream& operator <<(std::ostream& o, SimInfo& info);
478 >    friend ostream& operator <<(ostream& o, SimInfo& info);
479  
480 <    void getCutoff(double& rcut, double& rsw);
480 >    void getCutoff(RealType& rcut, RealType& rsw);
481          
482    private:
483  
484 <    /** fill up the simtype struct*/
485 <    void setupSimType();
484 >    /** fill up the simtype struct and other simulation-related variables */
485 >    void setupSimVariables();
486  
433    /**
434     * Setup Fortran Simulation
435     * @see #setupFortranParallel
436     */
437    void setupFortranSim();
487  
488 <    /** Figure out the radius of cutoff, radius of switching function and pass them to fortran */
489 <    void setupCutoff();
441 <
442 <    /** Figure out which coulombic correction method to use and pass to fortran */
443 <    void setupElectrostaticSummationMethod( int isError );
444 <
445 <    /** Figure out which polynomial type to use for the switching function */
446 <    void setupSwitchingFunction();
488 >    /** Determine if we need to accumulate the simulation box dipole */
489 >    void setupAccumulateBoxDipole();
490  
491      /** Calculates the number of degress of freedom in the whole system */
492      void calcNdf();
493      void calcNdfRaw();
494      void calcNdfTrans();
495  
453    ForceField* forceField_;      
454    Globals* simParams_;
455
456    std::map<int, Molecule*>  molecules_; /**< Molecule array */
457
496      /**
497 <     * Adds molecule stamp and the total number of the molecule with same molecule stamp in the whole
498 <     * system.
497 >     * Adds molecule stamp and the total number of the molecule with
498 >     * same molecule stamp in the whole system.
499       */
500      void addMoleculeStamp(MoleculeStamp* molStamp, int nmol);
501 +
502 +    // Other classes holdingn important information
503 +    ForceField* forceField_; /**< provides access to defined atom types, bond types, etc. */
504 +    Globals* simParams_;     /**< provides access to simulation parameters set by user */
505 +
506 +    ///  Counts of local objects
507 +    int nAtoms_;              /**< number of atoms in local processor */
508 +    int nBonds_;              /**< number of bonds in local processor */
509 +    int nBends_;              /**< number of bends in local processor */
510 +    int nTorsions_;           /**< number of torsions in local processor */
511 +    int nInversions_;         /**< number of inversions in local processor */
512 +    int nRigidBodies_;        /**< number of rigid bodies in local processor */
513 +    int nIntegrableObjects_;  /**< number of integrable objects in local processor */
514 +    int nCutoffGroups_;       /**< number of cutoff groups in local processor */
515 +    int nConstraints_;        /**< number of constraints in local processors */
516          
517 <    //degress of freedom
518 <    int ndf_;           /**< number of degress of freedom (excludes constraints),  ndf_ is local */
519 <    int ndfRaw_;    /**< number of degress of freedom (includes constraints),  ndfRaw_ is local */
520 <    int ndfTrans_; /**< number of translation degress of freedom, ndfTrans_ is local */
468 <    int nZconstraint_; /** number of  z-constraint molecules, nZconstraint_ is global */
469 <        
470 <    //number of global objects
471 <    int nGlobalMols_;       /**< number of molecules in the system */
472 <    int nGlobalAtoms_;   /**< number of atoms in the system */
473 <    int nGlobalCutoffGroups_; /**< number of cutoff groups in this system */
517 >    /// Counts of global objects
518 >    int nGlobalMols_;              /**< number of molecules in the system (GLOBAL) */
519 >    int nGlobalAtoms_;             /**< number of atoms in the system (GLOBAL) */
520 >    int nGlobalCutoffGroups_;      /**< number of cutoff groups in this system (GLOBAL) */
521      int nGlobalIntegrableObjects_; /**< number of integrable objects in this system */
522 <    int nGlobalRigidBodies_; /**< number of rigid bodies in this system */
522 >    int nGlobalRigidBodies_;       /**< number of rigid bodies in this system (GLOBAL) */
523 >      
524 >    /// Degress of freedom
525 >    int ndf_;          /**< number of degress of freedom (excludes constraints) (LOCAL) */
526 >    int fdf_local;     /**< number of frozen degrees of freedom (LOCAL) */
527 >    int fdf_;          /**< number of frozen degrees of freedom (GLOBAL) */
528 >    int ndfRaw_;       /**< number of degress of freedom (includes constraints),  (LOCAL) */
529 >    int ndfTrans_;     /**< number of translation degress of freedom, (LOCAL) */
530 >    int nZconstraint_; /**< number of  z-constraint molecules (GLOBAL) */
531 >
532 >    /// logicals
533 >    bool usesPeriodicBoundaries_; /**< use periodic boundary conditions? */
534 >    bool usesDirectionalAtoms_;   /**< are there atoms with position AND orientation? */
535 >    bool usesMetallicAtoms_;      /**< are there transition metal atoms? */
536 >    bool usesElectrostaticAtoms_; /**< are there electrostatic atoms? */
537 >    bool usesAtomicVirial_;       /**< are we computing atomic virials? */
538 >    bool requiresPrepair_;        /**< does this simulation require a pre-pair loop? */
539 >    bool requiresSkipCorrection_; /**< does this simulation require a skip-correction? */
540 >    bool requiresSelfCorrection_; /**< does this simulation require a self-correction? */
541 >
542 >  public:
543 >    bool usesElectrostaticAtoms() { return usesElectrostaticAtoms_; }
544 >    bool usesDirectionalAtoms() { return usesDirectionalAtoms_; }
545 >    bool usesMetallicAtoms() { return usesMetallicAtoms_; }
546 >    bool usesAtomicVirial() { return usesAtomicVirial_; }
547 >    bool requiresPrepair() { return requiresPrepair_; }
548 >    bool requiresSkipCorrection() { return requiresSkipCorrection_;}
549 >    bool requiresSelfCorrection() { return requiresSelfCorrection_;}
550 >
551 >  private:
552 >    /// Data structures holding primary simulation objects
553 >    map<int, Molecule*>  molecules_;  /**< map holding pointers to LOCAL molecules */
554 >
555 >    /// Stamps are templates for objects that are then used to create
556 >    /// groups of objects.  For example, a molecule stamp contains
557 >    /// information on how to build that molecule (i.e. the topology,
558 >    /// the atoms, the bonds, etc.)  Once the system is built, the
559 >    /// stamps are no longer useful.
560 >    vector<int> molStampIds_;                /**< stamp id for molecules in the system */
561 >    vector<MoleculeStamp*> moleculeStamps_;  /**< molecule stamps array */        
562 >
563      /**
564 <     * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
565 <     * corresponding content is the global index of cutoff group this atom belong to.
566 <     * It is filled by SimCreator once and only once, since it never changed during the simulation.
564 >     * A vector that maps between the global index of an atom, and the
565 >     * global index of cutoff group the atom belong to.  It is filled
566 >     * by SimCreator once and only once, since it never changed during
567 >     * the simulation.  It should be nGlobalAtoms_ in size.
568       */
569 <    std::vector<int> globalGroupMembership_;
569 >    vector<int> globalGroupMembership_;
570 >  public:
571 >    vector<int> getGlobalGroupMembership() { return globalGroupMembership_; }
572 >  private:
573  
574      /**
575 <     * the size of globalGroupMembership_  is nGlobalAtoms. Its index is  global index of an atom, and the
576 <     * corresponding content is the global index of molecule this atom belong to.
577 <     * It is filled by SimCreator once and only once, since it is never changed during the simulation.
575 >     * A vector that maps between the global index of an atom and the
576 >     * global index of the molecule the atom belongs to.  It is filled
577 >     * by SimCreator once and only once, since it is never changed
578 >     * during the simulation. It shoudl be nGlobalAtoms_ in size.
579       */
580 <    std::vector<int> globalMolMembership_;        
580 >    vector<int> globalMolMembership_;
581  
582 <        
583 <    std::vector<int> molStampIds_;                                /**< stamp id array of all molecules in the system */
584 <    std::vector<MoleculeStamp*> moleculeStamps_;      /**< molecule stamps array */        
585 <        
586 <    //number of local objects
587 <    int nAtoms_;                        /**< number of atoms in local processor */
588 <    int nBonds_;                        /**< number of bonds in local processor */
589 <    int nBends_;                        /**< number of bends in local processor */
590 <    int nTorsions_;                    /**< number of torsions in local processor */
591 <    int nRigidBodies_;              /**< number of rigid bodies in local processor */
592 <    int nIntegrableObjects_;    /**< number of integrable objects in local processor */
593 <    int nCutoffGroups_;             /**< number of cutoff groups in local processor */
594 <    int nConstraints_;              /**< number of constraints in local processors */
582 >    /**
583 >     * A vector that maps between the local index of an atom and the
584 >     * index of the AtomType.
585 >     */
586 >    vector<int> identArray_;
587 >  public:
588 >    vector<int> getIdentArray() { return identArray_; }
589 >  private:
590 >    
591 >    /**
592 >     * A vector which contains the fractional contribution of an
593 >     * atom's mass to the total mass of the cutoffGroup that atom
594 >     * belongs to.  In the case of single atom cutoff groups, the mass
595 >     * factor for that atom is 1.  For massless atoms, the factor is
596 >     * also 1.
597 >     */
598 >    vector<RealType> massFactors_;
599 >  public:
600 >    vector<RealType> getMassFactors() { return massFactors_; }
601 >  private:
602  
603 <    simtype fInfo_; /**< A dual struct shared by c++/fortran which indicates the atom types in simulation*/
604 <    Exclude exclude_;      
605 <    PropertyMap properties_;                  /**< Generic Property */
606 <    SnapshotManager* sman_;               /**< SnapshotManager */
603 >              
604 >    /// lists to handle atoms needing special treatment in the non-bonded interactions
605 >    PairList excludedInteractions_;  /**< atoms excluded from interacting with each other */
606 >    PairList oneTwoInteractions_;    /**< atoms that are directly Bonded */
607 >    PairList oneThreeInteractions_;  /**< atoms sharing a Bend */    
608 >    PairList oneFourInteractions_;   /**< atoms sharing a Torsion */
609  
610 +    PropertyMap properties_;       /**< Generic Properties can be added */
611 +    SnapshotManager* sman_;        /**< SnapshotManager (handles particle positions, etc.) */
612 +
613      /**
614 <     * The reason to have a local index manager is that when molecule is migrating to other processors,
615 <     * the atoms and the rigid-bodies will release their local indices to LocalIndexManager. Combining the
616 <     * information of molecule migrating to current processor, Migrator class can query  the LocalIndexManager
617 <     * to make a efficient data moving plan.
614 >     * The reason to have a local index manager is that when molecule
615 >     * is migrating to other processors, the atoms and the
616 >     * rigid-bodies will release their local indices to
617 >     * LocalIndexManager. Combining the information of molecule
618 >     * migrating to current processor, Migrator class can query the
619 >     * LocalIndexManager to make a efficient data moving plan.
620       */        
621      LocalIndexManager localIndexMan_;
622  
623 <    //file names
624 <    std::string finalConfigFileName_;
625 <    std::string dumpFileName_;
626 <    std::string statFileName_;
627 <    std::string restFileName_;
623 >    // unparsed MetaData block for storing in Dump and EOR files:
624 >    string rawMetaData_;
625 >
626 >    // file names
627 >    string finalConfigFileName_;
628 >    string dumpFileName_;
629 >    string statFileName_;
630 >    string restFileName_;
631          
523    double rcut_;       /**< cutoff radius*/
524    double rsw_;        /**< radius of switching function*/
525    double rlist_;      /**< neighbor list radius */
632  
633 <    bool fortranInitialized_; /**< flag indicate whether fortran side is initialized */
634 <
635 < #ifdef IS_MPI
636 <    //in Parallel version, we need MolToProc
633 >    bool topologyDone_;  /** flag to indicate whether the topology has
634 >                             been scanned and all the relevant
635 >                             bookkeeping has been done*/
636 >    
637 >    bool calcBoxDipole_; /**< flag to indicate whether or not we calculate
638 >                            the simulation box dipole moment */
639 >    
640 >    bool useAtomicVirial_; /**< flag to indicate whether or not we use
641 >                              Atomic Virials to calculate the pressure */
642 >    
643    public:
644 +    /**
645 +     * return an integral objects by its global index. In MPI
646 +     * version, if the StuntDouble with specified global index does
647 +      * not belong to local processor, a NULL will be return.
648 +      */
649 +    StuntDouble* getIOIndexToIntegrableObject(int index);
650 +    void setIOIndexToIntegrableObject(const vector<StuntDouble*>& v);
651 +    
652 +  private:
653 +    vector<StuntDouble*> IOIndexToIntegrableObject;
654 +    
655 +  public:
656                  
657      /**
658       * Finds the processor where a molecule resides
# Line 539 | Line 663 | namespace oopse{
663        //assert(globalIndex < molToProcMap_.size());
664        return molToProcMap_[globalIndex];
665      }
666 <
666 >    
667      /**
668       * Set MolToProcMap array
669       * @see #SimCreator::divideMolecules
670       */
671 <    void setMolToProcMap(const std::vector<int>& molToProcMap) {
671 >    void setMolToProcMap(const vector<int>& molToProcMap) {
672        molToProcMap_ = molToProcMap;
673      }
674          
675    private:
552
553    void setupFortranParallel();
676          
677      /**
678 <     * The size of molToProcMap_ is equal to total number of molecules in the system.
679 <     *  It maps a molecule to the processor on which it resides. it is filled by SimCreator once and only
680 <     * once.
678 >     * The size of molToProcMap_ is equal to total number of molecules
679 >     * in the system.  It maps a molecule to the processor on which it
680 >     * resides. it is filled by SimCreator once and only once.
681       */        
682 <    std::vector<int> molToProcMap_;
682 >    vector<int> molToProcMap_;
683  
562 #endif
563
684    };
685  
686 < } //namespace oopse
686 > } //namespace OpenMD
687   #endif //BRAINS_SIMMODEL_HPP
688  

Comparing:
trunk/src/brains/SimInfo.hpp (property svn:keywords), Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
branches/development/src/brains/SimInfo.hpp (property svn:keywords), Revision 1569 by gezelter, Thu May 26 13:55:04 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines